ECE 471/571 Energy-E cient VLSI - Oregon State...

4
ECE 471/571 Energy-Efficient VLSI Homework 1 Solutions 1. (a) NMOS: V DS >V GS - V T = saturation. I D = 1 2 k 0 n W L (V GS - V T ) 2 (1 + λV DS ) = 283.3μA PMOS: |V DS | > |V GS - V T | = saturation. I D = 1 2 k 0 p W L (|V GS |-|V T |) 2 (1 + λ|V DS |)=0.17μA (b) NMOS: V DS <V GS - V T = linear. I D = k 0 n W L {(V GS - V T )V DS - V 2 DS 2 } = 447.8μA PMOS: |V DS | > |V GS - V T | = linear. I D = k 0 p W L {(|V GS |-|V T |)|V DS |- V 2 DS 2 } = 64.8μA (c) NMOS: V DS <V GS - V T = linear. I D = k 0 n W L {(V GS - V T )V DS - V 2 DS 2 } =1.38μA PMOS: |V DS | > |V GS - V T | = linear. I D = k 0 p W L {(|V GS |-|V T |)|V DS |- V 2 DS 2 } = 36.75μA 2. (a) I D =0A, V D = -3.3V (b) Reverse biased (c) W j = s 2 Si q N A + N D N A N D (φ 0 - V D )=1.108μm Si = 11.7 × 0 = 11.7 × 8.854 × 10 -12 F/m =1.036 × 10 -10 F/m q =1.6 × 10 -19 C (d) C j = Si A D W j =1.122fF 1

Transcript of ECE 471/571 Energy-E cient VLSI - Oregon State...

Page 1: ECE 471/571 Energy-E cient VLSI - Oregon State Universityweb.engr.oregonstate.edu/.../HomeworkSolutions/ece471_hw1_sol.pdf · (e) Lower reverse-biased voltage leads to reduced width

ECE 471/571 Energy-Efficient VLSIHomework 1 Solutions

1. (a) NMOS: VDS > VGS − VT =⇒ saturation.

ID =1

2k′nW

L(VGS − VT )2(1 + λVDS) = 283.3µA

PMOS: |VDS| > |VGS − VT | =⇒ saturation.

ID =1

2k′pW

L(|VGS| − |VT |)2(1 + λ|VDS|) = 0.17µA

(b) NMOS: VDS < VGS − VT =⇒ linear.

ID = k′nW

L{(VGS − VT )VDS −

V 2DS

2} = 447.8µA

PMOS: |VDS| > |VGS − VT | =⇒ linear.

ID = k′pW

L{(|VGS| − |VT |)|VDS| −

V 2DS

2} = 64.8µA

(c) NMOS: VDS < VGS − VT =⇒ linear.

ID = k′nW

L{(VGS − VT )VDS −

V 2DS

2} = 1.38µA

PMOS: |VDS| > |VGS − VT | =⇒ linear.

ID = k′pW

L{(|VGS| − |VT |)|VDS| −

V 2DS

2} = 36.75µA

2. (a) ID = 0A, VD = −3.3V

(b) Reverse biased

(c)

Wj =

√(2εSiq

NA +ND

NAND

)(φ0 − VD) = 1.108µm

εSi = 11.7× ε0 = 11.7× 8.854× 10−12F/m = 1.036× 10−10F/m

q = 1.6× 10−19C

(d)

Cj =εSiAD

Wj= 1.122fF

1

Page 2: ECE 471/571 Energy-E cient VLSI - Oregon State Universityweb.engr.oregonstate.edu/.../HomeworkSolutions/ece471_hw1_sol.pdf · (e) Lower reverse-biased voltage leads to reduced width

(e) Lower reverse-biased voltage leads to reduced width of depletion region,Wj. Effectively as plates of capacitor are brought closer together, capaci-tance Cj increases.

3. VDS > VDSAT =⇒ velocity saturation.Assuming for all 5 cases that Vmin = VDSAT = 0.6V ,

In cases 1-3,VBS = 0 =⇒ VT = VT0.

