Dipole Polarizability and Parityjroca/doc/seminars/2012-jun-18-trento.pdfGiant Resonances: Giant...
Embed Size (px)
Transcript of Dipole Polarizability and Parityjroca/doc/seminars/2012-jun-18-trento.pdfGiant Resonances: Giant...
-
Dipole Polarizability and ParityViolating Asymmetry in 208Pb
Xavier Roca-MazaINFN, Sezione di Milano, Via Celoria 16, I-20133, Milano (Italy)
The Nuclear Dipole Polarizability and its Impact on Nuclear
Structure and Astrophysics, 18-22 June 2012, Trento, Italy.
-
Table of contents:
◮ Motivation
◮ Isovector static dipole polarizability αD : Definition,Droplet model approach and Hartree-Fock + Random PhaseApproximation results for the case of 208Pb.
◮ Parity violating elastic electron scattering: Single anglemeasurement of Apv in
208Pb within the Distorted Wave BornApproximation based on mean-field nucleon distributions.
◮ Constraints set by Apv measured at JLab and αD measuredat RCNP on mean-field (MF) calculations.
◮ Summary of different constraints on the density slope ofthe symmetry energy around saturation.
◮ Conclusions
-
Motivation:
The importance of determining isovector properties in nuclei
◮ In the past (and also in the present), neutron properties instable medium and heavy nuclei have been mainly measuredby using strongly interacting probes.
⇓Limited knowledge of isovector properties
◮ At present,◮ the use of rare ion beams has opened the possibility of
measuring properties of exotic nuclei.◮ parity violating elastic electron scattering (PVES), a
model independent technique, has allowed to estimate theneutron radius of a stable heavy nucleus like 208Pb([email protected]).
⇓Promising perspectives for the near future.
-
Motivation:
It is possible to connect observables with general isovectorproperties of the nuclear effective interaction?
Example:Mean-Fieldpredictions show a clearcorrelation between∆rnp of a medium andheavy nucleus and thedensity slope of thesymmetry energy(L = 3ρ0∂ρS(ρ)|ρ0 =3ρ0p0).
R.J. Furnstahl, NPA, 706, 85 (2002)
-
Motivation:
More generally within MF, it has been found a semi-empiricallaw: asym(A) ≈ S(ρA) with ρA = ρ0 − ρ0/(1 + cA1/3) ⇒direct and clearconnection of any groundstate isospin sensitiveobservable with theparameters of the EoS.Following the sameexample: ∆r totalnp (A, I ) =
∆rbulknp (A, I ) +
∆r surfacenp (A, I )
MSk7
D1SSk-T6
SkM*
DD-ME2FSUGold Ska
Sk-Rs
Sk-T4G2 NLC
NL3*
NL-ZNL1
0 50 100 150L (MeV)
0
0.1
0.2
0.3
∆rnp
of
208 P
b (
fm)
HFB-8
SGIIHFB-17
SLy4
SkSM*SkMP
NL-SH
D1N
TM1
NL3
NL-RA1
Total fit: r=0.992, slope=1.6 fm/GeVBulk fit: r=0.993, slope=1.4 fm/GeVSurface fit: r=0.602, slope=0.2 fm/GeV
∆rbulknp (A, I ) ≈2r03J
L(
1− ǫAKsym2L
)
ǫAA1/3
(
I − IC)
M. Centelles, X. Roca-Maza, X. Viñas, and M. Warda, Phys. Rev. Lett. 102, 122502 (2009); Phys. Rev. C 80
024316 (2009); Phys. Rev. C 81 054309 (2010) and Phys. Rev. C 82, 054314 (2010)
-
Motivation:Observables, processes and observations known to becorrelated with the isovector properties of the nucleareffective interaction
◮ Binding energies
◮ Neutron distributions (proton elastic scattering, antiprotonicatoms, parity violating asymmetry,...)
◮ Giant Resonances: Giant Dipole, Gamow-Teller, IsobaricAnalog, Spin Dipole and Anti-analog of the Giant DipoleResonances (inelastic hadron-nucleus, nucleus-nucleus andγ-nucleus scattering).
◮ Heavy Ion Collisions (EoS — transport models)
◮ Neutron Star properties: mass-radius relation, transitiondensity crust-core, composition,... (observational data).
◮ Low-energy dipole response (?)
◮ Isovector Giant Quadrupole Resonance (?)
◮ Isoscalar Giant Resonances along isotopic chains (?)
◮ ...
