Debye Huckel Theory - Nc State · PDF fileOrigin of the Debye‐Huckel Theory Where does the...

11

Click here to load reader

Transcript of Debye Huckel Theory - Nc State · PDF fileOrigin of the Debye‐Huckel Theory Where does the...

Page 1: Debye Huckel Theory - Nc State · PDF fileOrigin of the Debye‐Huckel Theory Where does the factor of 1.173 come f?from ... and on the concept of a Debye length 1/κ. ...Authors:

Debye‐Huckel TheoryDebye Huckel Theory

Page 2: Debye Huckel Theory - Nc State · PDF fileOrigin of the Debye‐Huckel Theory Where does the factor of 1.173 come f?from ... and on the concept of a Debye length 1/κ. ...Authors:

Ionic atmosphereo c at osp e eSolutions of electrolytes are non‐ideal at relatively low concentrations. The activities of ions in solutionlow concentrations.  The activities of ions in solution is relatively large compared to neutral compounds.  Ions interact through a Coulombic potential that 

i 1/ ( i th di t b t i ) N t lvaries as 1/r (r is the distance between ions).  Neutral solutes interact through London dispersion forces that vary as 1/r6.  The greater the charge on the ions the larger the deviations from ideality.  For example, per mole of CaCl2 dissolved the deviation from ideal behavior is larger than for NaCl due to the 2+ chargebehavior is larger than for NaCl due to the 2+ charge of calcium ion.  These considerations lead to the concept of an ionic atmosphere.

Page 3: Debye Huckel Theory - Nc State · PDF fileOrigin of the Debye‐Huckel Theory Where does the factor of 1.173 come f?from ... and on the concept of a Debye length 1/κ. ...Authors:

Ionic solutionso c so ut o sWe consider a general salt Cν+Aν−, which 

dissociates into n cations and n anions perdissociates into n+ cations and n‐ anions per formula unit

Cν+Aν− (s) → ν+Cz+ (aq) + ν+Az‐ (aq)Where ν z + ν z = 0 by electroneutrality WeWhere ν+z+ + ν−z‐ = 0 by electroneutrality.  We write the chemical potential of the salt in terms of the chemical potentials of its constituent ions according toμ2 = ν+μ+ + ν−μ −

where the subscript 2 refers to the ionic solute.

Page 4: Debye Huckel Theory - Nc State · PDF fileOrigin of the Debye‐Huckel Theory Where does the factor of 1.173 come f?from ... and on the concept of a Debye length 1/κ. ...Authors:

Ionic solutionso c so ut o sAs for neutral solutes we have 

μ = μ o + RT ln aμ2 = μ2o + RT ln a2

but for ionic solutes we have thatμ = μ o + RT ln aμ+   μ+ + RT ln a+andμ = μ o + RT ln aμ‐ μ‐ ‐ .ν+ ln a+ + ν ‐ ln a‐= ln a2which implies that a2 = a+n+ a‐n‐2  +We can use this development of introduce the mean ionic activity.

n n+ n ha ± n= a+n+ a‐n‐where ν = ν+ + ν‐.

Page 5: Debye Huckel Theory - Nc State · PDF fileOrigin of the Debye‐Huckel Theory Where does the factor of 1.173 come f?from ... and on the concept of a Debye length 1/κ. ...Authors:

Ionic solutionso c so ut o sWe cannot define the activity coefficients 

of individual ions but we can determine theof individual ions, but we can determine the mean activity coefficients by the same means used to determine the activity coefficients of yother substances.  The mean activity coefficients are defined based on single‐ion ti it ffi i tactivity coefficients

a+ = m+γ+ and a‐ = m‐γ‐h d h l li i f hwhere m+ and m‐ are the molalities of the 

individual ions given bym ν m and m ν mm+ = ν+m and m‐ = ν −m.

