Ultrasonic Theory

74
Ultrasonics Fundamentals Applications

description

Ultrasonic Theory

Transcript of Ultrasonic Theory

Page 1: Ultrasonic Theory

Ultrasonics

Fundamentals

Applications

Page 2: Ultrasonic Theory

Simple Harmonic Wave

x

λ

t = t1t2

t3

cu

u0

-u0

0( , ) cos[ ( ) ]x

u x t u tc

= ω − + ϕ

u displacement 0u denotes the amplitude 2 fω = π is the angular frequency

f is the cyclic frequency ϕ is the phase angle at 0x t= =

c denotes the propagation (phase) velocity

( )0( , ) i k x tu x t U e± − ω=

0U is a complex amplitude 2 /k = π λ is the wave number

λ is the wavelength

0 cos( )xu u e k x t−α= − ω − ϕ

α is an attenuation coefficient

Page 3: Ultrasonic Theory

Standing Wave

0 0cos( ) cos( )u u k x t u k x t= + ω + − ω 02 cos( ) cos( )u k x t= ω

Successive instants of standing wave vibration in a specimen.

x

λ

t = t1t2

t3

unode

antinode

u0

-2u0

2

A node is a point, line, or surface of a vibrating body that is free from vibratory motion.

Page 4: Ultrasonic Theory

Arbitrary Pulse and Harmonic Wave Packet

u

x

c

u

x

c

f ( x - c t )

cos [ k ( x - c t ) ]

f ( x - c t ) f ( x - c [ t + dt ] )

Pulse of arbitrary shape

( )u f x c t= −

Oscillatory wave packet

( )cos[ ( )]u f x c t k x c t= − −

Page 5: Ultrasonic Theory

Fundamental Wave Modes Longitudinal Wave:

wavedirection

Shear Wave:

wavedirection

Surface Wave:

wavedirection

Page 6: Ultrasonic Theory

Acoustic Wave Interaction with Material Discontinuities

ρ , c1 1

ρ , c2 2

Incident Wave Reflection

Transmission

Liquid

Solid

Incident Wave Reflection

θi θr

ShearTransmission

LongitudinalTransmission

θs

θd

Incident Wave Reflection

θi θr

Edge Diffraction

Page 7: Ultrasonic Theory

Longitudinal Wave Propagation in Thin Rods

dxx

u

dx

σ ∂σσ + dx∂x

Equation of motion:

2

2( )

udx A A Adx

x t

∂ σ ∂σ + − σ = ρ∂ ∂

or 2

2u

x t

∂ σ ∂= ρ∂ ∂

where A is the cross-sectional area and ρ is the mass density. Constitutive equation:

Eσ = ε

where ε is the axial strain in the material and E denotes Young's modulus. Displacement-strain relationship:

u

x

∂ε =∂

Wave equation:

2 2

2 2u u

Ex t

∂ ∂= ρ∂ ∂

or 2 2

2 2 21

rod

u u

x tc

∂ ∂=∂ ∂

, where rodE

c =ρ

Page 8: Ultrasonic Theory

Solution of the Wave Equation

2 2

2 2 21u u

x c t

∂ ∂=∂ ∂

where c is the wave velocity:

stiffnessvelocity

density=

Propagating harmonic wave represents a solution of the wave equation:

0( , ) cos[ ( ) ]x

u x t u tc

= ω − + ϕ

Arbitrary wave pulse of the general form ( , ) ( )x

u x t f tc

= − also satisfies the wave

equation:

2

2( , ) ''( )

xu x t f t

ct

∂ = −∂

2

2 21

( , ) ''( )x

u x t f tcx c

∂ = −∂

Page 9: Ultrasonic Theory

Dilatational Modes

stiffnessvelocity

density=

Thin Rods:

, 0x x y zEσ = ε σ = σ = ⇒ rodE

c =ρ

wavedirection

Thin plates:

21

x xEσ = ε

− ν, 0y zε = σ = ⇒

2 21.05 (for 0.3)

(1 ) 1

rodplate rod

cEc c= = ≈ ν =

− ν ρ − ν

Infinite Medium:

(1 )

