Constant Curvature 1 Surfaces and Orbifoldsmathsci2.appstate.edu/~sjg/class/4140/GaussBonnet.pdf ·...

19
Constant Curvature 1 Surfaces and Orbifolds Gauss Curvature K = κ 1 κ 2 = ln-m 2 EG-F 2 http://homepage.math.uiowa.edu/ ˜ wseaman/ DGImage53100.htm#Theorema%20Egregium1 Walter Seaman

Transcript of Constant Curvature 1 Surfaces and Orbifoldsmathsci2.appstate.edu/~sjg/class/4140/GaussBonnet.pdf ·...

Page 1: Constant Curvature 1 Surfaces and Orbifoldsmathsci2.appstate.edu/~sjg/class/4140/GaussBonnet.pdf · Gauss-Bonnet (compact smooth orientable, no boundary) Z Z KdA = 2ˇ˜ K = 1 2 =

Constant Curvature 1 Surfaces and Orbifolds

Gauss Curvature K = κ1κ2 = ln−m2

EG−F 2

http://homepage.math.uiowa.edu/˜wseaman/DGImage53100.htm#Theorema%20Egregium1Walter Seaman

Page 2: Constant Curvature 1 Surfaces and Orbifoldsmathsci2.appstate.edu/~sjg/class/4140/GaussBonnet.pdf · Gauss-Bonnet (compact smooth orientable, no boundary) Z Z KdA = 2ˇ˜ K = 1 2 =

Gauss-Bonnet (compact smooth orientable, no boundary)∫ ∫KdA = 2πχ

K = κ1κ2 = ln−m2

EG−F 2

dA=areaχ=Euler characteristic = Vertices - Edges + Faces∫ ∫

KdA 2πχgeom (K depends on shape) topological (shape invariant)

curvature combinatorics (counting)

2.bp.blogspot.com/-osMu4jpH7xo/VOHC9QgStWI/AAAAAAAAAkA/LhriHHymEA8/s1600/tetra.gif

Page 3: Constant Curvature 1 Surfaces and Orbifoldsmathsci2.appstate.edu/~sjg/class/4140/GaussBonnet.pdf · Gauss-Bonnet (compact smooth orientable, no boundary) Z Z KdA = 2ˇ˜ K = 1 2 =

Triangulate with F geodesic triangular faces ∆1, ...∆FCount V vertices and E edges.

http://cdn.sansimera.gr/media/photos/main/Pierre_Ossian_Bonnet.jpg, Impossiball,

Portrait by S. Bendixen 1828

Triangle has

3 edges. Each edge lies between two faces soEF = 3F = E2, i.e. E = 3

2F .Thus Euler char=χ = V − E + F = V − 3

2F + F = V − F2

Let αi , βi , γi be the angles of ∆itotal Gaussian K =

∫ ∫KdA = total angle defect of

∑∆i

=∑

i(αi + βi + γi − π) =∑

i(αi + βi + γi)− FπAt each vertex V , the sum of the angles is 2π, so all theangles sum to 2πV :∫ ∫

KdA = 2πV − Fπ = 2π(V − F2 ) = 2πχ

Page 4: Constant Curvature 1 Surfaces and Orbifoldsmathsci2.appstate.edu/~sjg/class/4140/GaussBonnet.pdf · Gauss-Bonnet (compact smooth orientable, no boundary) Z Z KdA = 2ˇ˜ K = 1 2 =

Triangulate with F geodesic triangular faces ∆1, ...∆FCount V vertices and E edges.

http://cdn.sansimera.gr/media/photos/main/Pierre_Ossian_Bonnet.jpg, Impossiball,

Portrait by S. Bendixen 1828

Triangle has 3 edges. Each edge lies between

two faces soEF = 3F = E2, i.e. E = 3

2F .Thus Euler char=χ = V − E + F = V − 3

2F + F = V − F2

Let αi , βi , γi be the angles of ∆itotal Gaussian K =

∫ ∫KdA = total angle defect of

∑∆i

=∑

i(αi + βi + γi − π) =∑

i(αi + βi + γi)− FπAt each vertex V , the sum of the angles is 2π, so all theangles sum to 2πV :∫ ∫

