Diploma Thesis

download Diploma Thesis

of 128

description

Diploma

Transcript of Diploma Thesis

  • , 2007

    ::

    . ...

  • ..1 1: .5 1.1 6 1.1.1 ......6 1.1.2 .............................................................................7

    1.1.2.1 ...............................................8 1.1.2.2 ....................................11 1.1.2.3 ...............................................14 1.1.2.4 .......................................14 1.1.2.5 ........................15

    1.2 ...................................................................................................17 1.2.1 ......................................................................17 1.2.2 Cauchy................................................................18 1.2.3 ...................................................................................19 1.2.4 Piola Kirchhoff............................21 1.2.5 .................................................................................23 1.2.6 Piola Kirchhoff..........................25 1.2.7 ......................................................27 1.2.8 Cauchy .......................................28

    2: ............................................29 2.1 ..................................30 2.2 ......................................................................................31 2.3 .....................................................................................35 2.3.1 ...........................................................................................................35 2.3.2 ..........................41

    2.3.2.1 Euler (forward Euler) ......44 2.3.2.2 Euler (backward Euler).......46

  • 2.3.2.3

    (Generalized trapezoidal and generalized midpoint rule) ...................50 2.3.2.4 generalized cutting plane.................................................51

    2.3.3

    ..........................................................................................53

    3: ...............................................................54 3.1 ..................................................................................................................59 3.2 ................................59 3.2.1 ......................................................................................59 3.2.2 .....................................................................................60 3.2.3 ................................................................................62 3.2.4 ...............................................................................................64 3.2.5 PM - ...................................................................................................66 3.2.6

    s, u - ....................70 3.2.7

    .............................84

    4: ....91 4.1.1 PM ............................................92 4.1.2

    tP PP t N MA, I , I , I , W , S , S .................................105

    5: ...................107 5.1 ........................................................................................................108 5.2 ....................................................108 5.2.1 ..............................108 5.2.2 ....................................111 5.2.3 .....................................113 5.2.4 ..........................................114

  • .........................................................................................119

  • , . Coulomb (1784) . . St. Venant (1855) .

    St. Venant , , ( ). . , . . / .

    - St. Venant- . , . St. Venant .

    , . Nadai (1931) . , sand heap analogy, Sadowsky (1941) .

    Sokolowsky (1946) Nadai (1954) sand heap membrane analogy. Smith & Sidebottom (1965)

    1

  • Itani, Johnson, Yamada et al., Mendelson(NASA) .

    : , St. Venant. Wagner (1936), Vlasov (1961), Timoshenko & Gere (1961) , Rasajekaran (1977), Bathe & Wiener (1983), Gellin et al. (1983) . Boulton (1962) Dinno & Merchant (1964) . May & Al-Shaarbaf (1989) , Sapountzakis & Mokos (St. Venant ) , .

    / . , , , ( ) . , . Cullimore (1949), Ashwell (1951), Gregory (1960) ( ) Tso & Ghobarah (1971), Trahair (2003) , .

    . Pi & Trahair (1995) Baba & Kajita (1982) . , .

    ( ) . . , .

    2

    Highlight

  • .

    :

    . , . . , , . .

    , , () , . .

    , . , . . , .

    , , . , . . ,

    3

  • , ( , ).

    . - - .

    . , . , . , .

    , , ( ) .

    , , , , . , . . ., , , . , , .

    , 2007

    4

  • 1 :

    1.1

    1.1.1

    , , Q . .

    . P

    0t =

    1 2 3Ox x x

    1x , 2x , 3x . , Q. P,

    t

    ( ), , ,1 2 3P t

    )

    . P :

    ( , , ,1 1 1 2 3x x x t = (1.1.1) ( , , ,2 2 1 2 3 )x x x t = (1.1.1) ( , , ,3 3 1 2 3 )x x x t = (1.1.1)

    1 , 2 , 3 . . , 1-1 P P , . , :

    ( , , ,1 1 1 2 3 )x x = t) (1.1.2)

    ( , , ,2 2 1 2 3x x = t)

    (1.1.2)

    ( , , ,3 3 1 2 3x x = t (1.1.2) (1.1.1) Lagrange, (1.1.2) Euler. Lagrange . Euler

    ( ), ,1 2 3P x x x( ), ,1 2 3P

    . t

    .t = , . P

    6

  • 1 :

    3e

    1x

    1 2 3u u u= + + 1 2u e e (1.1.3)

    , ,1 2 3e e e : , , .

    1Ox 2Ox 3Ox

    1u , , : 2u 3u

    1 1u = (1.1.4) 2 2u 2x= (1.1.4) 3 3u 3x= (1.1.4)

    , ( ), ,1 1 1 2 3u u x x x= ( ), ,2 2 1 2 3u u x x x= , ( ), ,3 3 1 2 3u u x x x= , , . 1u 2u 3u . 1-1 P, P,

    1 1 1

    1 2 3

    2 2 2

    1 2 3

    3 3 3

    1 2 3

    x x x

    J 0x x x

    x x x

    =

    1 1 1

    1 2 3

    2 2 2

    1 2 3

    3 3 3

    1 1 1

    u u u1x x x

    u u uJ 1x x xu u u1x x x

    + = + +

    0 (1.1.5)

    , ,

    , , t 0=

    1u 0= 2u 0= 3u 0= . ( )J t 0 1= = (1.1.6)

    , (1.1.5), (1.1.6)

    J

    J 0> , (1.1.7) t 0 . (1.1.7) 1-1 P, P / .

    [ ]X . (1.1.5), , (deformation gradient).

    J

    1.1.2

    , .

    7

  • 1 : , . . . , . ( ) .

    1.1.2.1

    , .

    PAds P ( , , )1 2 3P x x x A

    . ( , ,1 1 2 2 3 3A x dx x dx x dx+ + + )

    )

    ( ) ( ) (2 21 1 1 2 2 2 3 3 3ds x dx x x dx x x dx x= + + + + + 2 2

    3

    2 22

    1 2ds dx dx dx = + + (1.1.8) , , , PA P A

    ( ), ,1 2 3P ( , ,1 1 2 2 3 3A d d d ) + + + . .

    PAP A

    ( ) ( ) ( )2 21 1 1 2 2 2 3 3 3ds d d d = + + + + + 2 2

    3

    2 22

    1 2ds d d d = + + (1.1.9) (1.1.2), (1.1.4), :

    1 1 1 1 1 11 1 2 3 1 1 2

    1 2 3 1 2 3

    u u ud dx dx dx d 1 dx dxx x x x x x = + + = + + + 3dx (1.1.10)

    2 2 2 2 2 22 1 2 3 2 1 2

    1 2 3 1 2 3

    u u ud dx dx dx d dx 1 dxx x x x x x = + + = + + + 3dx (1.1.10)

    3 3 3 3 3 33 1 2 3 3 1 2

    1 2 3 1 2 3

    u u ud dx dx dx d dx dx 1 dxx x x x x x = + + = + + + 3 (1.1.10)

    :

    ( ) 2 2 22 2 11 1 22 2 33 312 1 2 13 1 3 23 2 3

    1 ds ds dx dx dx2 2 dx dx 2 dx dx 2 dx dx

    = + + ++ + +

    (1.1.11)

    8

  • 1 : (strains), :

    2 2

    31 1 211

    1 1 1 1

    uu 1 u ux 2 x x x

    = + + +

    2

    (1.1.12) 2 2

    32 1 222

    2 2 2 2

    uu 1 u ux 2 x x x

    = + + +

    2

    (1.1.12) 2 2

    3 1 233

    3 3 3 3

    u 1 u ux 2 x x x

    = + + +

    2

    3u (1.1.12)

    3 32 1 1 1 2 212

    1 2 1 2 1 2 1 2

    u u1 u u 1 u u u u2 x x 2 x x x x x x

    = + + + +

    (1.1.12)

    3 31 1 1 2 213

    1 3 1 3 1 3 1 3

    u u1 u 1 u u u u2 x x 2 x x x x x x

    = + + + + 3u

    (1.1.12)

    3 32 1 1 2 223

    2 3 2 3 2 3 2 3

    u u1 u 1 u u u u2 x x 2 x x x x x x

    = + + + + 3u

    (1.1.12)

    Green

    11 12 13

    21 22 23

    31 32 33

    = G (1.1.13)

    ij : Green . (1.1.12). 21 , 31 , 32 (1.1.12--) .

    21 12 = (1.1.14) 31 13 = (1.1.14) 32 23 = (1.1.14)

    T = G G (1.1.15) Green .

    (magnification factor of the extension of line element ),

    PAPA

    2

    A 2

    1 dsMF2 ds

    = 1 (1.1.16)

    9

  • 1 :

    , PA 11dxnds

    = , 22 dxn ds= , 3

    3dxnds

    = , , . (1.1.11), 2dsAMF :

    2 2 2

    A 11 1 22 2 33 3 12 1 2 13 1 3 23 2 3MF n n n 2 n n 2 n n 2 n = + + + + + n (1.1.17) AMF (

    PA

    Ae ) :

    ( )A ds dse ds 1ds = = + Ae ds (1.1.18)

    ( ) ( )

    2 2 22 2 22A

    A A2 2 2

    1 e ds ds1 ds 1 ds ds 1 1MF 1 1 e 12 ds 2 ds 2 ds 2

    + = = = = +

    Ae 1 2 MF = + A 1

    1

    (1.1.19) . , , (1.1.18) (1.1.19)

    ds 0 >Ae >

    A1MF2

    > . (1.1.19) Taylor:

    ...2A A A1e MF MF2

    = + (1.1.20)

    (1.1.20) : AMF 1

  • 1 :

    Ax1 11e (1.1.22) ii . iOx ii , .

    , ,i 1 2 3=

    1.1.2.2

    PA

    A1 A2 A3n n n= + + An i j k (1.1.23)

    1A1dxnds

    = , 2A2 dxn ds= , 3

    A3dxnds

    = . , P A

    ( ), ,1 2 3P ( , ,1 1 2 2 3 3A d d d ) + + + .

    A1 A2 A3n n n = + + An i j k (1.1.24)

    1A1dnds = ,

    2A2

    dnds = ,

    3A3

    dnds = .

    ,

    ii

    d dsnds ds = , (1.1.25) 1, 2,3i =

    . (1.1.10)

    31 1 1 1 2 1 1 1 1 11 2

    1 2 3 1 2

    dxd u dx u dx u d u u u1 1ds x ds x ds x ds ds x x x = + + + = + + + 33n n n (1.1.26)

    32 2 1 2 2 2 1 2 2 21 2

    1 2 3 1 2

    dxd u dx u dx u d u u u1 n 1ds x ds x ds x ds ds x x x = + + + = + + + 33n n (1.1.26)

    3 3 3 3 3 3 3 3 31 21 2

    1 2 3 1 2 3

    d u u u dx d u u udx dx 1 n nds x ds x ds x ds ds x x x = + + + = + + + 31 n (1.1.26)

    (1.1.18) :

    ( ) ( . . )1 1 19AA A

    ds 1 ds 1ds 1 e dsds 1 e ds 1 1 2 MF 1

    = + = = + + +

    11

  • 1 :

    A

    ds 1ds 1 2 MF

    = + (1.1.27) (1.1.26) (1.1.27) () :

    11 1

    31 2A1 1 2 3

    A A

    uu u1xx xn n n

    1 2 MF 1 2 MF 1 2 MFAn

    + = + ++ + + (1.1.28)

    22 2

    31 2A2 1 2 3

    A A

    uu u1xx xn n n

    1 2 MF 1 2 MF 1 2 MFAn

    + = + ++ + + (1.1.28)

    33 3

    31 2A3 1 2 3

    A A

    uu u 1xx xn n n

    1 2 MF 1 2 MF 1 2 MFAn

    + = + ++ + + (1.1.28)

    12 , 13 , 23 2 , . PA PB , , ( ,

    ).