(1 )(1 2 )x xE − νσ = ε

+ ν − ν, 0y zε = ε = ⇒

(1 ) (1 )1.16

(1 ) (1 2 ) (1 ) (1 2 )d rod rodE

c c c− ν − ν= = ≈

+ ν − ν ρ + ν − ν

Page 10: Ultrasonic Theory

Transverse (Shear) Waves longitudinal transverse (dilatational, compressional) (shear)

x

σx

σy

σx-

σy-

y

ux

x

σyx

yx

σxyσxy-

uy

, yxy xy xy

u

x

∂σ = µ γ σ =

2 2

2 2 21y y

s

u u

x tc

∂ ∂=

∂ ∂

scµ=ρ

2 2

1 2d

s

c

c

− ν=− ν

Page 11: Ultrasonic Theory

Acoustic Impedance The relationship between stress σ, displacement u, and particle velocity v for a propagating wave is of interest. As an example, let us consider a dilatational wave propagating in an infinite elastic medium:

( )( , ) i k x txu x t Ae − ω=

( )( , ) x i k x tx

ux t i Ae

t− ω∂

= = − ω∂

v

( )x i kx tx xx xx

uC C Ai k e

x− ω∂= =σ

The ratio of the pressure (or negative stress) to the particle velocity is called the acoustic impedance. For a dilatational wave propagating in the positive direction,

2 ( )

( )

i kx tx d

d di k x tx

c Ai k eZ c

i Ae

− ω

− ωρσ= − = = ρωv

The product of density and wave velocity occurs repeatedly in acoustics and ultrasonics and is called the characteristic acoustic impedance (for a plane wave). It is the impedance that acoustically differentiates materials, in addition to the moduli and density.

Page 12: Ultrasonic Theory

Densities, Acoustic Velocities and Acoustic Impedances of Some Materials

Material Density, [103 kg/m3]

ρ

Acoustic velocities [103 m/s]

long. dc shear sc

Acoustic impedance

[106 kg/m2s]

dZ

Metals

Aluminum 2.7 6.32 3.08 17 Iron (steel) 7.85 5.90 3.23 46.5 Copper 8.9 4.7 2.26 42 Brass 8.55 3.83 2.05 33 Nickel 8.9 5.63 2.96 50 Tungsten 19.3 5.46 2.62 105 Nonmetals

Araldit Resin 1.25 2.6 1.1 3.3 Aluminum oxide 3.8 10 38 Glass, crown 2.5 5.66 3.42 14 Perspex (Plexiglas) 1.18 2.73 1.43 3.2 Polystyrene 1.05 2.67 2.8 Fused Quartz 2.2 5.93 3.75 13 Rubber, vulcanized 1.4 2.3 3.2 Teflon 2.2 1.35 3.0 Liquids

Glycerine 1.26 1.92 2.4 Water (at 20oC) 1.0 1.483 1.5

Page 13: Ultrasonic Theory

Reflection and Transmission at Normal Incidence

ρ , c1 1

ρ , c2 2

Incident Wave Reflection

Transmission

1cos( )i iu A k x t= − ω

1cos( )r ru A k x t= − − ω

2cos( )t tu A k x t= − ω

Boundary conditions: the displacements and stresses must be the continuous at the interface

i r tu u u+ = and i r tσ + σ = σ

1 21 2

1 21 2

rd

i

c cARc cA

− ρρ= =

+ρ ρ and 1 1

1 1 2 2

2td

i

A cT

A c c

ρ= =ρ + ρ

2 2 1 1

1 1 2 2

rs

i

c cR

c c

σ ρ − ρ= =σ ρ + ρ

and 2 2

1 1 2 2

2ts

i

cT

c c

σ ρ= =σ ρ + ρ

where R and T are known as the reflection and transmission coefficients. It is seen that these results are in terms of the respective acoustic impedances of the materials.

Page 14: Ultrasonic Theory

Example

reflected and transmitted (stress) amplitudes

pi

pr

pt

pt

pr

pi

steel water

water steel

Conservation of energy: the time rate of energy flow per unit area (i. e., intensity)

I p v v= = − σ

r t iI I I− + =

1 2 1 2 1 2

1 2 1 2 1 2 1 2

2 21d s d s

Z Z Z Z Z ZR R T T

Z Z Z Z Z Z Z Z

− −− + = + =+ + + +

Free surface ( 2 0Z → ):

1dR = , 1sR = − , 2dT = , 0sT =

Rigidly clamped surface ( 2Z → ∞ ):