-
Isovector static dipole polarizability
-
Definition: αD
◮ The linear response or dynamic polarizability of a nuclearsystem excited from its g.s., |0〉, to an excited state, |ν〉, dueto the action of an external oscillating dipolar field of the form(Fe iwt + F †e−iwt):
FD =Z
A
N∑
i
rnY1M(r̂n)−N
A
Z∑
i
rpY1M(r̂p)
◮ is proportional to the static dipole polarizability, αD , forsmall oscillations
αD =8π
9e2m−1 =
8π
9e2
∑
ν
|〈ν|FD |0〉|2E
where m−1 is the inverse energy weighted moment of thestrength function,
SD(E ) =∑
ν
|〈ν|FD |0〉|2δ(E − Eν)
-
Macroscopic approach: αD◮ Being E the energy of a nucleus within the Liquid Drop
Model, Droplet Model,... and Fext an external field (dipoleoperator) → constrained calculation keeping N and Z fixed:
δ
{
E (ρ, δ) + Fext(Λ, ρ, δ)− λn∫ ∞
0ρn(r)dr − λp
∫ ∞
0ρp(r)dr
}
= 0
◮ LDM1:
m−1 ≈A〈r2〉1/248J
◮ DM2:
m−1 ≈A〈r2〉1/248J
(
1 +15
4
J
QA−1/3
)
1 A.B . Migdal, J. Phys. USSR 8 (1944) 331; J.S . Levinger, Nuclear photodisintegration (Oxford Univ . Press,London, 1960) sect. 3-1.
2 J. Meyer, P. Quentin, and B. K. Jennings, Nucl. Phys. A 386 (1982) 269.
-
Droplet model approach: symmetry energy and neutron skin
◮ The symmetry energy with surface effects is written in theDM:
asym(A) =J
1 + 94JQA−1/3
,
◮ while the neutron skin thickness (also including surfaceeffects),
∆rnp =
√
3
5
[
t− e2Z
70J
]
+∆rsurfacenp
t ≡ 3r02
J/Q
1 + 94JQA−1/3
(I − IC ),
I ≡ (N − Z)/A
IC ≡ (e2Z)/(20JR)
R = r0A1/3
∆rsurfacenp =√
(3/5)[5(b2n − b2p)/(2R)] is a
correction caused by the difference in thesurface widths bn and bp of the neutron andproton density profiles
-
Droplet model approach: connection between αD and theneutron skin
◮ Combining these formulas,
αD ≈A〈r2〉12J
1 +5
2
∆rnp +√
35e2Z70J −∆r surfacenp
〈r2〉1/2(I − IC )
◮ For a heavy nucleus and assuming small variations† of 〈r2〉,e2Z/70J and ∆r surfacenp as compared to that of J and ∆rnp,
αDJ ≈ p1 + p2∆rnp
†Some numbers: 208Pb and assuming J = 32 ± 2 MeV, ρ0 = 0.160 ± 0.05 fm−3 and
∆rsurfacenp ≈ 0.09 ± 0.01 (MF models) ⇒ (e2Z)/(70J) − ∆rsurfacenp ≈ −0.04 ± 0.01 fm
〈r2〉1/2 ≈ 5.23 ± 0.55 fm, Ic ≈ 0.027 ± 0.003
-
Mean-Field + RPA results for 208Pb
J. Piekarewicz, B. K. Agrawal, G. Colò, W.
Nazarewicz, N. Paar, P.-G. Reinhard, X.
Roca-Maza and D. Vretenar, Phys. Rev. C 85
041302 (2012) (R).
0.1 0.15 0.2 0.25∆r
np (fm)
5
6
7
8
9
10
10−2
α DJ
(M
eV fm
3 )
αD
J = 3.1(2) + 18.4(9) ∆rnp
r = 0.95EDF
20.1(6) x 32(2)
MF-Region
∆rnp ≈ 0.18± 0.05 fmassuming J = 32 ± 2 MeV and αD from A. Tamii et al. Phys. Rev.
Lett. 107, 062502 (2011)
-
Parity violating elastic electron scattering in208Pb
-
From previous talks, we have seen that,
◮ Electrons interact by exchanging a γ or a Z0 boson.
◮ While protons couple basically to γ, neutrons do it to Z0.
◮ Ultra-relativistic electrons, depending on their helicity,interact with the nucleons V± = VCoulomb ± VWeak.
◮ Ultra-relativistic electrons moving under the effect of V±where Coulomb distortions are important ⇒ solution of theDirac equation via the Distorted Wave Born Approximation(DWBA).
