Casimir Friction Aleksandr VolokitinAleksandr Volokitin Research Center Ju¨lich and Samara State...

of 31 /31
Casimir Friction Aleksandr Volokitin Research Center J ¨ ulich and Samara State Technical University Casimir Forces Near-Field Radiative Heat Transfer Casimir Friction Non-Contact Friction Frictional Drag Fluctuational Electrodynamics – p. 1

Embed Size (px)

Transcript of Casimir Friction Aleksandr VolokitinAleksandr Volokitin Research Center Ju¨lich and Samara State...

  • Casimir Friction

    Aleksandr VolokitinResearch Center Jülich and Samara State Technical University

    Casimir Forces Near-Field Radiative Heat Transfer

    Casimir Friction

    Non-Contact Friction

    Frictional Drag

    Fluctuational Electrodynamics

    – p. 1

  • Fluctuation-Dissipation Theorem

    mẍ+mω20x+ Γẋ = F (t)

    Γ = (kBT )−1Re

    0 dt〈

    F̂(t)F̂(0)〉

    The detection of single spins by MRFM for: (a) 3Datomic imaging (b) quantum computation

    Measurements of gravitation force at short length scale

    Measurements of Casimir forces

    – p. 2

  • Rytov’s Theory

    ∇× E = iω

    cB

    ∇×H = −iω

    cD+

    cjf

    jfi (r)jf∗k (r

    ′)〉

    ω=

    ~

    (2π)2

    (

    1

    2+ n(ω)

    )

    ω2Imεik(r, r′, ω)

    n(ω) = [e~ω/kBT − 1]−1

    – p. 3

  • Origin of Non-Contact Friction

    A.I. Volokitin and B.N.J. Persson, Rev.Mod.Phys., 79, 1291(2007)

    – p. 4

  • Non-contact Friction

    Experiment: Stipe B.C. et.al PRL, 87, 096801 (2001)

    Ffriction = Γv, Γ ∼ 10−13 − 10−12kg/s at d ∼ 1− 100 nm.

    Γ ≈ d−n with n = 1.3± 0.3 and n = 0.5± 0.3, Γ ∼ V 2

    Theory: A.I. Volokitin and B.N.J. Persson, PRB, 73, 165423(2006)

    – p. 5

  • Electronic versus Phononic Friction

    Experiment: M. Kisiel et.al Nat. Materials, 10, 119 (2011)

    – p. 6

  • Electronic versus Phononic Friction

    Theory: A.I. Volokitin and B.N.J. Persson, PRB, 73, 165423(2006)

    – p. 7

  • Casimir Friction

    v

    ω+q vx ω-q vx

    Pendry J.B. JPCM 9, 10301 (1997)A.I. Volokitin and B.N.J. Persson, JPCM, 11, 345 (1999)

    – p. 8

  • Frictional Stress

    σxz =

    0

    i=(s,p)

    d2q

    (2π)2~qxsgn(ω

    ′)(

    n2(ω′)− n1(ω)

    )

    Γi(ω,q),

    Γi(ω,q) =1

    2kz | 1− e2ikzdR1i(ω)R2i(ω′) |2

    ×[

    (kz + k∗

    z)(1− | R1i(ω) |2)(1− | R2i(ω

    ′ |2)

    +4(kz − k∗

    z)ImR1i(ω)ImR2i(ω′)e−2dImkz

    ]

    ω′ = ω−qxv, ni(ω) = [exp(~ω/kBTi)−1]−1, kz =

    (ω/c)2 − q2

    A.I. Volokitin and B.N.J. Persson, JPCM, 11, 345 (1999)

    – p. 9

  • Small Velocities

    v ≪ vT = kBTd/~, d ≪ λT = c~/kBT,

    σxz = γv,

    γ =~2

    8π3kBT

    0

    sinh(~ω/kBT )

    i=p,s

    d2qq2xe−2qd

    ×ImR1i(ω)ImR2i(ω)

    | 1− e−2qdR1i(ω)R2i(ω) |2,

    Γ =

    dSγ(z(x, y))

    – p. 10

  • Adsorbate enhancement of Casimir friction

    log d (Angstrom)

    log

    Γ (k

    g/s)

    Cs/Cu(100)

    A.I. Volokitin and B.N.J. Persson, PRB, 73, 165423 (2006)

    – p. 11

  • Radiative Heat Transfer.

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    0.5 1 1.5 2 2.5 3 3.5 4 4.50

    5

    10

    1 2 3 4

    log

    (S /

    Jm

    s

    )-2

    -1

    with adsorbates

    clean surfaces

    log (d / A)o

    4

    4.5

    5

    5.5

    6

    6.5

    7

    7.5

    8

    8.5

    9

    0.5 1 1.5 2 2.5 3

    1 2 34

    6

    8

    log

    (S /

    1Jm

    s

    )

    -2-1

    log (d / 1A)o

    K/Cu(001) SiC

    T1 = 273 K, T2 = 0 K

    Volokitin A.I. and Persson B.N.J. PRB, 69, 045417 (2004)

    – p. 12

  • Two ways to study Casimir friction

    v

    U

    2

    1

    1

    J = n ev22

    +++

    ---

    ..