1dR = − , 1sR = , 0dT = , 2sT =

Page 15: Ultrasonic Theory

Reflection and Transmission at Oblique Incidence

Mode Conversion

θdi

solid 1

Id Rd

Rs

Td

solid 2

Ts

z

y

θs1

θd1

θs2

θd2

solid 1

Rd

Rs

Td

solid 2

Ts

θsiIs

z

y

θs1

θd1

θs2

θd2

Boundary conditions: the displacements ( andy zu u ) and stresses ( andyy yzσ σ )

must be the continuous at the interface

Snell's Law:

1 1 2 2

1 1 1 1 2 2

sin sin sin sin sin sindi si d s d s

d s d s d sc c c c c c

θ θ θ θ θ θ= = = = =

Page 16: Ultrasonic Theory

General Solution

Constitutive equations:

( 2 ) yzyy

uu

z y

∂∂σ = λ + λ + µ∂ ∂

( )y zyz

u u

z y

∂ ∂σ = µ +∂ ∂

where 2 21 1 1 1 11 1, 2 ,s dc cµ = ρ λ + µ = ρ 2 2

2 2 2 2 22 2, and 2s dc cµ = ρ λ + µ = ρ .

Boundary conditions:

(2) (1) ( 1) ( 2) ( 1) ( 2)

(2) (1) ( 1) ( 2) ( 1) ( 2)

(2) (1) ( 1) ( 2) ( 1) ( 2)

(2) (1) ( 1) ( 2) ( 1)

0

0or

0

0

d d s sy y y y y y

d d s sz z z z z z

d d s syy yy yy yy yy yy

d d szy zy zy zy zy z

u u u u u u

u u u u u u

− − + − + − − + − + = τ − τ − τ + τ − τ + τ

τ − τ − τ + τ − τ + τ

( )

( )

( )

( 2) ( )

iy

iziyy

s iy zy

u

u

= τ τ

11 12 13 14 1 1

21 22 23 24 2 2

31 32 33 34 3 3

41 42 43 44 4 4

or

d

d

s

s

a a a a R b c

a a a a T b c

a a a a R b c

a a a a T b c

=

depending on whether longitudinal or shear wave incidence is considered. aij , bi, and ci can be easily calculated from simple geometrical considerations.

(1) (2) (3) (4)det[ ] det[ ] det[ ] det[ ], , ,

det[ ] det[ ] det[ ] det[ ]d d s sR T R T= = = =a a a aa a a a

where ( )ia is the matrix obtained by replacing the ith column of a by either b or c vectors depending on whether longitudinal or shear incidence is used.

Page 17: Ultrasonic Theory

Energy Reflection and Transmission Coefficients

aluminum immersed in water

Angle of Incidence [deg]

Ene

rgy

Ref

lect

ion

& T

rans

mis

sion

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

reflection

longitudinaltransmission

shear transmission

steel immersed in water

Angle of Incidence [deg]

Ene

rgy

Ref

lect

ion

& T

rans

mis

sion

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

reflection

longitudinaltransmission

shear transmission

Page 18: Ultrasonic Theory

Wave Dispersion Dispersion means that the propagation velocity is frequency-dependent. Since the phase relation between the spectral components of a broadband signal varies with distance, the pulse-shape gets distorted and generally widens as the propagation length increases.

input pulse

ω∂c

> 0∂

ω∂c

= 0∂

ω∂c

< 0∂

Page 19: Ultrasonic Theory

Group Velocity

dispersive wave propagation of a relatively narrow band “tone-bursts”

phase velocity versus group velocity

phasevelocity

groupvelocity

Page 20: Ultrasonic Theory

Beating Between Two Harmonic Signals

1 1cos( )u t= ω

2 2cos( )u t= ω

1 2 1 21 2 1 2cos( ) cos( ) 2cos( ) cos( )

2 2u u t t t t

ω + ω ω − ω+ = ω + ω =

( , ) cos( ) cos[( ) ( ) ]

2cos( )cos( )2 2

u x t kx t k k x t

kk x t x t

= − ω + + δ − ω + δωδ δω≈ − ω −

where the first high-frequency term is called carrier wave and the second low-frequency term is the modulation envelope. This shows that the propagation velocity of the carrier is the phase velocity and the propagation velocity of the modulation envelope is the group velocity

ck

ω= gc

c c kk k

∂ ω ∂= = +∂ ∂

Page 21: Ultrasonic Theory

Material versus Geometrical Dispersion

Frequency [MHz]

Vel

ocity

[km

/s]