    P A P B

    cos 1 1 cos cos = = = A B A B A Bn n n n n n cos A1 B1 A2 B2 A3 B3n n n n n n = + +

    , , , ,A1 A2 A3n n n 1 0 0= )

    (1.1.29) : , , . , (

    PA PB 1Ox 2Ox( ) ( ) ( ), , , ,B1 B2 B3n n n 0 1 0= , A 11MF = , 22MF =

    90 = . (1.1.28)

    1

    1A1

    11

    u1xn

    1 2

    + = + , 1

    2B1

    22

    uxn

    1 2

    = + (1.1.30)

    2

    1A2

    11

    uxn

    1 2

    = + ,

    2

    2B2

    22

    u1xn

    1 2

    + = + (1.1.30)

    3

    1A3

    11

    uxn

    1 2

    = + ,

    3

    2B3

    22

    uxn

    1 2

    = + (1.1.30)

    12

  • 1 : (1.1.29) , :

    cos

    3 32 1 1 1 2 2

    1 2 1 2 1 2 1

    11 22

    u uu u u u u u2x x x x x x x x

    1 2 1 2

    + + + + = + + (1.1.31) 12 . (1.1.12),

    cos 1211 22

    21 2 1 2

    = + + (1.1.32)

    :

    , 1111

    11 11 2

  • 1 : 1.1.2.3

    , () . , , . . , :

    1Ox 2Ox 3Ox

    1 2 3dV dx dx dx= dV

    ( ), ,T 1dx 0 0=OA

    ( ), , , , 31 21 2 3 1 1 11 1 1

    d d d dx dx dxx x x

    = = O (1.1.35) (1.1.9) 3 . 2 , ( ), ,T 20 dx 0=OB ( ), , 30 0 dx =O

    ( ), , , , 31 21 2 3 2 2 22 2 2

    d d d dx dx dxx x x

    = = O (1.1.35)

    ( ), , , , 31 21 2 3 3 3 33 3 3

    d d d dx dx dxx x x

    = = O

    )

    (1.1.35)

    ,

    dV

    (dV = O O O (1.1.36) : . , dV J dV = (1.1.37) J : (1.1.5).

    1.1.2.4

    .

    dAn

    dA n . ,

    14

  • 1 :

    )

    )n

    ( , ,1 2 3dx dx dx =1n .

    (dV dA= 1n (1.1.38) ( )

    , (, ) .

    1n

    ( )dV dA = 1n n (1.1.39) ( ) ( ), ,1 2 3d d d =1n . . (1.1.5) (1.1.10) [ ] () .

    [ ] = 1n n1 (1.1.40) (1.1.37)

    ( ) ( ) ( . . )1 1 40dV J dV dA J dA = = 1 1n n n n [ ] ( ) (dA J dA = 1 1 n n n )n (1.1.41)

    , 1n

    [ ] (dA J dA = n n) (1.1.42) .

    1.1.2.5

    ) ) Green . , ,

    ij 1

  • 1 : , . , (1.1.12) . :

    111

    1

    ux

    = (1.1.45) 2

    222

    ux

    = (1.1.45) 3

    333

    ux

    = (1.1.45)

    2 121 12

    1 2

    1 u u2 x x

    = = + (1.1.45)

    3 131 13

    1 3

    u12 x x

    = = + u (1.1.45)

    3 232 23

    2 3

    u12 x x

    = = + u (1.1.45)

    (infinitesimal strain tensor) Lagrange

    [ ] 11 12 1321 22 2331 32 33

    = (1.1.46)

    ij . (1.1.45)

    , , ( ) . , . , . , ( ) .

    16

  • 1 : 1.2

    1.2.1

    , . ..

    1 1t t= .

    () 1t t= . ,

    1Q 2Q1d A

    ( , ,1 2 3P ) , . (traction

    vector) 1 , ,

    1n

    1Q1 n 2Q(1 1t n) n P

    ( ) lim1 11 1 1d A 0 dd A= pt n (1.2.1)

    1d p : () . 1d A

    , ( , )

    . (1.2.1) 1Q

    1d A P

    2Q ( ) (1 1 1 1= t n t n) (1.2.2)

    Cauchy.

    , . . , , .

    (traction forces) , (body forces), . , . . 1d V ( ), ,1 2 3P ,

    17

  • 1 :

    lim1

    11

    1d V 0

    dd V

    = fpf (1.2.3)

    1d fp : . 1d V

    , ( ).

    1f1t

    1.2.2 Cauchy

    . . ,

    . 1

    1d A 1Ox( , ,T1 T 1 0 0= =1n e ) 1e

    1Ox 1 j , , ,j 1 2 3= , ( )1 1t e

    ( ) ( , ,T1 1 1 111 12 13 ) =1t e (1.2.4)

    , 2 . ( )1 11 12 13 = + + 1 1 2t e e e e3

    3

    3

    (1.2.5)

    ( )1 21 22 23 = + + 2 1 2t e e e e (1.2.5) ( )1 31 32 33 = + + 3 1 2t e e e e (1.2.5)

    Cauchy (true or Cauchy stress tensor) 1

    11 12 13

    121 22 23

    31 32 33

    = (1.2.6)

    ij . ij , , ,i 1 2 3= , , ,j 1 2 3= jOx

    () . 1d A ie Cauchy

    ( ).

    18

  • 1 :

    1.2.3

    , Cauchy .

    () ( )1 1t n Cauchy ,

    , , . ,

    , ,

    1 1e 2e 3e

    1n

    1 1 1

    1 11 1 21 2 31t n n = + + 1 3n1

    3n1

    3n

    (1.2.7) 1 1 1

    2 12 1 22 2 32t n n = + + (1.2.7) 1 1 1

    3 13 1 23 2 33t n n = + + (1.2.7)

    ( ) ( ), ,T1 1 1 1 11 2 3t t t=t n ( ), ,1 T 1 1 11 2 3n n n=n . . (1.2.7)

    ( ) T1 1 1 1 = t n n (1.2.8) .

    (

    1V1t t= ),

    1 1A V= . , . 1V

    ( ) 1 ( 1 ) :

    1t1A f V

    ( )1 1

    1 1 1 1 1

    A V

    d A d V+ t n f 0=

    = 0

    (1.2.9)

    (1.2.8)

    1 1

    T1 1 1 1 1

    A V

    d A d V + n f (1.2.10)

    19

  • 1 : Gauss (Gauss divergence theorem) , (1.2.10) ( ) ( )1 1 1

    T1 1 1 1 1 1 1

    V V V

    d V d V d V T+ = + = div f 0 div f 0 (1.2.11) 1 , (1.2.11)

    V

    ( )T1 1 + = div f 0 (1.2.12) . (1.2.12) . :

    13111 211

    1 2 3

    f 0 + + + = (1.2.13)

    13212 222

    1 2 3

    f 0 + + + = (1.2.13)

    113 23 333

    1 2 3

    f 0 + + + = (1.2.13) ( 1 ,

    2 , 3 ( 1x , 2x , 3x ). , 1d , 2d , 3d .

    K : ( )1 1

    1 1 1 1 1

    A V

    d A d V + t n KE f KB 0=

    A

    (1.2.14)

    .

    1E . 1B V . 1V

    . (1.2.9) (1.2.13), (1.2.14) ,

    T1 1 = (1.2.15) Cauchy .

    20

  • 1 :

    21 12 = (1.2.16) 31 13 = (1.2.16) 32 23 = (1.2.16)

    .

    1.2.4 Piola Kirchhoff

    1 Piola Kirchhoff t 0= . . (1.2.9) 1t t=

    ( )1 1 0 0

    1 11 1 1 1 1 1 0 1 0

    0 0A V A V

    d A d Vd A d V d A d Vd A d V

    + = + t n f 0 t f 0= (1.2.17) , , ( )1 00 t n : 10 f

    ( ) lim0 11 00 0d A 0 dd A= pt n (1.2.18) lim0

    110 0d V 0

    dd V

    = fpf (1.2.18) (1.2.1) (1.2.18)

    ( ) ( ) ( ) ( ) 11 0 0 1 1 1 1 0 1 10 0 0d Ad A d A d A= =t n t n t n t n (1.2.19) (1.2.3) (1.2.18)

    11 10 0

    d Vd V

    =f f 10 1J=f f

    0

    =

    (1.2.19)

    (1.1.27) . (1.2.17)

    1d V Jd V= ( )0 0

    1 0 0 1 00 0

    A V

    d A d V+ t n f 0 (1.2.20) (1.2.19)

    21

  • 1 :

    ( ) ( ) ( )1 1T1 0 1 1 1 0 1 10 00d A d Ad A d A = = t n t n t n n 0

    (1.2.21)

    (1.1.42) ,

    ( ) T1 0 1 1 00 J = t n n ( )1 0 1 1 00 J = t n n (1.2.22) Cauchy .

    1 Piola Kirchhoff 10 P

    1 1 10 J

    = P (1.2.23) (1.2.22) 1 Piola Kirchhoff ()

    0n 0d A( )1 00 t n , ( )1 0 1 00 0 = t n P n (1.2.24) . (1.2.20) 10 P

    0 0

    1 0 0 1 00 0

    A V

    d A d V + P n f = 0 (1.2.25) Gauss ( ) ( )0 0 0

    1 0 1 0 1 1 00 0 0 0

    V V V

    d V d V d V + = + = div P f 0 div P f 0 (1.2.26) ,

    0V

    ( )1 10 0 + = div P f 0 (1.2.27) ( ) 10 ijP

    11311 120 1

    1 2 3

    PP P f 0x x x

    + + + = (1.2.28) 12321 220 2

    1 2 3

    PP P f 0x x x

    + + + = (1.2.28)

    22

  • 1 :

    131 32 330 3

    1 2 3

    P P P f 0x x x

    + + + = (1.2.28) 1 Piola Kirchhoff Lagrange. (1.2.23) ( Cauchy) .

    1.2.5 2 Piola Kirchhoff

    , .

    . , .

    . ,

    (. (1.2.21)): 1t t= 1V

    ( ) ( )1 1

    T1 1 1 1 1 1

    V V

    d V d V + = + div f 0 div f = 0

    )

    (1.2.29)

    ( )

    ( ) ( , ,T1 1 1 11 2 3u u u =r (1.2.30) , (1.2.29)

    ( )1

    T1 1 1 1

    V

    d V 0 + = div f r (1.2.31) ( ) (calculus of variations). (1.2.31) .

    ( ) T T1 1 1 1 1 1 1 = + div r div r tr r (1.2.32) 23

  • 1 : . (1.2.31) (1.2.33)

    ( ){ }1

    T1 1 1 1 1 1 T 1 1

    V

    d V 0 + = div r tr r f r ( ){ }

    1 1

    T1 1 1 T 1 1 1 1 1 1

    V V

    d V d V + = div r f r tr r (1.2.33) Gauss ,

    ( ){ }1 1 1

    T T1 1 1 1 1 T 1 1 1 1 1 1

    A V V

    d A d V d V + = n r f r tr r

    (1.2.34)

    , (1.2.8)

    ( )1 1 1

    T T1 1 1 1 1 T 1 1 1 1 1 1

    A V V

    d A d V d V + = t n r f r tr r (1.2.34) , (spatial virtual work equation), (spatial external virtual work) (spatial internal virtual work) .