    ..

    .

    .

    .

    . ...

    .......

    .

    .. .

    ..

    .. .

    ..

    .

    . . .

    ..

    .. .

    .

    .

    .

    . .

    ..

    .

    . .

    . ..

    . ..

    ..

    .

    ..

    Left:Upper block is sliding relative to block at the bottomRight: The current is induced in the upper block .

    – p. 13

  • Frictional Drag in 2D-systems

    V

    Layer 2

    Layer 1 J 1

    E 2 (J =0)2

    d

    Theory - Coulomb Drag. M. B. PogrebenskiiSov.Phys.Second.,11 (1977) 372, P. J. Price PhysicaB+C,117 (1983) 750Experiment - Quantum wells T. J. Gramila et.al PRL,66(1991) 1216, U. Sivan et.al PRL,68 (1992) 1196Experiment - Graphene Sheets S. Kim et.al PRB,83 (2011)161401, R.V. Gorbachev et.al Nat.Phys.,8 (2012) 896Theory - Casimir Friction. A.I. Volokitin and B.N.J. Persson,J.Phys.:Condens.Matter, 13, 859 (2001); ibid, EPL 10324002 (2013)

    – p. 14

  • Quantum Friction

    qxv = ω1 + ω2Pendry J.B. JPCM 9, 10301 (1997)Volokitin A.I. and Persson B.N.J. JPCM, 11, 345 (1999)Volokitin A.I. and Persson B.N.J. PRB, 78, 155437 (2008)

    – p. 15

  • Anomalous Doppler Effect

    v

    ω+q vx ω-q vx

    Normal Doppler effect ω′ = ω − qxv > 0Anomalous Doppler effect ω′ = ω − qxv vT = kBTd/~

    – p. 16

  • Classical Vavilov-Cherenkov Radiation

    Cherenkov P.A. Dokl. Akad. Nauk SSSR, 2, 451 (1934)Resonant condition: qxv = cq/n > v0 = cqx/nThreshold velocity: v > c/n

    – p. 17

  • Quantum Vavilov-Cherenkov Radiation

    Frank M.I. J.Phys.USSR, 7, 49 (1943)Doppler effect (a): ωph = ω0 − gxv > 0

    Doppler effect (b): ω0 − gxv < 0;ωph = qxv − ω0

    – p. 18

  • The Landau criterion for the critical

    velocity of a superfluid

    p

    ε(p)

    E = Mv2

    2 + ε(p)− pv

    ε(p)− pv < 0

    v > vc = min(

    ε(p)p

    )

    Landau L.D., Zh. Eksp. Teor. Fiz. 11, 592 (1941)

    – p. 19

  • Radiation at shearing two transparent plates

    Pendry J.B. JMO 45, 2389 (1998).Magreby F.M., Golestian R., and Kardar M., PRA 88,042509 (2013).Volokitin A.I. and Persson B.N.J. PRB 93, 035407 (2016).

    – p. 20

  • Non-Relativistic Theory

    0 10 20 30 40 50 60 70 80 90 100

    v/vo

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    Fs 1x [

    norm

    aliz

    ed]

    Resonant condition: ωph = qxv − cq/n = cq/n, v > v0 = 2c/n

    F s1x =~v0π3d4F

    s1x[normalized]

    Rs =

    (ω/c)2 − q2 −√

    (nω/c)2 − q2√

    (ω/c)2 − q2 +√

    (nω/c)2 − q2

    Magreby F.M., Golestian R., and Kardar M., PRA 88,042509 (2013).Volokitin A.I. and Persson B.N.J. PRB 93, 035407 (2016).

    – p. 21

  • Relativistic Theory

    0.8 0.84 0.88 0.92 0.960

    1

    2

    3

    4

    v/c

    F1x

    [nor

    mal

    ized

    ]

    0.96 0.97 0.98 0.99 1.00

    20

    40

    60

    80

    v/cF

    1x

    [norm

    aliz

    ed]

    ωph = qxv − cq′/γn = cq/n, v > v0 = 2cn/(n

    2 + 1)

    Volokitin A.I. and Persson B.N.J. PRB 78, 155437 (2008)Volokitin A.I. and Persson B.N.J. PRB 93, 035407 (2016).

    – p. 22

  • Radiation From Moving Neutral Particle

    2

    1 1 1

    v v

    a) b) c)

    v

    ωph = qxv − ω0/γ = cq/n, v > v0 = c/n

    Pieplow G. and Henkel C., JPCM 27, 035407 (2015).Volokitin A.I. and Persson B.N.J. arxiv.org/abs/1512.04366(2016).

