Astrophysical / Solar system Plasmas : an introduction · • Debye screening : potential V in...

27
Astrophysical / Solar system Plasmas : an introduction Philippe Zarka LESIA, CNRS UMR 8109 – Observatoire de Paris, Meudon [email protected]

Transcript of Astrophysical / Solar system Plasmas : an introduction · • Debye screening : potential V in...

Page 1: Astrophysical / Solar system Plasmas : an introduction · • Debye screening : potential V in e-r/Ld beyond the Debye length L d (where eV ~ kT L d = (ε okT/Ne2)1/2 decreases with

Astrophysical / Solar system Plasmas :an introduction

Philippe Zarka

LESIA, CNRS UMR 8109 – Observatoire de Paris, [email protected]

Page 2: Astrophysical / Solar system Plasmas : an introduction · • Debye screening : potential V in e-r/Ld beyond the Debye length L d (where eV ~ kT L d = (ε okT/Ne2)1/2 decreases with

• Plasma = 4th state of matter

∇.B = 0∇.E = ρ/εo

∇×E = -∂B/∂t∇×B = μoJ (+ 1/c2 ∂E/∂t)

• Fields/particles/currents related via Maxwell equations

• Coulomb + Lorentz forces : F = qE + qvxB

• Long range interactions ( E in q/r2 )

•⨀

• electrons + ions ➔ E & B (via J)

Page 3: Astrophysical / Solar system Plasmas : an introduction · • Debye screening : potential V in e-r/Ld beyond the Debye length L d (where eV ~ kT L d = (ε okT/Ne2)1/2 decreases with

• Debye screening : potential V in e-r/Ld beyond the Debye length Ld

(where eV ~ kT ➔ Ld = (εokT/Ne2)1/2 decreases with N, increases with T)

• Quasi-neutrality at scales L > Ld ➔ no large scale E field at equilibrium

• Ni ~ Ne (within 10-6, fluctuations of order δV ~ kT/e still possible)

Page 4: Astrophysical / Solar system Plasmas : an introduction · • Debye screening : potential V in e-r/Ld beyond the Debye length L d (where eV ~ kT L d = (ε okT/Ne2)1/2 decreases with

- many particles in Debye sphere,

- Ld << Lsystem

- not too many collisions

(fcoll-e-i in NT-3/2, mean free path in T2/N)

• Collective effects appear due to long range interactions :

- Natural (relaxation) oscillation at fpe,i = (1/2π) (Ne2/εome,i)1/2

- Cyclotron motion at fce,i = eB/2πme,i

(with Larmor radius rL = me,iV⊥,/eB )

...

➔ waves

1

100

104

106

108

1010

1 105 1010 1015 1020 1025 1030 1035

densité électronique (m-3)

lobes de la magnétosphère

vent solaire

gaz interstellaire

ionosphère flamme

couronne solaire

fusion (magnétique) fusion (laser)

intérieur du Soleil

décharge

métal

Tem

péra

ture

(K)

l = 1000 km 1 m 1 m

• Plasma ➔ requires

Page 5: Astrophysical / Solar system Plasmas : an introduction · • Debye screening : potential V in e-r/Ld beyond the Debye length L d (where eV ~ kT L d = (ε okT/Ne2)1/2 decreases with

Solar corona Interplanetary medium Terrestrial ionosphere

T (K) 106 4×105 ~300

N (cm-3) 104 10 4×105

B (G) 10-2 10-5 10-1

Ld (m) 0.7 14 0.002

Nd 1.4×1010 1011 104

e- mean free path (m) 3×1011 5×1013 ~700

rLi (m) 1300 106 2

Lsystem (m) ~7×108 ~108-11 ~105-6

fpe (Hz) 9×105 3×104 6×106

fpi (Hz) 2×104 700 105

fce (Hz) 3×104 30 3×105

fci (Hz) 1400 10-2 14000

fcoll-e-i (Hz) 3×10-5 10-7 230

τdiff (s) 6×1018 (1011 years) 3×1016-22 (109-15 years) 6×105-7

Page 6: Astrophysical / Solar system Plasmas : an introduction · • Debye screening : potential V in e-r/Ld beyond the Debye length L d (where eV ~ kT L d = (ε okT/Ne2)1/2 decreases with

Universe = 99% plasma ! Tarantula nebula

X-ray Sun

Solar wind and magnetospheres

Page 7: Astrophysical / Solar system Plasmas : an introduction · • Debye screening : potential V in e-r/Ld beyond the Debye length L d (where eV ~ kT L d = (ε okT/Ne2)1/2 decreases with

Céline Boutry “Turbulence in the solar corona”

Solar corona : T=1-2×106 K (cf. Fe XXV+ lines...),

while photosphere at 6000K (chromosphere ~20000 K)

Energy flux ∝ NTvsound ∝ NT3/2

➔ (NT3/2)corona/(NT3/2)photosphere << 1

Enough energy present but heating mechanism ?