Page 6: Debye Huckel Theory - Nc State · PDF fileOrigin of the Debye‐Huckel Theory Where does the factor of 1.173 come f?from ... and on the concept of a Debye length 1/κ. ...Authors:

Ionic solutionso c so ut o sIn analogy with the definition of the mean i i i i d fi i iionic activity a± we define a mean ionic molality, m±by

m±n = m+

n+ m‐n‐

and a mean ionic activity coefficient, g± byy , g± y

γ± n = γ +n+ γ ‐

n‐.Given these definitions we can writeGiven these definitions we can write 

a± n = m±nγ± n

Page 7: Debye Huckel Theory - Nc State · PDF fileOrigin of the Debye‐Huckel Theory Where does the factor of 1.173 come f?from ... and on the concept of a Debye length 1/κ. ...Authors:

Activity coefficientct ty coe c e tAt low concentrations of ionic solute the 

ti it ffi i tmean activity coefficient goes as

ln γ± = – 1.173|z+z |(I /co)1/2

Here co is 1 mol/L and where z+ and z‐ are the 

ln γ± 1.173|z+z–|(Ic/c )

charge of the positive and negative ions involved in a chemical reaction.  This is the 

t ti i th t d d t t Thiconcentration in the standard state.  This standard concentration cancels the units of ionic strengthionic strength.

Page 8: Debye Huckel Theory - Nc State · PDF fileOrigin of the Debye‐Huckel Theory Where does the factor of 1.173 come f?from ... and on the concept of a Debye length 1/κ. ...Authors:

Ionic strengtho c st e gt

The ionic strength is calculated using:

Ic = 12 z+

2c+ + z–2c–

where z+ and z‐ are the charge of the positive and negative ions, respectively and c+ and c‐

th i t ti It i i t t t

2

are their concentrations.  It is important to note that z+ and z‐ ions that make up the solution are not necessarily the same chargesolution are not necessarily the same charge as those involved in the chemical reaction.  In other words, excess ions in solution contribute to the ionic atmosphere.

Page 9: Debye Huckel Theory - Nc State · PDF fileOrigin of the Debye‐Huckel Theory Where does the factor of 1.173 come f?from ... and on the concept of a Debye length 1/κ. ...Authors:

Origin of the Debye‐Huckel Theoryg y y

Where does the factor of 1.173 come f ? I 1925 D b d H k lfrom?  In 1925 Debye and Huckel derived the following form for the 

i i ffi i i i i l iactivity coefficient in ionic solutions.

ln γ =κq j

2

This expression is based on Coulomb’s

ln γ± = – 8πε0εrkT

This expression is based on Coulomb s law and on the concept of a Debye length 1/κlength 1/κ.  

Page 10: Debye Huckel Theory - Nc State · PDF fileOrigin of the Debye‐Huckel Theory Where does the factor of 1.173 come f?from ... and on the concept of a Debye length 1/κ. ...Authors:

The concept of Debye lengthp y gThis expression is based on Coulomb’s law and on the concept of a Debye length 1/κand on the concept of a Debye length 1/κ.  The Debye length can be thought of the approximate radius of the ionic atmosphereapproximate radius of the ionic atmosphere of an ion.  For a 1‐1 electrolyte

304

When the concentration of the electrolyte is

1κ = 304 pm

c mol/LWhen the concentration of the electrolyte is 0.01 M the Debye length is approximately 3000 pm or 3 nm.3000 pm or 3 nm.

Page 11: Debye Huckel Theory - Nc State · PDF fileOrigin of the Debye‐Huckel Theory Where does the factor of 1.173 come f?from ... and on the concept of a Debye length 1/κ. ...Authors:

Limitations of the Debye‐Huckel i tiapproximation

The general formula for κ is:g

2e2N A1000(L/m– 3) I / l/Lκ = A ( )ε0ε rkT Ic/mol/L

Debye‐Hückel theory is valid only in the limit of low concentrations.  The theory breaks down when the concentration of the electrolyte is greater than about 100 mM.