    1extW

    1intW

    , . , 1 , 2 , 3 ( Euler).

    1 1 r

    1 1 11 1 1

    1 2 31 1 1

    1 1 2 2

    1 2 31 1 1

    3 3

    1 2 3

    u u u

    u u u

    u u u

    =

    r 2

    3

    (1.2.35)

    , , , , . (1.2.34)

    , T1 1 =

    24

  • 1 :

    T1 1 1 31 2 111 22 33 12

    1 2 3 2 1

    3 31 213 23

    3 1 3 2

    uu u u u

    u uu u

    = + + + + + + + + +

    tr r 2

    1d V

    (1.2.36)

    .

    ( )1

    T1 1 1int

    V

    W = tr (1.2.37)

    31 1 2 1

    1 2 1 3

    1 31 2 2 2

    2 1 2 3 2

    3 3 31 2

    3 1 3 2 3

    uu 1 u u 1 u2 2

    u1 u u u 1 u2 2

    u u u1 u 1 u2 2

    + + = + + + +

    1

    (1.2.38)

    . 1t t= 1 , 1 (work conjugate) () .

    1.2.6 Piola Kirchhoff

    1x , 2x , 3x , Piola Kirchhoff . , (1.2.34) 1.2.4 :

    ( )0 0 0

    T T1 0 1 0 1 T 1 0 1 1 00 0 0

    A V V

    d A d V d V + = t n r f r tr P (1.2.39) ,

    1intW

    25

  • 1 :

    0d V

    d A

    0

    T1 1 1int 0

    V

    W = tr P (1.2.40) .

    10 P 1

    Piola Kirchhoff Green . Green ( ) Green . , , ( ) , .

    10 G

    Piola Kirchhoff, :

    0d p1d p

    10 1 1d d

    = p p (1.2.41) (1.2.24) (1.2.18)

    10 1 1 0 00d

    = p P n (1.2.42) ( (1.2.23)) 10 P { }10 1 1 1 0d J d = p n 0 A (1.2.42) , 2 Piola Kirchhoff 10 S

    .

    0 0d An0d p

    11 1 1 1

    0 J = S

    11 1 10

    0 = S P (1.2.43-)

    , 10 S ( ), 10 P

    T1 10 0 = S S (1.2.44)

    26

  • 1 : . (1.2.40)

    [ ]{ }1 1 10 12 = G I (1.2.45) [ ]I : 3 3 :

    0

    T1 1 1int 0 0

    V

    W = Gtr S 0d V

    0

    (1.2.46)

    , , , :

    10 S 10 G

    ( )0 0 0

    T T1 0 1 0 1 T 1 0 1 1 00 0 0

    A V V

    d A d V d V + = Gt n r f r tr S (1.2.47) 10 S . ( )1 00 t n 1 Piola Kirchhoff 1 extW 10 P

    (1.2.24). 10 S

    1.2.7

    Cauchy . 1 11 ()

    .

    1d A 1Ox1d A

    1 Piola Kirchhoff . . , .

    10 11P

    1Ox1d A

    0d A 0d A1Ox

    1d A

    2 Piola Kirchhoff .

    27

  • 1 : 1 Piola Kirchhoff . , () . , .

    10 11S

    1d A0d A

    1Ox1d A

    , 2 Piola Kirchhoff ( ) , Cauchy 1 Piola Kirchhoff . 2 Piola Kirchhoff .

    1.2.8 Cauchy

    , . , ( 1x , 2x , 3x ) ( 1 , 2 , 3 ) , Cauchy . , (1.2.13) :

    3111 210 1

    1 2 3

    f 0x x x

    + + + = (1.2.48) 3212 22

    0 21 2 3

    f 0x x x

    + + + = (1.2.48) 13 23 33

    0 31 2 3

    f 0x x x + + + = (1.2.48)

    (. (1.2.7)) 0 1 11 0 1 21 0 2 31 0 3t n n n = + + (1.2.49) 0 2 12 0 1 22 0 2 32 0 3t n n n = + + (1.2.49) 0 3 13 0 1 23 0 2 33 0 3t n n n = + + (1.2.49) Cauchy , .

    28

  • 2 :

    2.1

    : 6 (. (1.1.12)

    Green . (1.1.45) )

    3 (. (1.2.13) Cauchy . (1.2.28) 1 Piola Kirchhoff)

    ( ) :

    (

    )

    ( )

    , : t 3 1u , 2u , 3u 6 11 , 22 , 33 , 12 21 = , 13 31 = ,

    23 32 = 6 . 2 Piola Kirchhoff 11S ,

    22S , 33S , 12 21S S= , 13 31S S= , 23 32S S= . [ ]X . , . 1.2, .

    15 9 ,

    . 6 ( ). . . . .

    30

  • 2 :

    )

    .

    . . . , .

    2.2

    , , . , .

    . () (ideally elastic) () . : ,

    . .

    , . , , .

    ,

    , . . (hyperelastic) Green (Green elastic)

    , Green

    ( ), , , , , , , ,t t t t t t t t t0 11 0 22 0 33 0 21 0 12 0 31 0 13 0 32 0 23 1 2 3F F x x x = = = =( , ,1 2 3x x x , : ( , , , , , , , ,t t t t t t t0 11 0 22 0 33 0 12 0 13 0 23 1 2 3d W F x x x d V = ) 0

    (2.2.1)

    01 2 3d V d x d x d x = :

    t

    0 ij : Green

    31

  • 2 :

    ) 0

    td W : () () . 0d V (strain energy function per unit initial volume).

    F

    F ( , , , , ,t t t t t t t0 11 0 22 0 33 0 12 0 13 0 23d W F d V = (2.2.2) , (homogeneous). . (2.2.1) (2.2.2) .

    F

    . (1.2.46) 2 Piola Kirchhoff Green ( )d , ( ) ( )...t t t t t t t t t0 11 0 11 0 22 0 22 0 23 0 23 0 32 0 32d d W S d S d S d S d d V = + + + + 0 (2.2.3) . (2.2.2) ( )d ,

    ( ) ...t t t t t0 11 0 22 0 23 0 32t t t t0 11 0 22 0 23 0 32

    F F F Fd d W d d d d d V = + + + +

    0 (2.2.4)

    . (2.2.3) (2.2.4)

    t0 ij t

    0 ij

    FS = , (2.2.5-) , , ,i j 1 2 3 =

    6 (2.2.5-) . (15 15 ).

    F

    , , :

    F

    ( ) (( ) ...

    3 3 3 3 3 3t t

    ij 0 ij ijkl 0 ij 0 kli 1 j 1 i 1 j 1 k 1 l 1

    3 3 3 3 3 3t t t

    ijklmn 0 ij 0 kl 0 mni 1 j 1 k 1 l 1 m 1 n 1

    F A B

    C

    = = = = = =

    = = = = = =

    = +

    +

    )t + +

    (2.2.6)

    32

  • 2 :

    ijA , ijklB , , : . ijklmnC . , . (2.2.5) , . . (2.2.6) . (2.2.5)

    t0 ij 0 td W

    ( ) ( ) ...3 3 3 3 3 3t t t0 rs rsij 0 ij rsijkl 0 ij 0 kli 1 j 1 i 1 j 1 k 1 l 1

    S A B C= = = = = =

    = + + + t (2.2.7) , . (2.2.6) A 0= (2.2.8) . (2.2.7) ( ) ( ) ...3 3 3 3 3 3t t t0 rs rsij 0 ij rsijkl 0 ij 0 kl

    i 1 j 1 i 1 j 1 k 1 l 1S B C

    = = = = = = = + t +

    G0

    )

    (2.2.9)

    , ,

    , . (2.2.9) .

    t0 ij 1

  • 2 :

    )

    ( ) ( , , , , ,t t t t t t0 11 0 22 0 33 0 12 0 13 0 23 =t0 : Cauchy. .

    ( ) ( ), , , , ,t t t t t t t t t0 11 0 22 0 33 0 12 0 12 0 13 0 13 0 23 0 232 2 2 = = =t0 = : .

    eD . , . , (anisotropic). 3 (orthotropic) , (isotropic). .

    6 6 36 =ijk

    ijk

    . , , eD :

    ij jik k= , (2.2.12) , , ,i j 1 2 3 = 2

    ( )( )

    ( )

    11 12 12

    12 11 12

    12 12 11

    11 12

    11 12

    11 12

    k k k 0 0 0k k k 0 0 0k k k 0 0 0

    10 0 0 k k 0 02

    10 0 0 0 k k 02

    10 0 0 0 0 k2

    =

    eD

    k

    (2.2.13)

    12k = (2.2.14) 11 12k k 2 = (2.2.14)

    34

  • 2 : () Lam , (Lam constants). :

    (t t t t0 11 0 11 0 22 0 331 S S S )E = + (2.2.15) (t t t t0 22 0 22 0 11 0 331 S S S )E = + (2.2.15) (t t t t0 33 0 33 0 11 0 221 S S S )E = + (2.2.15)

    t t t0 12 0 12 0 12

    12 SG

    = = , t t t0 13 0 13 0 1312 SG = = , t t t

    0 23 0 23 0 2312G

    = = S (2.2.15--)

    ( )3 2E + = + : Young (elastic modulus,

    Young s modulus) G = : (shear modulus)

    ( )2 = + : Poisson (Poisson s ratio)

    ,E G,

    ( )EG

    2 1 = + (2.2.16)

    2.3

    2.3.1

    (elastoplastic, inelastic) () . :

    . ,

    . , , () .

    35

  • 2 :

    , () (rate independent elastoplasticity). (rate dependent elastoplasticity, viscoplasticity). .

    , ( ) , Cauchy ( 1x , 2x , 3x Lagrange) . :

    1. 2

    1t , t2 1t t d= + () ( ) eld , pld .

    = el pld d + d (2.3.1) ( )d : .

    . ( ) ( ), , , , ,T 11 22 33 12 13 23d d d d d d =d : , 1t 2 1t t dt= + ( ) ( , , , , ,T el el el el el el11 22 33 12 13 23d d d d d d ) =d : , 1t 2 1t t dt= + ( ) ( ), , , , ,T pl pl pl pl pl pl11 22 33 12 13 23d d d d d d =d : ,

    1t

    2 1t t d= + t2. Hooke (. (2.2.11))

    () .

    3. , .

    (), f

    ( ) ( )( yf f ,= q q ) (2.3.2)

    36

  • 2 : (yield function), q : (internal variables) . : ( . (2.3.3)).

    y : ( ). , (kinematic hardening law).

    y (isotropic hardening law). , . .

    ( )( )yf , q 0 .

    , ( )( )yf , = q 0

    ( ) d , . 2 3 , - :

    ( ) ( ). .2 3 1 e el e pld = D d d = D d -d

    pl

    e ed = D d - D d (2.3.4) . (flow rule) Prandtl Reuss:

    pld

    37

  • 2 :

    fd = pld

    (2.3.5)

    d : (proportionality factor)

    T

    11 22 33 12 13 23

    f f f f f f f, , , , , =

    :

    f .