➔ Turbulence ?

chromosphere

corona

tran

sitio

n re

gion• Photosphere : 1 RS T = 6000 K N ≥ 1014 cm-3

B ~ 1 G (up to 103 in spots)

• Low Corona : 2 RS T ~ 106 K N = 105-6 cm-3

B ~ 1 G

• High Corona : 10 RS T ~ 106 K N = 103-4 cm-3

B ~ 10-2 G

Page 8: Astrophysical / Solar system Plasmas : an introduction · • Debye screening : potential V in e-r/Ld beyond the Debye length L d (where eV ~ kT L d = (ε okT/Ne2)1/2 decreases with

• Solar corona hot ➔ out of hydrostatic equilibrium

➔ permanent escape, accelerated to 400-800 km/s (how exactly ?)

= Solar Wind

B(t) obeys to ∇×E=-∂B/∂t ∇×B=μoJ J=σE (σ=10-2T3/2 ohm-1m-1)

➔ ∇2B = σ μo ∂B/∂t (B field diffusion through the medium)

➔ δB/δt ~ (σ μo)-1 δB/(δs)2

➔ τdiff ~ σ μo Lsystem2

B & plasma « frozen » together

Page 9: Astrophysical / Solar system Plasmas : an introduction · • Debye screening : potential V in e-r/Ld beyond the Debye length L d (where eV ~ kT L d = (ε okT/Ne2)1/2 decreases with

Solar corona Interplanetary medium Terrestrial ionosphere

T (K) 106 4×105 ~300

N (cm-3) 104 10 4×105

B (G) 10-2 10-5 10-1

Ld (m) 0.7 14 0.002

Nd 1.4×1010 1011 104

e- mean free path (m) 3×1011 5×1013 ~700

rLi (m) 1300 106 2

Lsystem (m) ~7×108 ~108-11 ~105-6

fpe (Hz) 9×105 3×104 6×106

fpi (Hz) 2×104 700 105

fce (Hz) 3×104 30 3×105

fci (Hz) 1400 10-2 14000

fcoll-e-i (Hz) 3×10-5 10-7 230

τdiff (s) 6×1018 (1011 years) 3×1016-22 (109-15 years) 6×105-7

Page 10: Astrophysical / Solar system Plasmas : an introduction · • Debye screening : potential V in e-r/Ld beyond the Debye length L d (where eV ~ kT L d = (ε okT/Ne2)1/2 decreases with

• Solar corona hot ➔ out of hydrostatic equilibrium

➔ permanent escape, accelerated to 400-800 km/s (how exactly ?)

= Solar Wind

Plasma β = NkT/(B2/2μo) ~ 1, but (NmV2/2) /(B2/2μo) ~ 10

➔ solar magnetic field convected with the solar wind

➔ Parker spiral

B(t) obeys to ∇×E=-∂B/∂t ∇×B=μoJ J=σE (σ=10-2T3/2 ohm-1m-1)

➔ ∇2B = σ μo ∂B/∂t (B field diffusion through the medium)

➔ δB/δt ~ (σ μo)-1 δB/(δs)2

➔ τdiff ~ σ μo Lsystem2

B & plasma « frozen » together

Page 11: Astrophysical / Solar system Plasmas : an introduction · • Debye screening : potential V in e-r/Ld beyond the Debye length L d (where eV ~ kT L d = (ε okT/Ne2)1/2 decreases with

Gaétan le Chat “Study of stellar wind energy flux: from the Sun to Betelgeuse”

Comparison of solar wind energy flux (kinetic + potential, due to mass loss), from

Wind and Ulysses spacecraft observations (in & out ecliptic)

M1-67 nebula: a massive stellar wind

➔ winds origins (main sequence, cool giants

+ specific power source for T-Tauri ?)

➔ comparison to stellar wind energy fluxes (several classes identified)

➔ dependence on heliocentric latitude and wind speed (found ~constant)

Page 12: Astrophysical / Solar system Plasmas : an introduction · • Debye screening : potential V in e-r/Ld beyond the Debye length L d (where eV ~ kT L d = (ε okT/Ne2)1/2 decreases with

• When solar wind meets a planetary obstacle formation of a magnetosphere bounded by a magnetopause + shock but collisionless !

thin transition ~ rLi ≤ 103 km ~ discontinuity = « bow shock »

near obstacle : P, ρ, T ↑ fast, i.e. ~adiabatically : P ∝ ργ  Vs α (P/ρ)1/2 α ρ(γ-1)/2 ↑ mass flux conservation V↓ the flow becomes subsonic

« upstream » unperturbed flow

➔ energy and momentum must be redistributed via waves ...