Using ID = k′W

L{(VGS − VT )Vmin −

V 2min

2}(1 + λVDS)

W

L= 15, VT0 = 0.44V, λ = 0.08V −1

In cases 4-5,Substituting previously found values and usingVT = VT0 + γ(

√| − 2ΦF + VSB| − (

√| − 2ΦF )

|2ΦF | = 0.6V, γ = 0.3V12

4. (a) VD = VDD − IDRD = 2VFor saturation, VDS > VGS − VT =⇒ VD > VG − VT∴ NMOS is in saturation region.

ID =1

2k′W

L(VGS − VT )2 = 50µA

VS = 1.3V

(b) VD = VDD − IDRD = 1VFor saturation, VDS > VGS − VT =⇒ VD > VG − VT∴ NMOS is in linear region.

ID = k′W

L{(VGS − VT )VDS −

V 2DS

2} = 50µA

VS = 0.93V

(c) Based on equation ID = 12k′nWL (VGS − VT )2(1 + λVDS), λ 6= 0 means ID has

to increase. However, since current source fixes ID to 50µA, VGS needs todecrease by increasing VS. So VS would increase.

5. (a) For short-channel, fixed-voltage scaling:

S =0.18µ

0.12µ= 1.5

2

Page 3: ECE 471/571 Energy-E cient VLSI - Oregon State Universityweb.engr.oregonstate.edu/.../HomeworkSolutions/ece471_hw1_sol.pdf · (e) Lower reverse-biased voltage leads to reduced width

A′ =A

S2= 0.311mm2

P ′ = P = 0.4mW/MHz × 100MHz = 40mW(P

A

)′= 128.62mW/mm2

(b) General scaling: U =1.8

1.5= 1.2

P ′ =P

U 2= 27.78mW(

P

A

)′= 89.32mW/mm2

(c) f ′ = f × S = 150MHzAssuming dynamic power dominates,P150 = P100 × S = 41.67mW(P150

A

)′= 133.99mW/mm2

(d) Since power density scales byS2

U 2:(

P150

A

)′=

(P100

A

)× S2

U 2S =

P100

A

U 2 = S3

U = 1.837

U =1.8

V ′

V ′ ≈ 1V

6. (a) Assuming long-channel, fixed-voltage scaling:S = 2.5f ′ = f × S2 = 625MHz

P ′ = P × S = 25W

(b) Full-scaling (since U = S = 2.5):f ′ = f × S = 250MHz

P ′ =P

S2= 1.6W

(c) To keep power constant:S

U 3= 1 =⇒ U = 1.36

V ′ =V

U= 1.84V

3

Page 4: ECE 471/571 Energy-E cient VLSI - Oregon State Universityweb.engr.oregonstate.edu/.../HomeworkSolutions/ece471_hw1_sol.pdf · (e) Lower reverse-biased voltage leads to reduced width

f ′ = f × S2

U≈ 460MHz

7. (a) Device is off while VG < VT .For VG = 0→ VT : CT = CT (1)VG = VT → 2VT : CT = CT (2)

t1 = CT (1)VTIin

t2 = CT (2)2VT − VT

Iin

∴ t = t1 + t2 = [CT (1) + CT (2)]VTIin

(b) Csb, Cdb do not contribute to gate capacitance.While device is off, VG < VT , Cgb contributes to CT .During VT < VG < 2VT , Cgb falls to zero.

0 < VG < VT =⇒ CT = CT (1) = CoxWL + W (CGD0 + CGS0) VT <

VG < 2VT =⇒ CT = CT (2) =2

3CoxWL+W (CGD0 + CGS0)

(c) Device is always off. Cgs, Cgb, Csb do not have connection to drain node.Overlap of Cgd and varying Cdb make up CT .

CT = WCGD0 +KeqCj0 +KeqswCjsw0

Cj0 = CjAD

Cjsw0 = CjswPDCT = WCGD0 +KeqCjAD +KeqswCjswPD

where,

Keq =−Pmj

B

2VT (1−mj)

[(PB − 2VT )(1−mj) − (PB)(1−mj)

]Keqsw =

−Pmjsw

B

2VT (1−mjsw)

[(PB − 2VT )(1−mjsw) − (PB)(1−mjsw)

]

4