KdA = 2πV − Fπ = 2π(V − F2 ) = 2πχ

Page 5: Constant Curvature 1 Surfaces and Orbifoldsmathsci2.appstate.edu/~sjg/class/4140/GaussBonnet.pdf · Gauss-Bonnet (compact smooth orientable, no boundary) Z Z KdA = 2ˇ˜ K = 1 2 =

Triangulate with F geodesic triangular faces ∆1, ...∆FCount V vertices and E edges.

http://cdn.sansimera.gr/media/photos/main/Pierre_Ossian_Bonnet.jpg, Impossiball,

Portrait by S. Bendixen 1828

Triangle has 3 edges. Each edge lies between two faces soEF =

3F = E2, i.e. E = 32F .

Thus Euler char=χ = V − E + F = V − 32F + F = V − F

2Let αi , βi , γi be the angles of ∆itotal Gaussian K =

∫ ∫KdA = total angle defect of

∑∆i

=∑

i(αi + βi + γi − π) =∑

i(αi + βi + γi)− FπAt each vertex V , the sum of the angles is 2π, so all theangles sum to 2πV :∫ ∫

KdA = 2πV − Fπ = 2π(V − F2 ) = 2πχ

Page 6: Constant Curvature 1 Surfaces and Orbifoldsmathsci2.appstate.edu/~sjg/class/4140/GaussBonnet.pdf · Gauss-Bonnet (compact smooth orientable, no boundary) Z Z KdA = 2ˇ˜ K = 1 2 =

Triangulate with F geodesic triangular faces ∆1, ...∆FCount V vertices and E edges.

http://cdn.sansimera.gr/media/photos/main/Pierre_Ossian_Bonnet.jpg, Impossiball,

Portrait by S. Bendixen 1828

Triangle has 3 edges. Each edge lies between two faces soEF = 3F = E2, i.e. E = 3

2F .

Thus Euler char=χ = V − E + F = V − 32F + F = V − F

2Let αi , βi , γi be the angles of ∆itotal Gaussian K =

∫ ∫KdA = total angle defect of

∑∆i

=∑

i(αi + βi + γi − π) =∑

i(αi + βi + γi)− FπAt each vertex V , the sum of the angles is 2π, so all theangles sum to 2πV :∫ ∫

KdA = 2πV − Fπ = 2π(V − F2 ) = 2πχ

Page 7: Constant Curvature 1 Surfaces and Orbifoldsmathsci2.appstate.edu/~sjg/class/4140/GaussBonnet.pdf · Gauss-Bonnet (compact smooth orientable, no boundary) Z Z KdA = 2ˇ˜ K = 1 2 =

Triangulate with F geodesic triangular faces ∆1, ...∆FCount V vertices and E edges.

http://cdn.sansimera.gr/media/photos/main/Pierre_Ossian_Bonnet.jpg, Impossiball,

Portrait by S. Bendixen 1828

Triangle has 3 edges. Each edge lies between two faces soEF = 3F = E2, i.e. E = 3

2F .Thus Euler char=χ = V − E + F = V − 3

2F + F = V − F2

Let αi , βi , γi be the angles of ∆itotal Gaussian K =

∫ ∫KdA = total angle defect of

∑∆i

=∑

i(αi + βi + γi − π) =∑

i(αi + βi + γi)− FπAt each vertex V , the sum of the angles is 2π, so all theangles sum to 2πV :∫ ∫

KdA = 2πV − Fπ = 2π(V − F2 ) = 2πχ

Page 8: Constant Curvature 1 Surfaces and Orbifoldsmathsci2.appstate.edu/~sjg/class/4140/GaussBonnet.pdf · Gauss-Bonnet (compact smooth orientable, no boundary) Z Z KdA = 2ˇ˜ K = 1 2 =