Page 13: Astrophysical / Solar system Plasmas : an introduction · • Debye screening : potential V in e-r/Ld beyond the Debye length L d (where eV ~ kT L d = (ε okT/Ne2)1/2 decreases with

Joël Stienlet “Simulation PIC 2D of a collisionless shock wave”

• Plasma physics simulation codes (by decreasing « complexity ») :

- N-body ➔ xi, vi, E, B

- Kinetic ➔ f(x,v), E, B ➔ with collisions : Boltzmann, Fokker-Planck equations

➔ without collision : Vlasov equation

- MHD assumes ETL (f(x,v) Maxwellian) ➔ fluid description of plasma using

moments (N,V,T...) of f(x,v)

• Choice of code depends on scales (t,x) of phenomena studied

• PIC = N-body for particles + fields computed on a grid at each time step

(Maxwell-Poisson/Vlasov)

Page 14: Astrophysical / Solar system Plasmas : an introduction · • Debye screening : potential V in e-r/Ld beyond the Debye length L d (where eV ~ kT L d = (ε okT/Ne2)1/2 decreases with

Kinetic

X

N-body

MHD

...

Page 15: Astrophysical / Solar system Plasmas : an introduction · • Debye screening : potential V in e-r/Ld beyond the Debye length L d (where eV ~ kT L d = (ε okT/Ne2)1/2 decreases with

Nicolas Aunai “Asymmetric magnetic reconnection”

Magnetopause not totally impermeable ➔ mass and energy entry in Magnetosphere via

magnetic field line « reconnection » [possibly also via polar cusps]

Then transport day ➔ night, followed by 2nd reconnection in magnetospheric tail

Page 16: Astrophysical / Solar system Plasmas : an introduction · • Debye screening : potential V in e-r/Ld beyond the Debye length L d (where eV ~ kT L d = (ε okT/Ne2)1/2 decreases with
Page 17: Astrophysical / Solar system Plasmas : an introduction · • Debye screening : potential V in e-r/Ld beyond the Debye length L d (where eV ~ kT L d = (ε okT/Ne2)1/2 decreases with
Page 18: Astrophysical / Solar system Plasmas : an introduction · • Debye screening : potential V in e-r/Ld beyond the Debye length L d (where eV ~ kT L d = (ε okT/Ne2)1/2 decreases with

1st reconnection (magnetopause) = start cycle

Page 19: Astrophysical / Solar system Plasmas : an introduction · • Debye screening : potential V in e-r/Ld beyond the Debye length L d (where eV ~ kT L d = (ε okT/Ne2)1/2 decreases with
Page 20: Astrophysical / Solar system Plasmas : an introduction · • Debye screening : potential V in e-r/Ld beyond the Debye length L d (where eV ~ kT L d = (ε okT/Ne2)1/2 decreases with
Page 21: Astrophysical / Solar system Plasmas : an introduction · • Debye screening : potential V in e-r/Ld beyond the Debye length L d (where eV ~ kT L d = (ε okT/Ne2)1/2 decreases with

transportabovepoles

Page 22: Astrophysical / Solar system Plasmas : an introduction · • Debye screening : potential V in e-r/Ld beyond the Debye length L d (where eV ~ kT L d = (ε okT/Ne2)1/2 decreases with
Page 23: Astrophysical / Solar system Plasmas : an introduction · • Debye screening : potential V in e-r/Ld beyond the Debye length L d (where eV ~ kT L d = (ε okT/Ne2)1/2 decreases with

2nd reconnection in current sheet

Page 24: Astrophysical / Solar system Plasmas : an introduction · • Debye screening : potential V in e-r/Ld beyond the Debye length L d (where eV ~ kT L d = (ε okT/Ne2)1/2 decreases with

tailward plasmoid ejection

Page 25: Astrophysical / Solar system Plasmas : an introduction · • Debye screening : potential V in e-r/Ld beyond the Debye length L d (where eV ~ kT L d = (ε okT/Ne2)1/2 decreases with

dipolarisation of magnetic field

Page 26: Astrophysical / Solar system Plasmas : an introduction · • Debye screening : potential V in e-r/Ld beyond the Debye length L d (where eV ~ kT L d = (ε okT/Ne2)1/2 decreases with

dayside return of magnetic flux

Page 27: Astrophysical / Solar system Plasmas : an introduction · • Debye screening : potential V in e-r/Ld beyond the Debye length L d (where eV ~ kT L d = (ε okT/Ne2)1/2 decreases with

Nicolas Aunai “Asymmetric magnetic reconnection”

Magnetopause not totally impermeable ➔ mass and energy entry in Magnetosphere via magnetic field line « reconnection » [possibly also via polar cusps]

Then transport day ➔ night, followed by 2nd reconnection in magnetospheric tail (= substorm)

In the magnetotail, study of reconnection in the frame of a "Harris" current sheet equilibrium = symmetrical conditions on both sides of current layer / reconnection site

Study of the Magnetopause situation is more complex : N,T,B differ by up to ~1 order of magnitude / current layer

➔ parametric study via a hybrid code ( ions = PIC, e- = fluid ensuring neutrality [Ohm’s law] )

➔ difficulties of PIC simulations : initial distribution function & boundary conditions