    . d . ( ) f

    T

    yy

    f fdf d = + d (2.3.6)

    3 : df 0> , t dt+ ( )( )yf , 0 > q ,

    t ( )( )yf , 0 = q .

    ( )( )y, 0 q f df 0< , t dt+ ( )( )yf , 0 , pld 0 , . (plastic loading). df 0= (consistency condition)

    d

    . , . (2.3.6) . (2.3.4) :

    38

  • 2 :

    ( )T ( 2.3.5 )yy

    f fdf d = +

    e e plD d D d

    T

    yy

    f fdf d df = +

    e eD d - D

    (2.3.8)

    y ( ) . Von Mises

    ( )( ) ( ) (y e yf , = q q) (2.3.9)

    ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2e 11 22 22 33 11 33 12 131 32 = + + + + + 23 (2.3.10)

    e : (effective stress) . y (equivalent plastic strain) pleq . , { }pleq=q (2.3.11)

    ( pl )y eqh = (2.3.12) pleq

    tpl pl

    eq eq0

    d = (2.3.13)

    pleqd : o

    ( )2 2 2 2 2 2pl pl pl pl pl pl pleq xx yy zz 12 13 232 1d d d d d d d3 2 = + + + + + (2.3.14)

    39

  • 2 : ( ) ( )pl pl ply eq y eq eqh d h d = =

    )

    (2.3.15) ( pleqh : pleq (plastic modulus) yd . (2.3.8) pleqd . ( )pleqh . ( )pleqh . = , y .

    (hardening),

    ( )pleqh > 0( )pleqh 0<

    (softening) - (elastic - perfectly plastic material).

    ( )pleqh 0 = . (2.3.9) - (2.3.10) , :

    ( )11 22 3311 e

    1f 2

    + = (2.3.16)

    ( )22 11 3322 e

    1f 2

    + = (2.3.16)

    ( )33 11 2233 e

    1f 2

    + = (2.3.16) 12

    12 e

    f 3 = (2.3.16)

    13

    13 e

    f 3 = (2.3.16)

    23

    23 e

    f 3 = (2.3.16)

    (2.3.14), (2.3.5) - (2.3.16) :

    pleqd d = (2.3.17)

    y

    f 1 = ( . (2.3.9)), (2.3.8),

    (2.3.17), :

    40

  • 2 :

    ( )T pleqf fdf d h d = e eD d D T Tf f fdf h d = +

    e eD d D

    (2.3.18) ( )pleqh h = . , df , . (2.3.18) 0= d :

    T

    T

    f

    df f h

    = +

    e

    e

    D d

    D

    (2.3.19)

    d

    . . (2.3.5) . (2.3.4)

    d

    fd =

    e ed D d D

    (2.3.20)

    epD d . (2.3.19) . (2.3.20).

    = epd D d (2.3.21)

    TT

    T

    f f

    f f h

    = +

    e e

    ep e

    e

    D D D D

    D

    (2.3.21)

    2.3.2 -

    , .

    41

  • 2 :

    t

    ( , , ) . . Newton Raphson, , . , (integrating the rate equations).

    ( ) . , . , .

    2 ,

    1t 2 1t t = + . ,

    . . .

    1t

    2t

    . (2.3.21)

    . (2.3.20), , :

    = epd D d

    t 2 t2 t2

    t1 t1 t1

    f fd d = = e e e ed D d D d D d D ( ) ( ) t 22 1

    t1

    ft t d = e e D D ( ) ( ) t 22 1

    t1

    ft t d = + e e D D ( ) t 22

    t1

    ft = tr e D d

    )t

    (2.3.22)

    ( ) ( , , , , ,T 11 22 33 12 13 23 = : ,

    1t

    2 1t t = +

    42

  • 2 :

    ( )1t = + tr e D (2.3.23) , eD 3 2.3.1, , . (2.3.22) : 1. tr ( )1t

    , . (elastic prediction) .

    eD

    2. t 2

    t1

    fd . d . (2.3.19) f , . (2.3.20)

    t 2

    t1

    fd . ,

    ( )t 2 2t1

    fd t = = tr0 (2.3.23) 2t ( )( )y 2f , t > 0 , , .

    t 2

    t1

    fd 0 . , :

    2t

    2t1. ( )( )y 1f , t 0 = .

    ( )( )y 2f , t 0

  • 2 : 2.3.2.1 Euler (forward Euler)

    . t 2

    t1

    fd

    ( )t 2 1t1

    f fd t (2.3.24) . (2.3.19):

    ( )( ) ( ) ( )

    T t 2T

    1t 2 t 2t1

    T Tt1 t1

    1 1

    ff td

    f f f fh t t h

    = + +

    ee

    e e

    D dD d

    D D 1

    t

    ( )( ) ( ) ( )

    T

    1

    T

    1 1

    f t

    f ft t

    +

    e

    e

    D

    D 1

    h t (2.3.25)

    , Euler (forward Euler predictor). .

    1t( )2t

    ( )( )y 2f , t 0 . .

    - (subincrementation)

    t 2

    t1

    fd [ ],1i 1i 1t t + , ,...,i 1 n 1= .

    n

    2 1t ttn

    = 11 1t t= , 12 1t t t= + , 13 1t t 2 t= + , , . 1n 2t t=

    44

  • 2 :

    n

    =i [ ],1i 1i 1t t + . t 2 t12 t13 t 2

    t1 t11 t12 t1n 1

    f f fd d d ... d

    = + + + f ( ) ( ) ( ) (t 2 1 11 2 12 3 13 n 1n

    t1

    f f f f fd t t t ... t + + + + )1 (2.3.26)

    ( )( ) ( ) ( )

    T

    1i

    i T

    1i 1i 1i

    f t

    f ft t

    +

    ei

    e

    D

    D

    h t (2.3.27)

    ( )if t . (2.3.22), (2.3.23) (2.3.16):

    ( ) ( )1i 1 1it t+ = + tr e i D (2.3.28) ( ) ( ) ( )1i 1 1i 1ift t + = tr e D t

    (2.3.29)

    , ,...,i 1 2 n 1= . ( )1i 1t + . (2.3.16) ( 1i 1f t + ) [ ],1i 1 1i 2t t+ + .

    (2.3.21) (2.3.30) = = ep epi id D d D i ep iD . . (2.3.26)-(2.3.29) Von Mises

    ( ) ( )T1i 1if ft t 3 G = eD

    , ,...,2 n 1, i 1 (2.3.31) =

    45

  • 2 : .

    . . . , . . . - .

    1t t= , = tr e D , f ( ),

    2.3.2.2 Euler (backward Euler)

    ( )t 2 2t1

    f fd t (2.3.32) ( )

    2t

    ( )2f t . (fully implicit). . :

    2t

    ( ) t 22t1

    ft d = tr e D ( ) ( )2 ft = tr e D 2t (2.3.33) ( )( )y 2f , t = 0 (2.3.34)

    46

  • 2 : . (2.3.33) . (2.3.34) . (closest point projection) . (2.3.33) , () , . tr

    . (2.3.33) .

    . . (2.3.34) . . (2.3.34) .

    ( )2t

    . (2.3.33) - (2.3.34) - k

    ( k )( k ) ( k ) 2

    ( k ) ( k ) ( k )2

    f f f + = tr e e e D D D

    (2.3.35)

    ( )( )

    kk

    yy

    f ff 0

    + + =

    ( )( ) ( )( ) k kk pleqff h + = 0 (2.3.35)

    2

    2

    f :

    2

    211

    2 2

    211 22 22

    2 2 2

    2211 33 22 33 33

    2 2 2 2 2

    211 12 22 12 33 12 12

    2 2 2 2 2

    211 13 22 13 33 13 12 13 13

    2 2 2

    11 23 22 23 33 23

    f

    f f .

    f f ff

    f f f f

    f f f f f

    f f f

    =

    2 2 2

    212 23 13 23 23

    f f f

    47

  • 2 : Newton Raphson. k 1+ -

    ( k 1 ) ( k )+ = + (2.3.36) ( k 1 ) ( k ) + = + (2.3.36) ( ) ( )k 1 kpl pl

    eq eq + = + (2.3.36) .

    ,

    ( )k 11f tol

    + (2.3.37)

    1tol : T . ( )k 1f 0+ , . ,

    1tol

    2

    1tol 10 10= 8

    )

    )

    (2.3.38) , . (2.3.37), :

    ( )k 1f +

    (( )( )( ) ( ) , k 1k 1 k 1 ply eqf f ++ += (2.3.39)

    ( 0 ) = tr (2.3.40) ( 0 ) 0 = (2.3.40)

    ( )( )0pl pleq eq 1t = (2.3.40) ( )( )( )( ) ( ) , 00 0 ply eqf f =

    ( )(( ) ,0 y 1f f = tr t (2.3.41) ( )0f trf . tr

    trf 0> (2.3.42)

    , . 1t

    ( )trij ij 1t > , , ,i j 1 2 3 = k 0= . (2.3.35)

    48

  • 2 :

    tr trf f + = = tr tr e e 0 D 0 D

    (2.3.43)

    (2.3.35)

    ( )( )trtr pleq 1ff h t

    + 0= (2.3.43) (2.3.43) (2.3.43)

    ( )( )tr trtr pleq 1f ff h t 0

    + = eD

    ( )( )tr

    tr trpl

    eq 1

    f

    f f h t

    = +

    eD

    ( )tr

    1

    f3 G h t

    = + (2.3.44) ( ) ( )( )pl1 eqh t h t = 1 .

    , . (2.3.31)

    ( ) ( )T1i 1if ft t = eD

    3 G

    .

    ( )tt tr

    . (2.3.44) Euler (backward Euler predictor). Euler trf Euler ( )1f t ( (2.3.25)). ( ) tr

    ( )1f t .

    . Euler . .

    2ttr

    49

  • 2 :

    , k2

    2

    f .

    , , . (2.3.35) .

    2.3.2.3 (Generalized trapezoidal and generalized midpoint rule)

    . (2.3.32).

    ( ) ( ) ( )t 2 1 2t1

    f fd 1 a t a + f t

    (2.3.45) a : .

    ( ) ( ) ( )t 2 1 2t1

    f fd a 1 a t a + t (2.3.46) 1 = . (2.3.45) Euler. 1a

    2= ,

    1 = .

    . (2.3.35) (2.3.40).

    0 ( )2f t .

    2

    2

    f .

    2.3.2.4 generalized cutting plane

    Simo & Ortiz (1985)

    2

    2

    f

    . ( . (2.3.45)) 0 = . . (2.3.35)

    ( ) ( )2 ft = tr e D 1t (2.3.47)

    50

  • 2 :

    ( ) ( )( k ) ( k ) 1f t + = tr e e D D 1f t (2.3.48)

    k 1+

    ( ) ( )( k 1 ) ( k 1 ) 1 k 1f t + + + 1f t + = tr e ek+1 D D

    (2.3.49)

    . (2.3.49) (2.3.48)

    , ( k 1 ) ( k )+ = + ( k 1 ) ( k ) + = +

    ( )k 1 1f t + = ek+1 D (2.3.50) ,

    k

    ( )1f t = e D (2.3.51) . (2.3.51) (. (2.3.35))

    ( ) ( )( ) ( )( ) k kk p1 eqf f lf t h 0 = eD ( )

    ( )

    ( )( )

    k

    kk

    1

    f

    f f t h = +

    eD

    (2.3.52)

    ( )( )( ) kk pleqh h = .