2.6

2.7

2.8

0 2 4 6 8 10

polyethylene

phase

group

lowest-order symmetric Lamb mode in a 1-mm-thick aluminum plate

Frequency [MHz]

Vel

ocity

[km

/s]

0

2

4

6

0 2 4 6

phase

group

Page 22: Ultrasonic Theory

Ultrasonic Transducers for NDE

Typical Acoustic Transducer Typical Ultrasonic Transducer

Electro-

TransformerMechanical

Mechanical-

TransformerAcoustical

V

Electro-

TransformerAcoustic

p p , σ, τV

< λ λ∼∼

>> Z Zt 0 Z Zt 0∼∼

Page 23: Ultrasonic Theory

Bandwidth, Pulse Length, and Axial Resolution

Am

plitu

de [a

. u.]

0 1 2 3

Spe

ctru

m [d

B]

0

5

10

15

20

0 5 10 15 20

Am

plitu

de [a

. u.]

0 1 2 3

t t1 2

Spe

ctru

m [d

B]

0

5

10

15

20

0 5 10 15 20

ff1 2

6 dB

Am

plitu

de [a

. u.]

0 1 2 3

Spe

ctru

m [d

B]

0

5

10

15

20

0 5 10 15 20 Time [µs] Frequency [MHz] Half-Power Bandwidth (-6 dB in pulse-echo mode) B f f= −2 1

Center Frequency f f fc = +12 2 1( )

Half-Power Pulse Length (50% in pulse-echo mode) τ = − ≈t t B2 1 1 /

Axial Resolution δ τ= 12 c

Page 24: Ultrasonic Theory

Radiation Pattern

Circular Piston Radiator

broadband (single cycle) narrow-band (five cycles)

Nor

mal

ized

Rad

ius,

r/

a

-2

-1

0

1

0 1 2 3 4

2

-10dB contour

θ-10 dB

Normalized Distance, z/N

near-field far-field

Na=

2

λ

Page 25: Ultrasonic Theory

Directivity Pattern Far-Field Radiation:

p r pe

rD kr

i k r( , ) ( , )θ θ= 0

Circular Piston Radiator in Fluid (Frequency-Dependent)

0o15o

45o30o

60o

90o

75o

90o

75o

60o

45o

30o15o

0o15o

45o30o

60o

90o

75o

90o

75o

60o

45o

30o15o

a / = λ 1.5

a / = λ 0.6

Page 26: Ultrasonic Theory

Piezoelectricity

Quartz (silicon dioxide, SiO2)

+

-+

-

-

+

- -

+

+

- +-

- -

+

+

+

+ + + + + + +

- - - - - - -+ + + + + + +

- - - - - - -

SiSi

Si

O OO

E bV

Fσ = A

Coupled Constitutive Equations:

S

E

eD E

e K S

ε = −σ

Page 27: Ultrasonic Theory

Typical Transducer Design

connector

housing

backing

piezoelectricdisk

matching layer &wear plate

electrodes

electrical lead

electricalnetwork

Piezoelectric materials:

Material Hr k Z Zw/ Q

Quartz (SiO2) 4.5 0.1 10.5 106 Lead Zirconate Titanate, PZT (Pb(Zr,Ti)O3)* 2,000 0.7 20 500

Barium Titanate (BaTiO3)* 1,200 0.5 20 500 Polyvinylidene Flouride (PVF2)* 12 0.14 2.7 25

*ferroelectric

Page 28: Ultrasonic Theory

Main Types of Piezoelectric Transducers

• immersion • contact • angle-beam • array • air-borne Specifics: • coupling (boundary) • matching (impedance) • damping (backing) • steering (rotation) • focusing (geometric)

Page 29: Ultrasonic Theory

Immersion Transducers

transducer

immersion tank

specimen

water

compressionalwave

shear or longitudinalwave

• coupling • matching ? • damping • steering • focusing

Page 30: Ultrasonic Theory

Impulse and Transfer Functions

f B P Pc a≈ ≈ = ≈5 116 23 550MHz MHz, . ( %), / %η

Time [1 µs/div]

Am

plitu

de [a

. u.]

Frequency [MHz]

Inse

rtio

n Lo

ss [d

B]

-40

-30

-20

-10

0

0 2 4 6 8 10

f B P Pc a≈ ≈ = ≈9 2 9 98 120. , ( %), / %MHz MHz η

Time [1 µs/div]

Am

plitu

de [a

. u.]