Triangulate with F geodesic triangular faces ∆1, ...∆FCount V vertices and E edges.

http://cdn.sansimera.gr/media/photos/main/Pierre_Ossian_Bonnet.jpg, Impossiball,

Portrait by S. Bendixen 1828

Triangle has 3 edges. Each edge lies between two faces soEF = 3F = E2, i.e. E = 3

2F .Thus Euler char=χ = V − E + F = V − 3

2F + F = V − F2

Let αi , βi , γi be the angles of ∆itotal Gaussian K =

∫ ∫KdA = total angle defect of

∑∆i

=∑

i(αi + βi + γi − π) =

∑i(αi + βi + γi)− Fπ

At each vertex V , the sum of the angles is 2π, so all theangles sum to 2πV :∫ ∫

KdA = 2πV − Fπ = 2π(V − F2 ) = 2πχ

Page 9: Constant Curvature 1 Surfaces and Orbifoldsmathsci2.appstate.edu/~sjg/class/4140/GaussBonnet.pdf · Gauss-Bonnet (compact smooth orientable, no boundary) Z Z KdA = 2ˇ˜ K = 1 2 =

Triangulate with F geodesic triangular faces ∆1, ...∆FCount V vertices and E edges.

http://cdn.sansimera.gr/media/photos/main/Pierre_Ossian_Bonnet.jpg, Impossiball,

Portrait by S. Bendixen 1828

Triangle has 3 edges. Each edge lies between two faces soEF = 3F = E2, i.e. E = 3

2F .Thus Euler char=χ = V − E + F = V − 3

2F + F = V − F2

Let αi , βi , γi be the angles of ∆itotal Gaussian K =

∫ ∫KdA = total angle defect of

∑∆i

=∑

i(αi + βi + γi − π) =∑

i(αi + βi + γi)− FπAt each vertex V , the sum of the angles is 2π, so all theangles sum to 2πV :∫ ∫

KdA = 2πV − Fπ = 2π(V − F2 ) = 2πχ

Page 10: Constant Curvature 1 Surfaces and Orbifoldsmathsci2.appstate.edu/~sjg/class/4140/GaussBonnet.pdf · Gauss-Bonnet (compact smooth orientable, no boundary) Z Z KdA = 2ˇ˜ K = 1 2 =

Applications of Gauss-Bonnet

CC-BY-SA-3.0-migrated DemonDeLuxe, http://www.tankonyvtar.hu/hu/tartalom/tamop425/0038_

matematika_Miklos_Hoffmann-Topology_and_differential_geometry/ch12s02.html, http://3.

bp.blogspot.com/-qo7BlN8djUA/UBHOv_WdrbI/AAAAAAAACZM/wisLpF2Eb_A/s1600/Picture10.jpg∫ ∫geod∆

KdA = (α + β + γ − π)

∫∂Sκgds +

∫ ∫S

KdA = 2πχ

S topologically a cylinder, but with K < 0. Then S has atmost one simple closed geodesic.S that is not topologically a sphere is smooth, orientable,compact and no boundary then ∃ points whereK > 0,K < 0 and K = 0.point p furthest from the origin K > 0∫ ∫

KdA = 2πχ = 2π(2− 2g) < 0, where g genus, # holes

Page 11: Constant Curvature 1 Surfaces and Orbifoldsmathsci2.appstate.edu/~sjg/class/4140/GaussBonnet.pdf · Gauss-Bonnet (compact smooth orientable, no boundary) Z Z KdA = 2ˇ˜ K = 1 2 =

Applications of Gauss-Bonnet

CC-BY-SA-3.0-migrated DemonDeLuxe, http://www.tankonyvtar.hu/hu/tartalom/tamop425/0038_

matematika_Miklos_Hoffmann-Topology_and_differential_geometry/ch12s02.html, http://3.

bp.blogspot.com/-qo7BlN8djUA/UBHOv_WdrbI/AAAAAAAACZM/wisLpF2Eb_A/s1600/Picture10.jpg∫ ∫geod∆