    . (2.3.52) . (2.3.36-) (. (2.3.37))

    2

    2

    f .

    f .

    generalized cutting plane

    ( )1f t ( )kf

    . (2.3.51), (2.3.52).

    51

  • 2 :

    ( )

    ( ) ( )( )

    k

    k kk

    f

    f f h = +

    eD

    ( )

    ( )

    k

    k

    f3 G h

    = + (2.3.53) Von Mises . ,

    2

    2

    f ,

    , .

    generalized cutting plane. - :

    k

    . (2.3.53), ( ) ( )k

    k

    f3 G h

    = +

    ( k 1 )+ ( k )

    ( k 1 ) ( k ) f+ = e D

    ( )k 1pleq + ( ) ( )k 1 kpl pleq eq + = + ( )k 1h + ( )( )( ) k 1k 1 pleqh h ++ = ( )k 1f + ( )( )( )( ) ( ) , k 1k 1 k 1 ply eqf f ++ += ( )k 1 1f tol+

    1tol .

    : ( ) ( k 1 )2t += , , .

    ( ) ( )k 1pl pleq 2 eqt +=( ) ( )( )k 1pl2 eqh t h + = ( )k 1 1f tol+ > .

    k 2+ ( )( )( ) ,0 tr ply eq 1f f f t = = tr ,

    , ( 0 ) = tr ( 0 ) trf f = , , ( )

    ( )0pl pleq eq 1t = ( ) ( )( )0 pleq 1h h t = .

    2.3.3

    Cauchy 2 Piola Kirchhoff Green

    52

  • 2 : . , , : , .

    53

  • 3 :

    3.1

    , 15 15 (3 , 6 , 6 ). , , . , .

    : ,

    . , , , . , .

    , , .

    St. Venant . : , , .

    (, ). , St. Venant , , . , , .

    (torsional loading) . : Mt (torque), . Mt

    55

  • 3 : , . .

    . 3.1.1, - : .

    . 3.1.2, : , . , , ( ) . .

    () () 3.1.1 () ()

    56

  • 3 :

    ()

    () ()

    3.1.2 () () ()

    Coulomb (1784), . . Coulomb . .

    , . St. Venant (1855)

    57

  • 3 : (. 3.1.3). , .

    3.1.3

    t

    ()

    3.1.4 Saint-Venant,

    St. Venant

    St. Venant (uniform torsion). . ( ) , (non uniform torsion). St. Venant (. 3.1.5).

    58

  • 3 :

    3.1.5

    St. Venant

    . () . , , . , St. Venant, .

    3.2

    3.2.1

    . , , . : ,

    .

    : .

    : . , .

    Poisson , 0 =

    : , Green ij 1

  • 3 :

    .

    , : , .

    .

    3.2.2

    (semi-inverse method) . ) ) ( ), .

    l

    , .

    .

    =

    1 2 3x x x M , 1x , 2x 3x . 1x ( )1x .

    , 1Mx . , (

    2 3u , u 2u

    2x 3u 3x ) . (. 3.1.6):

    ( ) ( ) ( ) ( ) ( ), , sin sin2 1 2 3 1 3 1u x x x PP MP x x x = = = (3.2.1) ( ) ( ) ( ) ( ) ( ), , cos cos3 1 2 3 1 2 1u x x x PP MP x x x = = = (3.2.1)

    60

  • 3 :

    2 0t =3 0t =

    +1

    ()

    1 2

    11+= = Kj j

    3u

    2u1(x )

    n

    t

    s

    M

    3x

    2x

    3.1.6 , : (Trahair, 1992)

    2 3u , u

    ( ) ( ) ( )( ), , sin cos2 1 2 3 3 1 2 1u x x x x x x 1 x= (3.2.2) ( ) ( ) ( )( ), , sin cos3 1 2 3 2 1 3 1u x x x x x x 1 x= (3.2.2)

    ,

    , . ,

    1u

    1x . 1u

    ( ) ( ) (, , ,P1 1 2 3 1 M 2 3u x x x x x x = )

    )

    (3.2.3)

    ( ,PM 2 3x x : , (primary warping function). . (3.2.3),

    1u

    1x ( ) .1x = = (3.2.4)

    61

  • 3 : , ( ), . , 3 , (3.2.3). ( )1x ( ), ,SM 1 2 3x x x (secondary warping function). .

    ( ), ,1 1 2 3u x x x

    ( ) ( ) (, , ,P1 1 2 3 s 1 M 2 3u x x x u x x x = + ) (3.2.5)

    ( )s 1u x : . , ( )s 1u x , ( ) ( ), ,1 1 2 3u x x x (. 3.1.3, 3.1.4). ( )s 1u x . . , , ( )s 1u x

    ( ) .s 1 su x u = = (3.2.6)

    3.2.3

    . (. . (1.1.45), (1.1.46)). . (3.2.1), (3.2.3) :

    62

  • 3 :

    111

    1

    u 0x

    = = (3.2.7) 2

    222

    u 0x

    = = (3.2.7) 3

    333

    u 0x

    = = (3.2.7) P

    1 212 3

    2 1 2

    u u xx x x

    = + = (3.2.7) P

    3113 2

    3 1 3

    uu xx x x

    = + = + (3.2.7) 32

    233 2

    uu 0x x

    = + = + = (3.2.7) 12 13, .

    Green (. . (1.1.12) (1.1.34)). . : , ( )1x .

    ( ), ,1 1 2 3u x x x ( )1x . Green :

    2 2 2 2

    3 31 1 2 1 211 11

    1 1 1 1 1 1 1

    u uu 1 u u u 1 ux 2 x x x x 2 x x

    = + + + = + +

    2 (3.2.8)

    2 2 2 2

    3 32 1 2 2 222 22

    2 2 2 2 2 2 2

    u uu 1 u u u 1 ux 2 x x x x 2 x x

    = + + + = + +

    2 (3.2.8)

    2 2 2 2

    3 3 31 2 233 33

    3 3 3 3 3 3 3

    u u u1 u u 1 ux 2 x x x x 2 x x

    = + + + = + +

    2

    3u (3.2.8)

    3 32 1 1 1 2 212

    1 2 1 2 1 2 1 2

    u uu u u u u ux x x x x x x x

    = + + + +

    3 32 1 2 212

    1 2 1 2 1 2

    u uu u u ux x x x x x

    = + + +

    (3.2.8)

    63

  • 3 :

    3 31 1 1 2 213

    1 3 1 3 1 3 1 3

    u uu u u u ux x x x x x x x

    = + + + + 3u

    3 1 2 213

    1 3 1 3 1 3

    u u u u 3 3u ux x x x x x

    = + + +

    (3.2.8)

    3 32 1 1 2 223

    2 3 2 3 2 3 2 3

    u uu u u u ux x x x x x x x

    = + + + + 3u

    3 2 2 223

    2 3 2 3 2 3

    u u u u 3 3u ux x x x x x

    = + + +

    (3.2.8)

    . (3.2.2), (3.2.5)

    ( ) ( )22 211 s 2 31u x x2 = + + (3.2.9) 22 0 = (3.2.9) 33 0 = (3.2.9)

    P

    12 32

    xx = (3.2.9) P

    13 23

    xx = + (3.2.9)

    23 0 = (3.2.9) (3.2.7), (3.2.9) :

    , 11

    11 .

    ( ) ( )22 22 31 x x2 + Wagner (Wagner term) (Trahair, 1992)

    3.2.4

    . . , Green 2

    64

  • 3 : Piola Kirchhoff . (2.2.15). 0 = , ( . (3.2.9)):

    ( ) ( )22 211 11 11 s 2 31S E S E u E x x2 = = + + 0

    (3.2.10)

    22 22 22S E S= = (3.2.10) 33 33 33S E S 0= = (3.2.10)

    P

    12 12 12 32

    S G S G xx = = (3.2.10) P

    13 13 13 23

    S G S G xx = = +

    0

    (3.2.10)

    23 23 23S G S= = (3.2.10) . . (3.2.10), (3.2.10) 0 = : 0 , , .

    22 33S , S

    Cauchy ( 1 2 3x x x ) . (3.2.10) , 11 ,

    11 0 = (3.2.11) 11 0 = . 0 = 11 , . 22 33S , S

    , . . (2.3.4) ,

    11 12 13S , S , S ( e el e )pldS = D d dS = D d -d (3.2.12) ( )d :

    ( ) ( , ,T 11 12 13dS dS dS=dS )

    65

  • 3 : ( ) ( ), ,11 12 13d d d =d ( ) ( , ,pl pl pl11 12 13d d d ) =pld

    E 0 00 G 00 0 G

    = eD

    P , dt

    Pd = 0 (3.2.13) (3.2.10) (3.2.9)

    ( )2 2 pl11 s 2 3 11dS E du E x x d E d = + + (3.2.14) P

    pl12 3 12

    2

    dS G d x G dx = (3.2.14) P

    pl13 2 13

    3

    dS G d x G dx = + (3.2.14)

    11d ,

    11d 0 = (3.2.15)

    3.2.5 P -

    , 3 ,

    ( ) ( ) ( ),PM 2 3 1 s 1x x , x , u x , ( ) .1x = , ( ) .s 1u x = . 12 15

    (6 - 6 ). 3 ( ). 1 ( 1x ) (. . (1.2.48 (1.2.28))

    66

  • 3 :

    3111 211

    1 2 3

    f 0x x x

    + + + = (3.2.16)

    1311 120 1

    1 2 3

    PP P f 0x x x

    + + + = (3.2.17) . . (3.2.11),

    11

    1

    0x = (3.2.18)

    . (3.2.10) (3.2.10), . (3.2.16)

    2 P 2 P3111 21

    1 2 21 2 3 2 3

    f 0 0 G G 0 0x x x x x

    + + + = + + + = G 02 P 2 PG 0 0, = = (3.2.19)

    1f 0= : () 1Mx .

    ( ) ( ) ( )2 22 22 3

    2x x = + : Laplace

    , . ( ),

    1n 0= , (3.2.20) 2 3n , n R

    :1 2 3n , n , n ( ) ( , ,T 1 2 3n n n=n )

    . 1 (. . (1.2.49)

    ( ) ( ). . , . .3 2 10 3 2 101 11 1 21 2 31 3 1 21 2 31 3t n n n t 0 n n

    = + + = + + P P

    G 03 2 2 3

    2 3

    G x n G x n 0x x

    + + =

    67

  • 3 :

    P

    3 2 2 3x n x n , n = (3.2.21)

    1t 0= : 1Mx . (, ).

    ( ) ( ), ,T 1 2 3t t t=t n n

    1t

    ( ) ( ) ( )2

    2 3

    nn x x

    = + 3n : n

    , , ( ),P 2 3x x Laplace (3.2.19) Neumann (3.2.21)

    .

    , , (3.2.14) . , (3.2.16) ( 1.2.49)) . , :

    31 3111 21 11 211

    1 2 3 1 2 3

    dd df 0x x x x x x

    0 + + + = + + =

    n

    (3.2.22)

    1 11 1 21 2 31 3 1 11 1 21 2 31 3t n n n dt d n d n d = + + = + + (3.2.23) Poisson

    plpl2 P 1312

    M2 3

    d1 d , d x x

    = +

    (3.2.24)

    Neumann

    plP pl1312

    3 2 2 3dd x n x n ,

    n d d

    = + +

    (3.2.25)

    (3.2.17) ( ). 1 Piola

    68

  • 3 : Kirchhoff , 2 Piola Kirchhoff. (1.2.43) 1 Piola Kirchhoff .