Frequency [MHz]

Inse

rtio

n Lo

ss [d

B]

-40

-30

-20

-10

0

0 5 10 15 20

Page 31: Ultrasonic Theory

Contact Transducers

transducer

specimen

couplant

Ref

lect

ion

Coe

ffici

ent

Frequency x Thickness [MHz mm]

0

0.2

0.4

0.6

0.8

1

air gap

-1010 -810 -610 -410 -210 010

water-filledgap

steel

R d≈ π ξ λ/ 0, where ξ = −Z Z Z Z0 1 1 0/ / • coupling ? • matching • damping • steering ? • focusing Ø

Page 32: Ultrasonic Theory

Angle-Beam Transducers

transducer

specimen

couplant

θs

θiwedge

c

cs

i

s

i= sin

sin

θθ

Plexiglas/Aluminum, longitudinal-to-shear transmission

Angle of Refraction [deg]

En

ergy

Tra

nsm

issi

o

00.10.20.30.40.50.60.7

30 40 50 60 70 80 90

"slip" boundary

"rigid" boundary

• coupling ? • matching • damping • steering ? • focusing ?

Page 33: Ultrasonic Theory

Air-Borne Piezoelectric Transducers

EV E

EV E

V = 0

• coupling • matching ??? • damping ? • steering • focusing ?

Page 34: Ultrasonic Theory

Electromagnetics Lorentz Force

G G G GF Q(E v B)= + ×

B

v

QFB

Ampère's law ∇ × = +G G

G

H JD

t

∂∂

Faraday's law ∇ × = −G

G

EB

t

∂∂

Ohm's law

G GJ E= σ

Je

conducting medium

Hp

He

Ip

Page 35: Ultrasonic Theory

Electro - Mechanic Conversion Transmission (I F→ ):

JeF

Bo

I

Reception (v V→ ):

v

Bo

V

Jc

Page 36: Ultrasonic Theory

Sensitivity and Polarization Lorentz Force

G G GF Q v BB o= ×

High Conductivity n I J dA Qve≈ =z Surface Traction τ = n I Bo Tangential Polarization:

Bon I

τ

Normal Polarization:

Bo n I

τ

Page 37: Ultrasonic Theory

EMAT Configuration I

spiral coil for radially polarized shear waves propagating normal to the surface

Bo

S

N

Page 38: Ultrasonic Theory

EMAT Configuration II

rectangular coil for linearly polarized shear waves propagating normal to the surface

Bo

SN

Page 39: Ultrasonic Theory

EMAT Configuration III

symmetric coil for longitudinal waves propagating normal to the surface

BoN S

Page 40: Ultrasonic Theory

Laser-Ultrasonics

with Specimen

Pulsed Laser

Interferometer

Fatigue Machine

Computer

Advantages: no mechanical contact 9 no need for couplant 9 absolute measurement 9 small detection aperture 9 broad bandwidth ? rough surface ? awkward shape ? moving object ? Disadvantages: expensive 9 low acoustic sensitivity ? mechanical instability ? low optical sensitivity ? surface damage ?

Page 41: Ultrasonic Theory

Heterodyne Laser Interferometer

∆ω =

Reference Mirror

Bragg Cell

Object

Detector

ΩB

Beam Splitter

Laser

ω

)

φ πλ

φo om= + 4oa tsin( )Ω

φ

P E E E E td o r o r B r= + + + −( ) cos(12

12

1 12 Ω oφ φ

E eoi tEo

φo= +1

( )

E eEr ri Ω tB r= − +

1( )ωt

λ optical wavelength ao vibration amplitude Ω acoustic angular frequency

Page 42: Ultrasonic Theory

Fabry-Perot Interferometer

Detector

ν0

Laser

Resonator

Object

νr

(t)v

Doppler shift:

ν ν θr tt

c( ) [ ]= +0 1 2cos

v( ), where ν λ0

86 10 500≈ × =MHz nm( )

a c≈ ≈ ≈ −1 0 3 10 9nm, at 5 MHz m / s,v v. /

Optical Frequency [100 MHz/div]

Tra

nsm

issi

o

= 98%= 0.5 m

RL

Optical Frequency [1 MHz/div]

Tra

nsm

issi

o

tuning

ν0

Page 43: Ultrasonic Theory

Laser Generation

Wavelength [µm]