KdA = (α + β + γ − π)∫∂Sκgds +

∫ ∫S

KdA = 2πχ

S topologically a cylinder, but with K < 0. Then S has atmost one simple closed geodesic.S that is not topologically a sphere is smooth, orientable,compact and no boundary then ∃ points whereK > 0,K < 0 and K = 0.point p furthest from the origin K > 0∫ ∫

KdA = 2πχ = 2π(2− 2g) < 0, where g genus, # holes

Page 12: Constant Curvature 1 Surfaces and Orbifoldsmathsci2.appstate.edu/~sjg/class/4140/GaussBonnet.pdf · Gauss-Bonnet (compact smooth orientable, no boundary) Z Z KdA = 2ˇ˜ K = 1 2 =

Applications of Gauss-Bonnet

CC-BY-SA-3.0-migrated DemonDeLuxe, http://www.tankonyvtar.hu/hu/tartalom/tamop425/0038_

matematika_Miklos_Hoffmann-Topology_and_differential_geometry/ch12s02.html, http://3.

bp.blogspot.com/-qo7BlN8djUA/UBHOv_WdrbI/AAAAAAAACZM/wisLpF2Eb_A/s1600/Picture10.jpg∫ ∫geod∆

KdA = (α + β + γ − π)∫∂Sκgds +

∫ ∫S

KdA = 2πχ

S topologically a cylinder, but with K < 0. Then S has atmost one simple closed geodesic.

S that is not topologically a sphere is smooth, orientable,compact and no boundary then ∃ points whereK > 0,K < 0 and K = 0.point p furthest from the origin K > 0∫ ∫

KdA = 2πχ = 2π(2− 2g) < 0, where g genus, # holes

Page 13: Constant Curvature 1 Surfaces and Orbifoldsmathsci2.appstate.edu/~sjg/class/4140/GaussBonnet.pdf · Gauss-Bonnet (compact smooth orientable, no boundary) Z Z KdA = 2ˇ˜ K = 1 2 =

Applications of Gauss-Bonnet

CC-BY-SA-3.0-migrated DemonDeLuxe, http://www.tankonyvtar.hu/hu/tartalom/tamop425/0038_

matematika_Miklos_Hoffmann-Topology_and_differential_geometry/ch12s02.html, http://3.

bp.blogspot.com/-qo7BlN8djUA/UBHOv_WdrbI/AAAAAAAACZM/wisLpF2Eb_A/s1600/Picture10.jpg∫ ∫geod∆

KdA = (α + β + γ − π)∫∂Sκgds +

∫ ∫S

KdA = 2πχ

S topologically a cylinder, but with K < 0. Then S has atmost one simple closed geodesic.S that is not topologically a sphere is smooth, orientable,compact and no boundary then ∃ points whereK > 0,K < 0 and K = 0.

point p furthest from the origin K > 0∫ ∫KdA = 2πχ = 2π(2− 2g) < 0, where g genus, # holes

Page 14: Constant Curvature 1 Surfaces and Orbifoldsmathsci2.appstate.edu/~sjg/class/4140/GaussBonnet.pdf · Gauss-Bonnet (compact smooth orientable, no boundary) Z Z KdA = 2ˇ˜ K = 1 2 =

Applications of Gauss-Bonnet

CC-BY-SA-3.0-migrated DemonDeLuxe, http://www.tankonyvtar.hu/hu/tartalom/tamop425/0038_

matematika_Miklos_Hoffmann-Topology_and_differential_geometry/ch12s02.html, http://3.

bp.blogspot.com/-qo7BlN8djUA/UBHOv_WdrbI/AAAAAAAACZM/wisLpF2Eb_A/s1600/Picture10.jpg∫ ∫geod∆

KdA = (α + β + γ − π)∫∂Sκgds +

∫ ∫S

KdA = 2πχ

S topologically a cylinder, but with K < 0. Then S has atmost one simple closed geodesic.S that is not topologically a sphere is smooth, orientable,compact and no boundary then ∃ points whereK > 0,K < 0 and K = 0.point p furthest from the origin K > 0