    (3.2.17) 2 Piola Kirchhoff. . Washizu (1975) . 3.2.7 (. . (3.2.57)) . , :

    ( ). . 2 P 2 P3 2 141311 12

    0 1 2 21 2 3 2 3

    SS S f 0 0 G G 0x x x x x

    + + + = + + + = 0 2 P 0, = (3.2.26)

    0 1 11 1 21 2 31 3 21 2 31 3t S n S n S n 0 0 S n S n= + + = + +

    ( ). . P P3 2 143 2 2 3

    2 3

    G x n G x nx x 0 + + =

    P

    3 2 2 3x n x n , n = (3.2.27)

    .

    11SP (

    ). ,

    . (3.2.26) . (3.2.22) .

    13 1311 12 11 120 1

    1 2 3 1 2 3

    SS S dS dS dSf 0x x x x x x

    + + + = + + = 0 (3.2.28)

    0 1 11 1 21 2 31 3 0 1 11 1 21 2 31 3t S n S n S n d t dS n dS n dS n= + + = + + (3.2.29) (. (3.2.24), (3.2.25)):

    plpl2 P 1312

    M2 3

    d1 d , d x x

    = +

    (3.2.30)

    69

  • 3 :

    plP pl1312

    3 2 2 3dd x n x n ,

    n d d

    = + +

    (3.2.31) , . : , (3.2.30), (3.2.31) .

    3.2.6 s, u - ( )

    s, u , ( ). . . , Cauchy : (. . (1.2.34) (1.2.37))

    [ ] [ ]( ) ( )T T TV A V

    dV dA dV = + tr t n r f r (3.2.32) ( ) , A : H () V : () [ ] [ ], : Cauchy , 1 2 3x , x , x ) , ) (. . (3.2.10-), (3.2.11)). , , (. . (3.2.1), (3.2.3)),

    f( ) ( )12 13,

    ( ) ( , ,T 1 2 3u u u =r )

    P P1 Mu M = + (3.2.33)

    70

  • 3 :

    2 3u x = (3.2.33) 3 2u x = (3.2.33)

    P P

    12 32 2

    xx x = +

    (3.2.34) P P

    13 23 3

    xx x = + +

    (3.2.34) 1 . (3.2.32) :

    ( )1 12 12 13 13V

    dV = + = ( ). .P P P P 3 2 10

    12 3 13 22 2 3 3V

    x x dVx x x x

    = + + + + 22P P P P

    3 2 12 132 3 2 3V V

    G x x dV dVx x x x = + + + + =

    22 lP P P P

    3 2 1 12 132 3 2 3x1 0 V

    G x x d dx dVx x x x

    =

    = + + + +

    ( ) P P1 t 2 1 12 132 3V

    I G dx x = + + V (3.2.35)

    22P P

    t 3 22 3

    x x dx x

    = + + : (torsion constant).

    P P2 2 M M

    t 2 3 2 33 2

    x x x x dx x

    = + + ( )2 l = : (2 1 )x 0 = = :

    1I .

    71

  • 3 :

    lP P P P

    12 12 13 1 12 132 3 2 3V x1 0

    I dV dxx x x x

    =

    = + = + d ( )P P131212 12 2 13 3

    2 3

    I l d n n dsx x

    = + + (3.2.36) 2I . (3.2.32) :

    ( )( ) ( )( ) ( )( ) ( )( )T T T T2A 1 2

    I dA d d dA

    = = + + t n r t n r t n r t n r (3.2.37)

    1 : ( 1x 0= ) 2 : ( 1x l= )

    A :

    ( ) ( ) ( ) ( )T 1 1 2 2 3t u t u t 3u = + + t n r n n n

    ))

    )2 3

    , ( ) ( , ,T1 1 0 0 = n (3.2.38) ( ) ( , ,T1 1 0 0 =n (3.2.38) ( ) ( , ,TA 0 n n =n (3.2.38) (3.2.37) (1.2.49) Cauchy

    ( ) ( )( )

    2 12 2 13 3 12 2 13 31 2

    1 1 2 2 3 3

    I u u d u u

    t u t u t u dA

    d

    = + + +

    + + +

    + (3.2.39)

    :

    1t 0= (3.2.40) (3.2.21). . (. . (1.2.49-)

    22

    32

    02 22 2 32 3 20t n n t

    === + = 0

    0

    (3.2.40) 23

    33

    03 23 2 33 3 30t n n t

    === + = (3.2.40)

    72

  • 3 : (3.2.38)

    ( ) ( ) ( ) ( )2 12 3 13 2 12 3 13 21 2

    I x x d x x

    = + + + d1

    2 t 2 2 t1I M M =

    )

    (3.2.40)

    (ti 12 3 13 2i

    x x d

    = + : (torque, torsional moment). 12 13, (. (3.2.10-)

    t 2 t1M M= (3.2.41)

    (2 t 2I M )1 = (3.2.42) t t 2 t1M M M= = . ,

    ( ) ( )1 2 t 2 1 12 t 2 1I I G I M = + = (3.2.43) P1 2, , ( )

    tG = tM (3.2.44) ,

    ,

    P 0 131212

    2 3

    12 2 13 3

    I 0 0 x x

    n n 0

    = + = + =

    (3.2.44-)

    . (3.2.44) (governing equation) . . , , 2 Piola Kirchhoff . (. . (3.2.26) (3.2.57)).

    . (3.2.44) . , . (3.2.19) (3.2.21), t tM . (3.2.44).

    73

  • 3 : .

    . .. ( )t t 1M M x= . (3.2.44) , . (3.2.4) ( . = ). , . (3.2.3) .

    , , . , () . St. Venant (center of twist) . . . . ( ) .

    , 2 Piola- Kirchhoff . 1.2.47:

    [ ] ( )TT 0 T0 0V A V

    dV dA dV = + Gtr S t n r f r (3.2.45) A : H () V : () [ ] , GS : 2 Piola- Kirchhoff Green , 1 2 3x , x , x ( 00 t n) : o 0 f : To 1I , 11 11S .

    74

  • 3 :

    ( ) ( )1 11 11 12 12 13 13 11 11 t 2 1V V

    12I S S S dV S dV G = + + = + + I (3.2.46)

    ( )P131212 12 2 13 32 3

    SS PI l d S n S nx x

    = + + ds (3.2.47) 11 (. . (3.2.9)) ( )2 211 s 2 3u x x = + +

    PM

    (3.2.48)

    (. . (3.2.2) (3.2.5))

    P1 s Mu u = + + (3.2.49)

    (2 3 2u x cos x sin ) = )

    (3.2.49)

    (3 2 3u x cos x sin = V

    (3.2.49) 11 11

    V

    S d 1I

    ( ) ( ) ( ) ( )22 2 2 211 11 s 2 3 s 2 3V V

    1S dV E u E x x u x x dV2

    = + + + + = ( ) ( ) ( ) ( ) ( )22 32 2 2 2 2 2s s 2 3 s 2 3 s 2 3

    V

    1 1E u u x x u x x u x x dV2 2

    = + + + + + + ( ) ( ) ( ) ( ) ( )2 311 11 s P s2 s1 P s PP 2 1

    V

    1 1S dV E A u I u u E I u I2 2

    = + + + (3.2.50)

    A d

    = , ( )2 2P 2 3I x x d

    = + , ( )22 2PP 2 3I x x d

    = + (3.2.51--) 2I (3.2.45) , 1 Piola Kirchhoff (. . (1.2.24)). . (3.2.37) (3.2.39) 2I

    ( ) ( )( )

    2 11 1 21 2 31 3 11 1 21 2 31 31 2

    0 1 1 0 2 2 0 3 3

    I P u P u P u d P u P u P u d

    t u t u t u dA

    = + + + + +

    + + +

    + (3.2.52)

    75

  • 3 : , . ,

    0 1t 0=A

    . (1.2.43)

    [ ] [ ] [ ] [ ] [ ] [ ]1= = S P P S (3.2.53)

    1 1 111 11 11 12 21 13 31 11 21 31

    1 2 3

    u u uP X S X S X S 1 S S Sx x x

    = + + = + + +

    ( ) P P11 s 11 21 312 3

    P 1 u S S Sx x = + + +

    (3.2.54)

    11P 1x 11 21 31S , S , S 1x (. . (3.2.10)). , . (3.2.49)

    ( ) ( ) ( )( ) ( )

    P P2 s2 s1 11 2 1 11 2 1 11

    21 2 31 3 21 2 31 32 1

    I u u P d P d P d

    P u P u d P u P u d

    = + +

    + + +

    +

    (3.2.55)

    ( ) .1 2 1x 0 = = = 2 1 0 = ,

    ( ) ( ) ( ) ( ). .3 2 492 s2 s1 21 2 31 3 21 2 31 32 1

    I u u N P u P u d P u P u d

    = + + + ( ) ( ) ( )

    ( ) ( )cos sin cos sin

    cos sin cos sin

    2 s2 s1 2 21 3 2 2 2 31 2 2 3 22

    1 21 3 1 2 1 31 2 1 3 11

    u u N P x x P x x d

    P x x P x x d

    = + + +

    1

    ( )2 s2 s1 t 2 2 t1I N u u M M = + (3.2.56)

    11N P d

    = : . ( ) ( )cos sin cos sinti 21 3 i 2 i 31 2 i 3 i

    i

    M P x x P x x d

    = + : . . (3.2.56)

    tM . .

    76

  • 3 :

    2I P , ,

    ( ), . (3.2.47)

    P 0 13121 2 12

    2 3

    12 2 13 3

    SSI I I 0 0 x x

    S n S n 0

    = = + = + =

    (3.2.57-)

    2 Piola Kirchhoff . 1I , 2I

    ( ) ( )2s2 s1 s P1 u u 0 E A u E I2 + = N (3.2.58) ( )32 P s PP t1 0 E u E I G I M2 + + = t 2 (3.2.58) ( )31 P s PP t1 0 E u E I G I M2 + + = t1 (3.2.58)

    A , , P PPI . (3.2.51), (3.2.58) (3.2.58)

    t 2 t1 tM M M= = (3.2.59) ( ), N 0= su . (3.2.58) . (3.2.58)

    ( )3t n1G I E I M2 + = t (3.2.60)

    2P

    n PPII IA

    = : Wagner (Wagner constant)

    . (3.2.60) . : su ,

    , . (3.2.58-) , su ,

    ( )3n1 E I2

    77

  • 3 : . =

    .

    . , . (3.2.58) (3.2.58) N 0 .

    . , 11S . (3.2.58) ,

    ,2 3M M 0 . , .