◮ Input for the calculation: ρn and ρp
Refs: C. J. Horowitz, Phys. Rev. C 57 3430 (1998); C. J. Horowitz, S. J. Pollock, P. A. Souder, and R. Michaels,
Phys. Rev. C 63, 025501 (2001); M. Centelles, X. Roca-Maza, X. Viñas, and M. Warda, Phys. Rev. C 82, 054314
(2010); X. Roca-Maza, M. Centelles, X. Viñas, and M. Warda, Phys. Rev. Lett. 106 252501 (2011) and (for the
electric proton and neutron form factors) J. Friedrich and Th. Walcher, Eur. Phys. J. A 17, 607623 (2003)
-
PREx data analysis:
◮ PREx measures, model-independently, the parity violatingasymmetry at 1.06 GeV and for a single angle (∼ 5 deg.) in208Pb,
Apv =(dσ+dΩ
− dσ−dΩ
)
/
(dσ+dΩ
+dσ−dΩ
)
◮ ρn of208Pb is the quantity to be determined, so...
◮ Which is the optimal neutron distribution in reproducingApv (Ebeam = 1.06 GeV,θ = 5 deg) from PREx?
-
Analysis I:◮ Fix ρp with the experimental data on elastic electron
scattering.
◮ Assume the electric proton and neutron form factors fromother experiments.
◮ Assume a parametrized density for the neutron distributionsuch as a two parameter Fermi function, 2pF:
ρn(r) =ρ0n
1 + e(r−Cn)/an
∫ ∞
0ρn(r)dr = N
◮ Fit the parameters (e.g. Cn and an), keeping the number ofneutrons fixed, to the data on Apv
Problem: One can only fix one of the parameters since Apv isknown at only one scattering angle.Solution: Fix a range for the other parameter based on theoreticalcalculations.Problem: Model dependence is introduced.
-
Analysis II: 2pF densities fitted to MF ρn andρp
D1SSGIID1N
SLy4
SkaSkMP
SkM*
HFB-8
Sk-T6
MSk7
SkSM*
Sk-T4G2
NLC
DD-ME2
NL3NL3*
NL-Z
FSUGold
NL-SH
NL1
0.08 0.09 0.1 0.11 0.12a
n− a
p (fm)
6.2
6.4
6.6
6.8
7
ALR
( 1
07)
Sk-RS
HFB-17
NL-RA1
TM1
D1S
Sk-T
6
SLy4
SkM
*
FSUG
old
SkSM
*Sk
MP
Ska
Sk-R
sSk
-T4
NL-S
HG
2NL
-RA1
NL3
NL3*
NL-Z
NL1
0 0.06 0.12 0.18 0.24C
n− C
p (fm)
6.2
6.4
6.6
6.8
7
ALR
( 1
07)
HFB-
8
HFB-
17SG
IID1
N
DD-M
E2
TM1NL
C
MSk
7
DWBAA
LR = 10
−7 [α + β (C
n− C
p) + γ (a
n− a
p)]
M. Centelles, X. Roca-Maza, X. Viñas, and M. Warda, Phys. Rev. C 82, 054314 (2010)
-
A qualitative guide to understand the previouscorrelation:
◮ Apv within the Plane Wave Born Approximation,
Apv =GFq
2
4πα√2
[
4 sin2 θW +Fn(q)− Fp(q)
Fp(q)
]
◮ ... which depends on Fn(q)− Fp(q) that for a 2pF andq → 0, it is approximately,
−q2
6
[
3
5(Cn − Cp)(Cn + Cp) +
7π
5(an − ap)(an + ap)
]
◮ variation of Apv dominated by (Cn − Cp) and (an − ap).In this case: Cp and ap fixed from the experiment; Cn from thevalue of Apv and the rather good linear dependence shown in thelower panel of the last figure; an using the correlation shown(calibrated with MF).Problem: Model dependence.
-
The solution to this problem: measurements of Apv at differentangles
⇓model-independent determination of ∆rnp
In case in which it is not possible, we propose the followinganalysis...