Abs

orpt

ion

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10

aluminum

titanium

Low-Intensity Thermoelastic region: High-Intensity Ablation Region:

thermalexpansion plasma

laser beam

< 106 2W / cm

laser beam

> 106 2W / cm

recoil force

mostly tangential stress mostly normal stress

Page 44: Ultrasonic Theory

Linear Array Transducers

multiplexer

piezoelectric array

(amplitude & phase modulator) • axial scanning • no steering • apodization • geometrical lateral focusing • dynamic or static electronic axial focusing

Page 45: Ultrasonic Theory

Phased Array Transducers

amplitude & phase modulator

piezoelectric array

• sector scanning • electronic steering in two dimensions • apodization • dynamic or static electronic focusing

Page 46: Ultrasonic Theory

Ultrasonic NDE

Ultrasonics (high-frequency wave propagation in

idealized elastic media)

Wave-Material Interaction (special physical phenomena due to

interaction with imperfections)

Ultrasonic NDE

defect-free reflection, diffraction attenuation, velocity change

scattering, nonlinearity

defects cracks, voids

misbonds, delaminations isotropic anisotropy (orientation)

birefringence (polarization) quasi-modes (three waves) phase and group directions

residual stress effect

anisotropy texture

columnar grains prior-austenite grains

composites homogeneous incoherent scattering noise

attenuation dispersion (weak)

inhomogeneneity polycrystalline

two-phase porous

composite linear harmonic generation

acousto-elasticity crack-closure

nonlinearity intrinsic (plastics) damage (fatigue)

attenuation-free absorption viscosity, relaxation

heat conduction, scattering

elastic inhomogeneity geometrical irregularity

attenuation air, water, viscous couplants

polymers coarse grains

porosity

dispersion-free relaxation resonance

wave and group velocity pulse distortion

dispersion intrinsic (polymers)

geometrical (wave guides)

temperature-independent velocity change thermal expansion

temperature-dependence nonlinearity

residual stress (composites) phase transformation (metals) moisture content (polymers)

ideal boundaries flat, smooth,

rigidly bonded interface

mode conversion refraction, diffraction

scattering

imperfect boundaries curved, rough

slip, kissing, partial, interphase

canonical wave types plane wave

spherical waves harmonic

beam spread diffraction loss

edge waves spectral distortion

complex wave types apodization (amplitude)

focusing (phase) impulse, tone-burst

Page 47: Ultrasonic Theory

Inspection Principles and Techniques • Longitudinal, Shear, Rayleigh, Lamb, etc., Wave Inspection • Positive (backscattering) versus Negative (attenuation) Inspection • Pulse-Echo versus Pitch-Catch Inspection (through-transmission) • Contact versus Immersion Inspection • Normal Beam versus Angle Beam Inspection

transducer

specimen

couplant

transducer

specimen

couplant

θs

θiwedge

transducer

immersion tank

specimen

water

transducer

immersion tank

specimen

water

Page 48: Ultrasonic Theory

Pitch-Catch Inspection

transmitter receiver

specimen

receivertransmitter

specimen

receivertransmitter

immersion tank

specimen

water

Page 49: Ultrasonic Theory

Ultrasonic Flaw Detection

(Longitudinal, Positive, Pulse-Echo, Contact, Normal Beam)

Transmitter & Receiver

Ultrasonic Transducer

TestpieceReflected

Wave WaveIncident

EchoExcitation

FlawSignal

Advantages: high sensitivity high directivity depth ranging reproducible

Disadvantages: sensitive to geometry scanning requirement coupling is difficult

closed cracks can remain hidden

Page 50: Ultrasonic Theory

Basic Signal Processing

Time

Am

plitu

derf signal

Time

Am

plitu

de

rectified signal

Time

Am

plitu

de

weak smoothening

Time

Am

plitu

de

strong smoothening

Page 51: Ultrasonic Theory

Pulse-Echo Inspection

specimen

L

transmitter/receiver

d

t L cbw = 2 / t d cf = 2 /

Time [10 µs/div]

Am

plitu

de [1

0 dB

/div

]

backwall signals

"main bang"

tbw

tf

flaw signals

Page 52: Ultrasonic Theory

Pitch-Catch Inspection

specimen

L

transmitter

d

receiver

t L cbw = 2 /

Time [10 µs/div]

Am

plitu

de [1

0 dB

/div

]

backwall signals

"main bang"

tbw

Page 53: Ultrasonic Theory

Signal-to-Noise Ratio

signalnoise

coherent(material)

noise

incoherent(electrical)

Physical System

Time [2 µs/div]

Ultr

ason

ic S

igna

l [a.

u.]