∫ ∫KdA = 2πχ = 2π(2− 2g) < 0, where g genus, # holes

Page 15: Constant Curvature 1 Surfaces and Orbifoldsmathsci2.appstate.edu/~sjg/class/4140/GaussBonnet.pdf · Gauss-Bonnet (compact smooth orientable, no boundary) Z Z KdA = 2ˇ˜ K = 1 2 =

Applications of Gauss-Bonnet

CC-BY-SA-3.0-migrated DemonDeLuxe, http://www.tankonyvtar.hu/hu/tartalom/tamop425/0038_

matematika_Miklos_Hoffmann-Topology_and_differential_geometry/ch12s02.html, http://3.

bp.blogspot.com/-qo7BlN8djUA/UBHOv_WdrbI/AAAAAAAACZM/wisLpF2Eb_A/s1600/Picture10.jpg∫ ∫geod∆

KdA = (α + β + γ − π)∫∂Sκgds +

∫ ∫S

KdA = 2πχ

S topologically a cylinder, but with K < 0. Then S has atmost one simple closed geodesic.S that is not topologically a sphere is smooth, orientable,compact and no boundary then ∃ points whereK > 0,K < 0 and K = 0.point p furthest from the origin K > 0∫ ∫

KdA = 2πχ = 2π(2− 2g) < 0, where g genus, # holes

Page 16: Constant Curvature 1 Surfaces and Orbifoldsmathsci2.appstate.edu/~sjg/class/4140/GaussBonnet.pdf · Gauss-Bonnet (compact smooth orientable, no boundary) Z Z KdA = 2ˇ˜ K = 1 2 =

adding a hole changes the total curvature by −4πExample: add a handle to Enneper’s surface −4π to formChen-Gackstatter surface −8π

http://virtualmathmuseum.org/Surface/enneper/i/enneper2_polar.png, http:

//virtualmathmuseum.org/Surface/chen_gackstatter/i/chen_gackstatter_2-fold_88690.png

Page 17: Constant Curvature 1 Surfaces and Orbifoldsmathsci2.appstate.edu/~sjg/class/4140/GaussBonnet.pdf · Gauss-Bonnet (compact smooth orientable, no boundary) Z Z KdA = 2ˇ˜ K = 1 2 =

Gauss published a special case of Gauss-Bonnet∫ ∫geod∆

KdA = (α + β + γ − π)

Bonnet introduced the concepts of geodesic curvature andtorsion, and published a more general version ofGauss-Bonnet

Page 18: Constant Curvature 1 Surfaces and Orbifoldsmathsci2.appstate.edu/~sjg/class/4140/GaussBonnet.pdf · Gauss-Bonnet (compact smooth orientable, no boundary) Z Z KdA = 2ˇ˜ K = 1 2 =

Michael Spivak A Comprehensive Introduction to DifferentialGeometry, Volume 5 cover

Page 19: Constant Curvature 1 Surfaces and Orbifoldsmathsci2.appstate.edu/~sjg/class/4140/GaussBonnet.pdf · Gauss-Bonnet (compact smooth orientable, no boundary) Z Z KdA = 2ˇ˜ K = 1 2 =

Surfaces Not in R3: Klein’s Beer

Futurama: The Route of All Evil

Brioschi’s K in higherdimcurvatures.mw and F = 0 formula

1(EG−F 2)2 (

∣∣∣∣∣∣−Evv

2 + Fuv − Guu2

Eu2 Fu − Ev

2Fv − Gu

2 E FGv2 F G

∣∣∣∣∣∣−∣∣∣∣∣∣

0 Ev2

Gu2

Ev2 E F

Gu2 F G

∣∣∣∣∣∣)FuturamaTMand c© Twentieth Century Fox Film Corporation.This educational talk and related content is not specifically authorized by Fox.