-
Analysis III: directcorrelations withinMF
X. Roca-Maza, M. Centelles, X. Viñas, and
M. Warda, Phys. Rev. Lett. 106 252501
(2011)
v090M
Sk7H
FB-8
SkP
HFB
-17
SkM*
DD
-ME2
DD
-ME1
FSUG
oldD
D-PC
1Ska
PK1.s24 Sk-R
sN
L3.s25Sk-T4G
2
NL-SV2PK
1N
L3N
L3*
NL2
NL1
0 50 100 150 L (MeV)
0.1
0.15
0.2
0.25
0.3
∆rnp
(fm
)
Linear Fit, r = 0.979Mean Field
D1S
D1N
SG
II
Sk-T6
SkX S
Ly5
SLy4
MS
kAM
SL0
SIV
SkS
M*
SkM
P
SkI2SV
G1
TM1
NL-S
HN
L-RA
1
PC
-F1
BC
P
RH
F-PK
O3
Sk-G
s
RH
F-PK
A1
PC
-PK
1
SkI5
v090H
FB-8
D1S
D1N
SkXSL
y5
MSkA
MSL0
DD-M
E2
DD-M
E1
Sk-R
s
RHF-P
KA1
SVSk
I2
Sk-T4
NL3.s
25
G2 SkI5
PK1
NL3*
NL2
0.1 0.15 0.2 0.25 0.3∆ r
np (fm)
6.8
7.0
7.2
7.4
107
Apv
Linear Fit, r = 0.995Mean Field From strong probes
MSk7
HFB-
17SkP
SLy4
SkM*
SkSM
*SIV
SkMP
Ska
Sk-G
s
PK1.s
24
NL-SV
2NL
-SH
NL-R
A1
TM1,
NL3
NL1
SGII
Sk-T6
FSUG
oldZe
nihiro
[6]
Klos [
8]
Hoffm
ann [
4]
PC-F1
BCP
PC-PK
1
RHF-P
KO3
DD-PC
1
G1
MF correlations allowsto determine ∆rnp and Lwithout directassumptions on ρDifferent experimentson proton elasticscattering andantirpotonic atomsagrees with thecorrelation
-
Constraints set by Apv measured at JLab andαD measured at RCNP on MF calculations.
5 6 7 8 9
102
x αD
J (MeV fm3)
0.68
0.69
0.7
0.71
0.72
0.73
0.74
0.75A
pv (
ppm
)Mean-Field
PREx
RCNP
MF Region
-
Summary of different constraints on L
20 40 60 80 100L (MeV)
Centelles et al. PRL 102 (2009) 122502
Warda et al. PRC 80 (2009) 024316
Danielewicz NPA 727 (2003) 233
Myers et al. PRC 57 (1998) 3020
Famiano et al. PRL 97 (2006) 052701
Shetty et al. PRC 76 (2007) 024606
Li et al. Phys. Rep. 464 (2008) 113
Trippa et al. PRC 77 (2008) 061304(R)
Klimkiewicz et al. PRC 76 (2007) 051603(R)
Carbone et al. PRC 81 (2010) 041301(R)
Xu et al. PRC 82 (2010) 054607.
Neutron Skins
Neutron Skins
Masses
Masses
n−p Emission Ratios
Isoscaling
Isospin Diffusion
GDR
PDR
PDR
Optical Potentials
Antiprotonic Atoms
Nuclear Model Fit
Heavy IonCollisions
GiantResonancies
N−A scatteringCharge Ex. Reac.Energy Levels
L~61 11 MeV+−
Vidaña et al. PRC 80 (2009) 045806BHF Bare N−N Potential
X. Roca-Maza et. al. PRL 106 252501 (2011)(centered at 61 MeV)PVES 1% accuracy
PREX(Central value at L=154 MeV)
PREx Collab. et. al. PRL 108 112502 (2012)
-
Conclusions:
◮ Families of MF models predict a high linear correlationbetween αD and ∆rnp in
208Pb.
◮ The Droplet Model suggest a linear correlation betweenαDJ and ∆rnp. (This result should be analyzed moreprecisely on the basis of microscopic calculations)
-
Conclusions:
◮ A model-independent determination of ∆rnp in208Pb via
PVES experiments would need a measurement of Apv atdifferent scattering angles.
◮ We demonstrate a close linear correlation between Apv and∆rnp within the same framework in which the ∆rnp iscorrelated with L. This allows to determine unambiguouslythe value of ∆rnp and L within the MF framework.
◮ Other experiments fairly agree with the correlation betweenApv and ∆rnp.
◮ Apv measured by the PREx collaboration at JLab and αDmeasured at RCNP are complementary observables that mayset tight constraints on the density dependence of thesymmetry energy.
◮ Most of the empirical estimations of L agrees in a range forits central value that lies within 50 and 70 MeV.