    , , . 1t t= 2 1t t t= + , Lagrange : 2t

    ( )0 0 0

    TT2 2 0 2 0 2 0 2 T 2 00 0 0 0 0 0

    V A V

    d V d A d V = + Gtr S t n r f r

    d A

    ( )( ) ( ) ( )( )

    0

    0

    2 2 2 2 2 2 00 11 0 11 0 12 0 12 0 13 0 13

    V

    2 0 2 0 2 0 2 00 1 0 1 2 0 2 3 0 3

    A

    S S S d V

    t u t u t u d A

    + + =

    = + + n n n

    ( )( ) ( ) ( )( )

    0

    0

    2 2 2 00 11 11 0 12 12 0 13 13

    V

    2 0 0 0 00 1 1 2 2 3 3

    A

    S S S d V

    t u t u t u

    + + =

    = + + n n n (3.2.61)

    . 1t t= ,

    , , , ,1 10 ij 0 i0 u 0 i j 1 2 3 = = = (3.2.62)

    78

  • 3 :

    u

    ( . )

    1t

    2 1 2 10 ij 0 ij ij 0 i 0 i i u u = + = + (3.2.62)

    (. . (3.2.2), (3.2.5)) 1u

    2 2 P 1 1 P 1 P 1 P P1 s M M s M M Mu u u = + = + + +

    M

    M

    1 P

    1 su u = + (3.2.63) , , ( ). PM 0

    1 P1 su u = + (3.2.64)

    ( cos sin2 2 22 0 2 3 2u u x x ) = =

    ) (3.2.64)

    ( cos sin2 2 23 0 3 2 3u u x x = = (3.2.64) 2 (3.2.61) : . , (3.2.55), (3.2.56)

    ( )2 2 22 s2 s1 t 2 2 t1I N u u M M 1 = + (3.2.65) 2 2

    0 11N P d

    = : ( ). 2t t= ( ) ( )cos sin cos sin2 2 2 2 2 2 2ti 0 21 3 i 2 i 0 31 2 i 3 i

    i

    M P x x P x x d

    = + : ( ). 2t t=

    Green 11

    ( ) ( )2 2 111 s 2 3 11 11 111u x x 2 e2 = + + + = + n (3.2.66)

    79

  • 3 :

    ( )2 2 111 s 2 3e u x x = + + : . 11

    ( ) ( )22 211 2 31n x x2 = + : .

    1 PM

    12 32

    xx = (3.2.66)

    1 PM

    13 23

    xx = +

    n

    (3.2.66)

    .

    2 1t t t =

    11 11 11e = + (3.2.67) ( )2 2 111 s 2 3e u x x = + + (3.2.67)

    ( )2 211 2 3n x x = + (3.2.67) 1 P

    M12 3

    2

    xx = (3.2.67)

    1 PM

    13 23

    xx = + (3.2.67)

    1I (3.2.61)

    : ( )

    0

    2 2 21 0 11 11 0 12 12 0 13 13

    V

    I S S S d V = + + 0

    0

    ( )( )

    0

    0

    01 11 11 12 12 13 13

    V

    1 1 10 11 11 0 12 12 0 13 13

    V

    I S S S d

    S S S d V

    = + + +

    + + +

    V (3.2.68)

    . (3.2.66). ,

    80

  • 3 : , , (2.3.21)

    = epS D (3.2.69) , (3.2.66-) , 1 PM . (3.2.30) (3.2.31), 1 PM . , . (3.2.69) . Baba Kajita (1982),

    11 11

    12 12

    13 13

    S E 0 0S 0 G 0S 0 0 G

    = = eS D

    (3.2.70)

    Poisson 0 = . (3.2.66) . ,

    11

    11 11 11 11 11 11 11e n e e = + (3.2.71-)

    , 11I : 1

    ( )( )

    0

    0

    011 11 11 12 12 13 13

    V

    011 11 12 12 13 13

    V

    I S e S S d V

    E e e G G d V

    = + + =

    = + + (3.2.72)

    (3.2.66) - (3.2.67),

    ( )( )

    1

    1

    l1

    11 s P s 1x 0

    l21 1

    P s PP t 1x 0

    I E A u E I u dx

    E I u E I G I dx

    =

    =

    = + +

    + + +

    ( ) ( )( ) ( )

    111 s P s2 s1

    21 1 1P s PP t 2

    I E A u E I u u

    E I u E I G I

    1

    = + + + + +

    (3.2.73)

    81

  • 3 : :

    A d

    = , ( )2 2P 2 3I x x d

    = + , ( )22 2PP 2 3I x x d

    = + , 221 P 1 P

    1t 3 2

    2 3

    I x xx x

    d = + + 1 P 1 P

    2 21 M Mt 2 3 2 3

    3 2

    x x x x dx x

    = + + , 12I 1

    ( )( )

    0

    0 0

    1 1 1 012 0 11 11 0 12 12 0 13 13

    V

    1 1 1 0 10 11 11 0 12 12 0 13 13 0 11 11

    V V

    I S S S d V

    S e S S d V S n d V

    = + + =

    = + + + ( ) 0 (3.2.74)

    ( )

    0

    10 11 11

    V

    S n d 0V)

    ( ) ( ) (0

    2 21 0 10 11 11 0 11 2 3 2 1

    V

    S n d V S x x d

    = + (3.2.75) 12I . (3.2.74) ( ) ( ) ( )t0

    1 1 1 0 1 10 11 11 0 12 12 0 13 13 N s2 s1 M 2 1

    V

    S e S S d V S u u S + + = + (3.2.76) 1 1

    N 0 11S S d

    = : (internal stress resultant) .

    ( )t 1 P 1 P2 21 1 1 1 1M MM 0 11 2 3 0 12 3 0 13 22 3

    S S x x d S x S xx x

    = + + + + d

    1

    :

    .

    ( )2 210 11 2 3S x x d

    + : Wagner (Wagner stress resultant) (rahair, 1992) . (3.2.75) . (3.2.76) , ( ) : (. . (3.2.65), (3.2.73) (3.2.76))

    82

  • 3 :

    ( )

    t

    1 12P Ns

    2 121 1 1 1MtP PP t

    E A E I Su NSME I E I G I W

    = + + (3.2.77-)

    2N 0= : () (. . (3.2.56) 2 2 2

    t t 2 t1M M M= = : (. . (3.2.56) ( )2 21 10 11 2 3W S x x d

    = + :

    Wagner (Wagner term) (Trahair, 1992) (. . (3.2.75))

    . , ( )

    t

    1 2 1t tG I M S = M (3.2.78)

    t

    1 P 1 P1 1 1M M

    M 12 3 13 22 3

    S xx x

    x d = + + : . .

    , :

    tM

    S . , 11S ( Wagner), ,

    tMS 12 ,

    13 . , 5.

    , tM

    S 11 (. . (3.2.78)) . , ,

    tMS

    Wagner (. 3.277)) 11S . , , , . 2 3M , M .

    83

  • 3 :

    , . , NS . , . , .

    NS ( N NN S S 0= = ), 11S . , 11S , St. Venant .

    3.2.7

    (. (3.2.44)) (. (3.2.60)). tM . tM (, , , ), , , .

    , ( ) Newton Raphson. .

    . . , .

    84

  • 3 :

    (load control). . .

    , . , , .

    Newton Raphson . . . . , . (. . (3.2.80), (3.2.82)).

    Newton Raphson . , . (3.2.77) tI PM . Poisson (3.2.24). Newton Raphson (modified Newton Raphson method). . (initial stiffness method) . : (. (3.2.14-))

    PM . PM ,

    85

  • 3 : . .

    . , , NS tMS . , , .

    , ,

    ml

    ( ) ( ) . :

    l m

    1) ( )lm ,

    ( )ls mu 2 2 (. .

    (3.2.77))

    ( )( ) ( ) ( ) ( )

    ( )( ) ( )

    ( )( )t

    l l 1P Nsm 1 m

    m2 l 1l t mP PP t Mm 1 m 1 m m 1 mm

    E A E I Su 0ME I E I G I W S

    = + + (3.2.79-)

    ( )lm , ( )ls mu ( ) ( ) ( )l l 1 lmm m = + ( ) ( )l l 1 ls s sm m mu u u = +, ( ) (3.2.80-) ( )lm , ( )ls mu ( ) ( ) ( )l lm m 1 m = + ( ) ( )l ls s sm m 1 mu u u = + , ( ) (3.2.81-) , Newton Raphson.

    l

    2) (elastic prediction step): ( )lTr11 mS , ( )lTr12 mS , ( ), (3.2.66), (3.2.70)

    ( )lTr13 mS

    86

  • 3 :

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2l l l2 2 2 2Tr11 s 2 3 2 3m m 1 mm 1S E u E x x E x x2 = + + + + lm ( ) ( ) ( )Pl MlTr m12 3mm

    2

    S G xx

    =

    ( ) ( ) ( )Pl MlTr m13 2mm3

    S G xx

    = + (3.2.82--)

    ( )lTr11 mS , ( )lTr12 mS , ( )lTr13 mS

    ( ) ( ) ( )lTr Tr11 11 11m 1mS S S= + lm (3.2.83) ( ) ( ) ( )lTr Tr12 12 12m 1mS S S= + lm (3.2.83) ( ) ( ) ( )lTr Tr13 13 13m 1mS S S= + lm (3.2.83) 3) (plastic correction step): Trf , . (2.3.41)

    ( ) ( ) ( ) ( )2 2 2l l lr Tr Tr Tr11 12 13 Y m 1m m mf S 3 S 3 S = + + (3.2.84) : rf 0

    , . ( )l11 mS , ( )l12 mS , ( )l13 mS

    ( ) ( )ll Tr11 11m mS S= , , ( )( ) ( )ll Tr12 12m mS S= ( )ll Tr13 13m mS S= (3.2.85--) rf 0 >

    . , generalized cutting plane (Simo & Ortiz, 1985). ( ) 2.3.2. k - : . (2.3.53)

    ( )

    ( )

    k

    k

    f3 G h

    = + (3.2.86)

    87

  • 3 :

    k 1+ - ( )k 111S + , ( )k 112S + , ( )k 113S +

    ( ) ( )k 1 k pl11 11 11S S E + = (3.2.87) ( ) ( )k 1 k pl12 12 12S S G + = (3.2.87) ( ) ( )k 1 k pl13 13 13S S G + = (3.2.87)

    ( k )

    pl11

    11

    fS

    = , ( k )

    pl12

    12

    fS

    = , ( k )

    pl13

    13

    fS

    = .

    ( k )

    11

    fS ,

    ( k )

    12

    fS ,

    ( k )

    13

    fS . (2.3.16-

    -).

    ( )k 1pl

    eq + , ( )k 1h +

    ( ) ( )k 1 kpl pl pl11 11 11 + = + , ( ) ( )k 1 kpl pl pl12 12 12 + = + ,

    ( ) ( )k 1 kpl pl pl13 13 13 + = + (3.2.88--) ( ) ( ) ( )k 1 kpl pleq eq + = + , ( )( ) k 1k 1 pleqh h ++ = (3.2.89-)

    ( )k 1f +

    ( ) ( )( ) ( )( ) ( )( ) ( )( )2 2 2 k 1k 1 k 1 k 1 k 1 pl11 12 13 Y eqf S 3 S 3 S ++ + + += + + (3.2.90) ( )k 1 1f tol+

    1tol (5

    1tol 10=

    ). :

    , ( )( ) ( )( )ll k 111 11m mS S += ( )( )ll k 112 12m mS S += , ( ) ( )( )ll k 113 13m mS S += (3.2.91--) , ( )l ( k 1 )pl pl11 11m += ( )l ( k 1 )pl pl12 12m += , ( )l ( k 1 )pl pl13 13m += (3.2.92) ( ) ( )l k 1pl pleq eqm += (3.2.93) ( ) ( ( )k 1l pleqmh h + = )

    , :

    ( )0 trf= ( 0 ) = trS S, , ( 0 ) trf f = S S (3.2.94--) f

    88

  • 3 : , , ( 0 )pl11 0 = ( 0 )pl12 0 = ( 0 )pl13 0 = (3.2.94--) ( )( )0pl pleq eq m 1 = , (3.2.94-) ( ) ( )(0 pleq m 1h h = )

    4) , ( )lN mS ( )t lM mS . (3.2.76): ( ) ( )l lN 11m mS S

    d= (3.2.95)

    ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

    t

    l l l2 2M 11 2 3m mm

    P PM Ml lm m

    12 3 13 2m m2 3

    S S x x d

    S x S x dx x

    = + + + + +

    (3.2.95)

    4.1.2 5) (. 3.2.79) :

    ( ) ( )

    ( )t

    l

    t m m

    t m

    M S

    M , ( )lN mS (3.2.96-)

    : 410 = . (3.2.96), (3.2.96) ,

    . 1 l 1+ .

