Dislocation Theory

26
Dislocation Theory Kutubuddin ANSARI [email protected] GNSS Surveying, GE 205 Lecture 11, May 13, 2015

Transcript of Dislocation Theory

Page 1: Dislocation Theory

Dislocation Theory

Kutubuddin [email protected]

GNSS Surveying, GE 205

Lecture 11, May 13, 2015

Page 2: Dislocation Theory
Page 3: Dislocation Theory

Length

Wid

th

DIP Angle

Slip

FaultRake Fault is a planar

fracture or discontinuity in a volume of rock, across which there has been significant displacement along the fractures as a result of rock mass movement.

DIP Angle (δ )Rake (ψ)

Depth

Page 4: Dislocation Theory

Top Depth

Length

Wid

thBottom Depth

Earth Surface

( ) Bottom Depth Top DepthSin Dip AngleWidth

Page 5: Dislocation Theory

Strike-Slip Fault

•  The movement of blocks along a fault is horizontal.

•Rake zero (0o )

Fault plane solution of strike-slip Earthquake

Slip

Page 6: Dislocation Theory

•If the block on the far side of the fault moves to the left, the fault is called Left-lateral (sinistral) Fault.

•If the block on the far side moves to the right, the fault is called Right-lateral (dextral) Fault.

Strike-Slip Fault

Page 7: Dislocation Theory

Dip-Slip Fault

•  The movement of blocks along a fault is vertical.

•Rake zero (90o )

Slip

Page 8: Dislocation Theory

Dip-Slip Fault

•If the hanging wall moves downward relative to the footwall, the fault is called Normal (extensional) Fault.

•If the hanging wall moves upward relative to the footwall, the fault is called Reverse Fault. Reverse faults indicate compressive shortening of the crust.

• Reverse fault having dip angle less than 450 is called Thrust Fault.

Page 9: Dislocation Theory

Dip-Slip Fault

Normal Fault

Thrust Fault

Reverse Fault

Page 10: Dislocation Theory

Oblique-Slip Fault

•A fault which has a component of dip-slip and a component of strike-slip is termed an oblique-slip fault.

• Rake will be (0 < ψ >90)

Slip

Page 11: Dislocation Theory

The Geometry of the fault having parameters (length, width, depth, dip angle) can be given by analytically by Green function (G):

2 2

1 1

AL AW

AL AW

G d d

(Okada, 1985 &1992)

Length

Wid

th

DIP

Slip

Length(AL) Wid

th(A

W)

Length

Wid

th

cos sinx ALy d AW

(δ)

Dislocation Theory

Page 12: Dislocation Theory

11

2

1 tan sin2 ( )

1 cos sin2 ( )

x

y

qG IR R qR

yq qG IR R R

are arbitrary constants1 2 3, , , , , ,R p y d I I I (Okada, 1985)

31 sin cos

2xqG IR

1

11 cos tan sin cos

2 ( )yyqG I

R R qR

Strike Slip case

Dip Slip case

Page 13: Dislocation Theory

(P. Cervelli et. al 2001)

S is Slip For Oblique Slip

S= s.cosα + s.sinα

d= sG(m)

Relationship between dislocation field (d) and the fault geometry G(m)

Page 14: Dislocation Theory

Consider the case we have observed data d1, d2, ……. dn and the Green function of each observation data are G1, G2, ……. Gn respectively, Then:

Page 15: Dislocation Theory

India fixed-velocity field

Page 16: Dislocation Theory

Modelled velocity

Page 17: Dislocation Theory

ResultsSingle dislocation model

Page 18: Dislocation Theory

' '1 11 11

' '2 21 21

1 2

' '1 1

( ) ( )( ) ( )

. . .

. . .

. . .( ) ( )n n n

d G m G md G m G m

s s

d G m G m

Two dislocation model

Page 19: Dislocation Theory

Three dislocation model

Page 20: Dislocation Theory

Modelled velocity

Page 21: Dislocation Theory

Case Length (Km) Width (Km)

Bottom Depth

Top Depth

Dip Angle

Reverse Slip

Strike Slip

1 73 (Fault 1) 115.18 25± 2 5±0.3 10± 1 15± 1 0

2 79 (Fault 1) 73 (Fault 2)

240.95115.18

24± 325± 3

3± 0.25± 0.3

5± 0.510± 0.3

19±111

30

3 73 (Fault 1)73 (Fault 2)73 (Fault 3)

149.16200.70286.71

16± 0.216± 0.521± 4

3± 0.22± 0.31± 0.2

5± 0.14± 0.14± 0.5

20± 181

610

Page 22: Dislocation Theory
Page 23: Dislocation Theory

Richter magnitude scale

The Richter magnitude scale (Richter scale) assigns a magnitude number to quantify the energy released by an earthquake.

Seismic moment = μ* slip*rupture area MO= μ*s*A

MO= μ*s*L*W

μ = shear modulus of the crust (approx 3x1010 N/m2)L= Length of finite rectangular faultW= Width of finite rectangular faults = slip

Page 24: Dislocation Theory

10 0log ( ) 6.071.5w

MM Nm

Moment Magnitude

Moment magnitude Mw comes from seismic moment Mo

Page 25: Dislocation Theory

μ = 3x1010 N/m2

L=200 kmW= 100 kms = 10 mmMO= μsLWMo=(3x1010 )x(10 x10-3 )x (200 x 103 )x(100 x 103 )Mo=(3x1010 )x(10-2 )x (2 x 105)x(1x105 )Mo=6x1018

Example

1810log (6 10 ) 6.07

1.5wM Nm

Page 26: Dislocation Theory

1810

10

log (6 10 ) 6.071.5

log(6) 18log (10) 6.071.5

0.778+18 6.071.5

6.448

w

w

w

w

M

M

M

M Nm