FatigueCrack

noisy signal

averaging

averaging

synchronous

Page 54: Ultrasonic Theory

Grain Noise

texture-free (cast or annealed) material:

equi-axed grains, no preferred orientation

textured (forged, rolled, pressed, or drawn) material:

elongated grains, preferred orientation

cubic materials do not exhibit crystallographic texture

Page 55: Ultrasonic Theory

Grain Scattering Induced Attenuation in Polycrystalline Steel

(100 µm grain diameter)

logFrequency [MHz]

log

Atte

nuat

ion

Coe

ffici

ent [

dB/c

m]

-5

-4

-3

-2

-1

0

1

2

3

-1 0 1 2 3

Rayleigh region stochastic region geometrical region

shear

longitudinal

Page 56: Ultrasonic Theory

Measured Grain Scattering Induced Attenuation in SAE 1020 Steel

(longitudinal wave)

Frequency [MHz]

Atte

nuat

ion

Coe

ffici

ent [

dB/c

m]

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20

57 µm

48 µm

38 µm

31 µm

18 µm

10 µm

Page 57: Ultrasonic Theory

Surface Wave Flaw Detection

intermittent surface-breaking fatigue crack

length ≈0.035", depth ≈0.010"

Ti-6Al-4V specimen, 10 MHz

Time [1 µs/div]

Am

plitu

de [1

00 m

V/d

iv] smooth

rough

Page 58: Ultrasonic Theory

Ultrasonic Flaw Detection Below a Rough Surface

Rough Surface

Transducer

Flaw

Frequency [MHz]

Atte

nuat

ion

[dB

]

0

5

10

15

20

25

30

35

40

0 5 10 15 20

45.6 µm

25.6 µm

15 .2 µm

12.8 µm

11.4 µm

9.9 µm

8.7 µm

5.6 µm

Page 59: Ultrasonic Theory

Flaw Signals versus Artifacts

specimen

transducertransducerflaws

acoustic wave

Ultrasonic Probe

Cracked Rivet Hole

wave

Inspect at different orientations!

Page 60: Ultrasonic Theory

Nonlinearity

I material (stress-strain relationship)

Strain [a. u.]

Str

ess

[a. u

.]

Linear Limit

Elastic Limit

Ultimate Failure

II geometrical (strain-displacement relationship)

k k

F

Fε Fε

ε =+ −

≈a u a

a

u

a

2 2 2

22, F kε ε= , F

u Fa

ku

a= =2 3

3

Page 61: Ultrasonic Theory

Elastic Nonlinearity

Normalized Lattice Distance

Pot

entia

l Ene

rgy

[a. u

.]

0 1 2

typical

parabolic

potential well

Normalized Lattice Distance (Strain)

Ela

stic

Stif

fnes

s [a

. u.]

0.9 0.95 1 1.05 1.1

typical

parabolic potential function

unstrained

Page 62: Ultrasonic Theory

Acousto-Elasticity

c c( ) ( ...)σ η σ η σ= + + +0 1 22 ,

tension

d,pc

s,pc

d,nc

s,npc

s,nnc

σ

Five independent combinations of wave and polarization directions:

Page 63: Ultrasonic Theory

Wave Velocities in the Principal Directions

ρ λ µ σλ µ

λ λ µµ

λ µc md p, [ ( )]2 23 2

2 4 4 10= + ++

+ + + + +A

ρ λ µ σλ µ

λµ

λ µc md n, [ ( )]2 23 2

22

2= + ++

− + +A

ρ µ σλ µ

λµ

λ µc mn

s p, ( )2

3 2 44 4= +

++ + +

ρ µ σλ µ

λµ

λ µc mn

s np, ( )2

3 2 42= +

++ + +

ρ µ σλ µ

λ µµ

λc m ns nn, ( )2

3 2 22= +

+− + −

A, ,m nand Murnaghan coefficients

ρ density of the

σ tensile stress

material λ µ A m n

[109 Pa] [109 Pa] [109 Pa] [109 Pa] [109 Pa]

Aluminum 7064 59.3 27.4 -324 -397 -403

Armco iron 110 82 -348 -1030 1100

Polystyrene 2.9 1.4 -18.9 -13.3 -10

Pyrex 13.5 27.5 14 92 420

Page 64: Ultrasonic Theory

Longitudinal Velocity as a Function of Uniaxial Stress in 7064 Aluminum

Uniaxial Stress [MPa]