-
Collaborators:B. K. Agrawal1
G. Colò2,3
W. Nazarewicz4,5,6
N. Paar7
J. Piekarewicz8
P.-G. Reinhard9
D. Vretenar7
Michal Warda10
Mario Centelles11
Xavier Viñas11
1 Saha Institute of Nuclear Physics, Kolkata 700064, India2 Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, I-20133 Milano, Italy3 INFN, Sezione di Milano, via Celoria 16, I-20133 Milano, Italy4 Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA5 Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA6 Institute of Theoretical Physics, University of Warsaw, ulitsa Hoa 69, PL-00-681 Warsaw, Poland7 Physics Department, Faculty of Science, University of Zagreb, Zagreb, Croatia8 Department of Physics, Florida State University, Tallahassee, Florida 32306, USA9 Institut fr Theoretische Physik II, Universitt Erlangen-Nrnberg, Staudtstrasse 7, D-91058 Erlangen, Germany10 Katedra Fizyki Teoretycznej, Uniwersytet Marii CurieSklodowskiej, ul. Radziszewskiego 10, PL-20-031 Lublin,Poland11 Departament dEstructura i Constituents de la Matèria and Institut de Ciències del Cosmos, Facultat de F́ısica,Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Spain
-
Extra Material
-
Correlations: J, αD and ∆rnp
0.1 0.15 0.2 0.25∆r
np (fm)
5
6
7
8
9
10
10−2
α DJ
(M
eV fm
3 )
αD
J = 3.1(2) + 18.4(9) ∆rnp
r = 0.95EDF
20.1(6) x 32(2)
MF-Region
18 19 20 21 22 23 24α
D (fm
3)
30
35
40
J (M
eV)
r = 0.65EDF
0.1 0.15 0.2 0.25∆r
np (fm)
30
35
40
J (M
eV)
r = 0.95EDF
-
Correlations: J, αD and ∆rnp
-
DM versus other calculations and experiment
J.
Meyer, P. Quentin, and B. K. Jennings, Nucl. Phys. A 386 (1982) 269
-
Kτ versus L from isospin difusion, GMR and neutronskin data
20 60 100 140L (MeV)
-700
-600
-500
-400
-300
Kτ
(M
eV)
isospin diffusion
GMR of Sn
isospin diffusion
Ssw= 0
Sswmin
Sswmax
Note: Kτ ≈ Ksym − 6L has been estimated as in isospin difussion and GMR data only for comparison purposesM. Centelles, X. Roca-Maza, X. Viñas, and M. Warda, Phys. Rev. Lett. 102, 122502 (2009)L. W. Chen, C. M. Ko, and B. A. Li, Phys. Rev. Lett. 94, 032701 (2005); Phys. Rev. C72, 064309 (2005)B. A. Li, L. W. Chen, and C. M. Ko, Phys. Rep. 464, 113 (2008)
T. Li et al, Phys. Rev. Lett. 99, 162503 (2007)
-
Covariance analysis: χ2 testObservables O are used to calibrate the parameters p of a givenmodel. The optimum parametrization p0 is determined by aleast-squares fit with the global quality measure,
χ2(p) =m∑
ı=1
(Otheo.ı −Oref.ı∆Oref.ı
)2
Assuming that the χ2 is a well behaved (analytical) function in thevicinity of the minimum and that can be approximated by anhyper-parabola,
χ2(p)− χ2(p0) ≈1
2
n∑
ı,
(pı − p0ı)∂pı∂pχ2(p − p0)
≡n
∑
ı,
(pı − p0ı)Mı(p − p0)
where M is the curvature matrix.
-
Covariance analysis: χ2 test
M provides us access to estimate the errors between predictedobservables (A(p)),
∆A =
√
√
√
√
n∑
ı
∂pıAEıı∂pıA (1)
E = M−1 and the correlations between predicted observables,
cAB ≡CAB√CAACBB
(2)
where,
CAB = (A(p)− A)(B(p)− B) ≈n
∑
ı
∂pıAEı∂pB
-
Covariance analysis: SLy5-min as an example
-
Covariance analysis: SLy5-min as an example
ρ0 e(ρ0)
m* / m IS-GQR K0 IS-GMR
IV-M-1 S2(ρ0)
Lκ
rn∆rnp
IV-GDR
IV-PDR
0 0.2 0.4 0.6 0.8 1
SLy5-min: correlation with GDR
ρ0 e(ρ0)
m* / mISGQRK 0ISGMR
m−1(GDR)
S2(ρ0)
Lκ
rn∆rnp
IVGDRIVPDR
0 0.2 0.4 0.6 0.8 1
SLy5-min: correlation with PDR
ρ0 e(ρ0)
m* / m
ISGQR
K0 ISGMR
m−1(GDR)
S2(ρ0)
Lκ
rn∆rnp
IVGDR
IVPDR
0 0.2 0.4 0.6 0.8 1
SLy5-min: correlation with m−1
Figure: Pearson product-moment correlation coefficient for the IVGDR(left panel), IVPDR (middle panel) and m
−1(IVGDR) (right panel) withall other studied properties as predicted by the covariance analysis ofSLy5.