    ,

    , .

    l n=m

    ( ) ( )nm m = , ( ) ( )ns smu u m = (3.2.97-) , .

    m 1+

    89

  • 3 : ( )PM m 1 + (. . (3.2.30), (3.2.31)):

    ( ) ( )( ) ( )n npl pl12 132 P m m

    M nm 12 3m

    1 , x x

    + = +

    (3.2.98)

    ( )( )

    ( )( )

    n npl plP12 13m mM

    3 2 2 3n nm 1 m m

    x n x n , n

    +

    = + + (3.2.98)

    4. ( )PM m 1 + ( ) (. . (3.2.35)) t m 1I +

    ( ) P P2 2 M Mt 2 3 2 3m 13 2 m 1m 1

    I x x x x dx x

    +++

    = + + (3.2.99) Wagner ( (. . (3.2.77)) )mW ( ) ( ) ( )n 2 211 2 3m mW S x x d

    = + (3.2.100)

    , ( )t m 1I + ( )mW 4.1.2. , Trf , ( )Y m

    ( ) ( ) ( )nn plY Y Y eqm m m = = (3.2.101)

    m 1= , 0 = , . , Wagner ( )0W ( )11 0S , ( )0W = 0 (3.2.102) ( )t 1I ( ):

    ( )PM 1 ( )2 PM 1 0, = (3.2.103)

    90

  • 3 :

    PM

    3 2 2 31

    x n x n , n = (3.2.103)

    . . ( ) .

    91

  • 4 :

    4.1.1 PM

    , , ( ),PM 2 3x x (3.2.98):

    ( ) ( )( ) ( )n npl pl12 132 P m m

    M nm 12 3m

    1 , x x

    + = +

    (4.1.1)

    ( )( )

    ( )( )

    n npl plP12 13m mM

    3 2 2 3n nm 1 m m

    x n x n , n

    +

    = + + (4.1.1)

    ,

    plpl2 P 1312

    M2 3

    d1 d , d x x

    = +

    (4.1.2)

    plP pl1312

    3 2 2 3dd x n x n , =

    n d d

    = + +

    (4.1.2) (4.1.2) Poisson, . Neumann,

    P

    n

    ( ,P )M 2 3x x .

    (boundary element method BEM) (4.1.2). , (direct BEM) (indirect BEM). (1999).

    ( ) ( ),2 3 2 3k x x , g x x, . Gauss Green :

    22 2

    k gg d k d k g n dx x

    = + s (4.1.3) 3

    3 3

    k gg d k d k g nx x

    = + ds (4.1.3)

    92

  • 4 :

    3

    2 3n , n :

    2Ox , Ox

    n , ( ) . ( ),T 2 3n n=n (4.1.3) g v=

    2

    ukx=

    2 2

    2 32 22 2 3 3 2 32 3

    u u u v u v u uv d d v nx x x x x xx x

    + = + + + n ds

    (4.1.4)

    (4.1.3.) , g u=2

    vkx=

    2 2

    2 32 22 2 3 3 2 32 3

    v v u v u v v vu d d v nx x x x x xx x

    + = + + + n ds

    (4.1.4)

    (4.1.4), (4.1.4)

    ( )2 2 u vv u u v d v u dn n = s (4.1.5)

    ( ) ( ) ( )2 22 22 3

    2x x = + : Laplace ( )

    . ( ) ( ) ( )

    22 3

    nn x x

    = + 3n

    2

    :

    n . 2 Green Green.

    ( )2v Q P , R = (4.1.6)

    ( ) ( ), , , 22 P 3P 2Q 3QP P x x Q Q x x R : 2 3x x ( )Q P : Dirac 2 3x x

    Dirac

    ( ) ( ) (QQ P h Q d h P = ) (4.1.7)

    93

  • 4 :

    ( ) ( ), , ,2P 3P 2Q 3QP P x x Q Q x x ( ),2 3h x x :

    (Katsikadelis) (4.1.6)

    ( ), 1v Q P r2= ln (4.1.8)

    r P Q= : ,P Q (fundamental solution) . (4.1.6) Green (free space Greens function). , Dirac

    r( )P Q

    ( ) (,v Q P v P Q= ), (4.1.9)

    Green (. (4.1.5)) PMu = , ln1v r2= . (4.1.2), (4.1.7), (4.1.9)

    ( ) ( ) ( ) ( )( ) ( ) ( ) ( ),, , PP PMM Q Mq q

    v q Pv Q P f Q Q Q P d v q P q ds

    n n

    = q ( ) ( ) ( ) ( ) ( ) ( ) ( ),, , PMP PM Q M

    q q

    q v P qP v P Q f Q d v P q q ds

    n n

    = + q ( ) ( ) ( ) ( ) ( ) ( ) ( ),, , PMP PM Q M

    q q

    v P q qP v P Q f Q d q v P q d

    n n

    = + qs

    (4.1.10)

    ,P Q : . .

    Q

    q : . , .

    q

    ( ) ( ) ( )pl pl12 132Q 3Q

    d Q d Q1f Qd x x

    = + (. . (4.1.2))

    P p , (4.1.10), , : p

    94

  • 4 :

    ( ) ( ) ( ) ( ) ( ) ( ) ( ),, , PMP PM Q Mq q

    v p q q1 p v p Q f Q d q v p q d2 n

    = + qsn (4.1.11) ( ) (collocation point) . (4.1.10), (4.1.11) ,

    p P

    ( )PM P ( )PM p , ( )PM q , (4.1.2)

    ( )PMq

    qn

    .

    1I . (4.1.11). , (. 3.2.7) . , :

    ( ) ( ) ( ) ( ) ( ), , pl pl12 131 Q Q2Q 3Q

    d Q d Q1I v p Q f Q d v p Q dd x x

    = = + =

    ( ) ( ) ( ) ( ),pl pl12 13Q Q2Q 3Q

    d Q d Q1 1 v p Q d v p Q dd x d x

    ,

    = + (4.1.12)

    ( ) ( ),pl1211 Q2Q

    d QI v p Q d

    x

    = , ( ) ( ),pl

    1312 Q

    3Q

    d QI v p Q d

    x

    = . , 11I , 12I

    ( ) ( ) ( ) ( ), ,pl pl11 12 Q 12 2q q2Q

    v p QI d Q d v p q d q n ds

    x = + (4.1.13)

    ( ) ( ) ( ) ( ), ,pl pl12 13 Q 13 3q q3Q

    v p QI d Q d v p q d q n ds

    x = + (4.1.13)

    r ,p Q

    ( ) ( )22 p 2Q 3 p 3Qr p Q r x x x x= = + 2 (4.1.14)

    ( ) ( ), ,2Q 2 p

    v p Q v p Qx x

    = , ( ) ( ),

    3Q 3 p

    v p Q v p Qx x

    = ,

    (4.1.15-)

    (4.1.13)

    95

  • 4 :

    ( ) ( ) ( ) ( ), ,pl pl11 12 Q 12 2q q2 p

    v p QI d Q d v p q d q n ds

    x = + (4.1.16)

    ( ) ( ) ( ) ( ), ,pl pl12 13 Q 13 3q q3 p

    v p QI d Q d v p q d q n d

    x = + s (4.1.16)

    11I , 12I . (4.1.12)

    (4.1.2) ( )PMq

    qn

    ,

    ( ) ( ), pl12 2q qv p q d q n ds

    , ,

    . (4.1.11). (4.1.11)

    ( ) ( ), pl13 3q qv p q d q n ds

    ( ) ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( )

    , ,

    ,,

    P pl plM 12 13

    2 p 3 p

    PM 3q 2q 2q 3q

    q

    v p Q v p Q1 1p d Q d Q d2 d x x

    v p q q x n x n v p q ds

    n

    = + +

    Q

    q

    + (4.1.17)

    . (4.1.10)

    . , . (4.1.10) : P

    ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( )

    , ,( )

    ,,

    P pl plM 12 13

    2P 3P

    P

    Q

    M 3q 2q 2q 3q qq

    v P Q v P Q1P d Q d Q dd x x

    v P q q x n x n v p q ds

    n

    = + +

    + (4.1.18)

    (. (3.2.82-)), PM . , . (4.1.18) 2Px 3Px :

    ( ) ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( ), ,

    , ,

    P 2 2M pl pl

    12 13 Q22P 2P 3P2P

    PM 3q 2q 2q 3q q

    2P 2P

    P v P Q v P Q1 d Q d Q dx d x xx

    v P Q v P Q q x n x n ds

    x n x

    = + + +

    (4.1.19)

    96

  • 4 :

    ( ) ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( ), ,

    , ,

    P 2 2M pl pl

    12 13 Q23P 2P 3P 3P

    PM 3q 2q 2q 3q q

    3P 3P

    P v P Q v P Q1 d Q d Q dx d x x x

    v P Q v P Q q x n x n ds

    x n x

    = + + +

    (4.1.19)

    , .

    P Q q

    (4.1.17) (4.1.19), ( )PM q . , . (4.1.17) PM . , . , ( 4.1.1). . ,

    , .

    ( )pl12d Q( )pl13d Q

    ( )PM q ( )3q 2q 2q 3qx n x n , . . (constant), (constant boundary elements) . , .

    97

  • 4 :

    .

    4.1.1

    (. 3.2.7). N K , (4.1.17) :

    ( ) ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( )

    , ,

    ,,

    KP pl plM 12 13

    i 1 2 p 3 pi

    NPM 3q 2q 2q 3q

    m 1 qm

    v p Q v p Q1 1p d Q d Q d2 d x x

    v p q q x n x n v p q ds

    n

    =

    =

    = + + +

    Qi

    qm

    ( ) ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( )

    , ,

    ,,

    K KP pl plM 12 i Qi 13 i

    i 1 i 12 p 3 pi i

    N NP

    Qi

    M m qm 3q 2q 2q 3q mm 1 m 1qm m

    v p Q v p Q1 1p d Q d d Q d2 d x x

    v p q q ds x n x n v p q ds

    n

    = =

    = =

    = + +

    qm

    + (4.1.20)

    N jp ,

    . . (4.1.20) :

    , ,...,j 1 2 N=N N

    98

  • 4 :

    ( ) ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( )

    , ,

    ,,

    K Kj jP pl pl

    M j 12 i Qi 13 i Qii 1 i 12 p 3 pi i

    N NjP

    M m qm 3q 2q 2q 3q j qmmm 1 m 1qm m

    v p Q v p Q1 1p d Q d d Q d2 d x x

    v p q q ds x n x n v p q ds

    n

    = =

    = =

    = + +

    +

    ( ) ( ) ( ) ( ) ( ) (N NP PM j M m 3q 2q 2q 3qj mj mj mm 1 m 1

    1 p F H q G x n x n2

    = = = + ) (4.1.21)

    , ,...,j 1 2 N= : . iQ : . i

    mq : . m

    jp : j .