Long

itudi

nal V

eloc

ity [m

/s]

6360

6380

6400

6420

6440

6460

6480

-100 -50 0 50 100

parallel ( )

normal ( )

cd,p

cd,n

Excess Nonlinearity Due to Material Imperfections

η η η η η η ηtotal exc crack dislocG≈ + = + + +int int int

Crack Closure

Page 65: Ultrasonic Theory

Acoustoelastic Effect

x3

x1

x2

θ

n

β σ σ σ σ θ= − = + + + − −⊥ ⊥V V

VK K K K0

01 2 1 2

12

12

2( )( ) ( )( )cos|| ||

β σ σ( )0 1 2D = + ⊥K K||

β σ σ( )90 1 2D = +⊥K K||

β σY YK K= − + ⊥( )||

material Al 7064 Al 6061 Ni λ [109 Pa] 59.3 50.5 146 µ [109 Pa] 27.4 26 75

A [109 Pa] -324 -47.2 -673

m [109 Pa] -397 343 -757 n [109 Pa] -403 249 -168

σY [106 Pa] 368 256 460 K|| [10-12 Pa-1] -20.9 -22.0 +0.51

K⊥ [10-12 Pa-1] +9.7 +9.5 -9.1 ßY [%] +0.42 +0.32 +0.39

Page 66: Ultrasonic Theory

Ultrasonics vs Eddy Currents

7075 Aluminum, 5 MHz

Nor

mal

ized

Sur

face

Vel

ocity

2952

2956

2960

2964

0-5-10-15-20-25

0-40-80-120-160

External Stress [ksi]

External Stress [MPa]

1.000

1.001

1.002

1.003

Sur

face

Vel

ocity

[m/s

]

Al 7075, 200 kHz

Applied Stress [MPa]

Ele

ctric

al C

ondu

ctiv

ity [S

]

21.4

21.6

21.8

22

22.2

22.4

-600 -400 -200 0 200 400 600

Page 67: Ultrasonic Theory

Anisotropy

Cubic crystal structure

[100]

[010]

[001]

[110]

[111]

τxx

εxy= 0

τxx

εxy= 0/

Page 68: Ultrasonic Theory

Degree of Anisotropy

Anisotropy Factor

AC

C C=

−2 44

11 12 (unity for isotropic materials)

Ani

sotr

opy

Fac

tor

0

1

2

3

Sod

ium

Flu

orid

e

Yttr

ium

Iron

Gar

net

Fus

ed S

ilica

(Iso

trop

ic)

Tun

gste

n

Alu

min

um

Dia

mon

d

Sili

con

Iron

Nic

kel

Gol

d

Silv

er

longitudinal wave velocities in pure Nickel

[100] 5299 m/s

[110] 6027 m/s

[111] 6251 m/s

isotropic 6032 m/s

Page 69: Ultrasonic Theory

Velocity Distributions in the (001) plane

(1 km/s per divisions)

[100]

[001]

longitudinal

shear

Aluminum

[100]

[001]longitudinal

shear

Nickel

Page 70: Ultrasonic Theory

Longitudinal versus Shear

orientation versus polarization (birefringence)

°

Transducer

Specimen

dA

dB

Longitudinal Transducer

Specimen

d

pBShear

pA

"Fast" Mode "Slow" Mode

22.5°

90°

45°

67.5°

"Fast" Mode "Slow" Mode

90°

Page 71: Ultrasonic Theory

Crystallographic vs Morphological Anisotropy

texture-free (cast or annealed) material:

equi-axed grains, no preferred orientation

textured (forged, rolled, pressed, or drawn) material:

elongated grains, preferred orientation

degree of texture: 1-10%

Page 72: Ultrasonic Theory

Earing During Deep-Drawing

Cold Pressing

Cold Drawing

soft axis stiff axis

"earing"

Hot (Cold) Pre-Processing

Page 73: Ultrasonic Theory

Texture Assessment by EMATs

Surface Wave Velocity Measurement

Textured Specimen

Transmitter Receiver

RayleighWave

Page 74: Ultrasonic Theory

Surface Wave Velocity Distribution

cold-pressed 2024 aluminum, 1.4 MHz, EMAT

2,850 m/s average velocity, 0.2% per division

0% (annealed) 0.45 %

0.8 % 1.6 %