    – p. 23

  • Quantum Friction for Particle

    0.5 0.6 0.7 0.8 0.9 1.0

    -22

    -20

    -18

    -16

    -14

    -12

    v/c

    log

    10f fr

    ictio

    n(N

    )

    1.6log10γ

    0.4 0.6 0.8 1.0 1.2 1.4 1.8-12.2

    -12

    -11.8

    -11.6

    -11.4

    -11.2

    -11

    -10.8

    (a) (b)

    – p. 24

  • Polar Dielectric SiO2

    0 1 2 3 4 5 6v, 105 m/s

    0

    1

    2

    3

    4

    5

    6

    Ffr

    ictio

    n, 1

    05 N

    /m2

    Resonant condition: ωph = qxv − ω0 = ω0Threshold velocity: v > 2ω0/qxmax ∼ 2ω0d ∼ 2 · 10

    5 m/s

    – p. 25

  • Graphene on SiO2

    grapheneelectrode

    SiO2

    Threshold velocity: v > vF + ω0/qxmax ≈ vF ∼ 106m/s

    Resonant condition: ωph = qxv − vF q = ω0Experiment:Freitag M.,Steiner M., Martin Y., Perebeinos V.,Chen Z., Tsang J.C., and Avouris P., Nano Lett. 9, 1883(2009).Theory:Volokitin A.I. and Persson B.N.J. PRL 106 094502(2011)

    – p. 26

  • Current density-electric field dependence

    in graphene on SiO2

    J (m

    A/µ

    m)

    0 0.2 0.4 0.6 0.8E (V/µm)

    0

    0.4

    0.8

    1.2

    1.6

    T=0 KT = 150 K

    450 K

    0 1 2 43

    E (V/µm)

    0

    0.4

    0.8

    1.2

    1.6

    J (m

    A/µ

    m)

    300 K

    a)

    0

    3

    6

    9

    5 7 9 11

    T=300 K

    0 K

    v, 105 m/s

    Fx,

    103

    N/m

    2

    b)

    vsat ∼ vF ∼ 106m/s

    Jsat = ensvsat ∼ 1mA/µm

    – p. 27

  • Frictional Drag between Graphene Sheets

    0 4 8 12 16 200

    400

    800

    1200

    v, 105 m/s

    Fx,

    N/m

    2

    T=600 K

    300 K

    0 K

    a)

    0 4 8 12 16 200

    0.4

    0.8

    1.2

    1.6

    T=300 K

    0 K100 K

    Fx,

    N/m

    2

    v, 105 m/s

    b)

    d=1 nm d=10 nmAt l v ≪ vF induced electric field E = ρDJ = µ

    −1v.

    ρD =Γ

    (ne)2=

    h

    e2πζ(3)

    32

    (

    kBT

    ǫF

    )21

    (kFd)21

    (kTFd)2,

    Fx0 =~v

    d415ζ(5)

    128π2

    (

    v

    vF

    )21

    (kTFd)2.

    Volokitin A.I. and Persson B.N.J. EPL 103 24002 (2013)

    – p. 28

  • Acoustic Phonon Emission

    z

    d + u - ueq 0 1

    solid 1

    solid 0solid 0solid 0

    σ(x, t) = K[u0(x− vt, t)− u1(x, t)],

    Persson B.N.J., Volokitin A.I. and Ueba H., JPCM 23045009 (2011)

    – p. 29

  • Acoustic Phonon Emission

    3000 3400 3800 42004600 5000

    v, m/s

    10-1

    100

    101

    102

    103

    σ, N

    /m2

    – p. 30

  • Summary

    Casimir friction can be studied using modernexperimental setups for observation of frictional drag ingraphene systems..

    The challenging problem is to study frictional drag forgraphene for strong electric field (large drift velocity)when Casimir friction is dominated by quantumfluctuations (quantum friction).

    The challenging problem for experimentalists is todevelop setup for mechanical detection of Casimirfriction using AFM.

    Quantum friction is strongly enhanced above thethreshold velocity.

    The threshold velocity is determined by a type ofexcitations which are responsible for quantum friction.

    – p. 31

    mbox {hskip 1mm}Blue {Fluctuation-Dissipation Theorem}mbox {hskip 8mm}Rytov's Theorycenterline {Origin of Non-Contact Friction}centerline {Non-contact Friction}centerline {Electronic versus Phononic Friction}centerline {Electronic versus Phononic Friction}centerline {Casimir Friction}centerline {Frictional Stress}centerline {Small Velocities}centerline {Adsorbate enhancement of Casimir friction}mbox {hskip 3mm} Radiative Heat Transfer. Blue {Two ways to study Casimir friction}mbox {hskip 2cm}Blue {Frictional Drag in 2D-systems }centerline {Quantum Friction}mbox {hskip 2cm}Anomalous Doppler Effect mbox {hskip 2cm}Classical Vavilov-Cherenkov Radiationmbox {hskip 1cm}mbox {hskip 1mm}Blue {Large {�f The Landau criterion for the critical}}mbox {hskip 1mm}Radiation at shearing two transparent platesmbox {hskip 2cm}Non-Relativistic Theorymbox {hskip 2cm}Relativistic Theorymbox {hskip 1cm}Radiation From Moving Neutral Particlembox {hskip 1cm}Quantum Friction for Particlembox {hskip 3cm}Polar Dielectric SiO$_2$mbox {hskip 4cm} Blue {Large {�f Graphene on SiO$_2$}}mbox {hskip 1mm}Blue {Large {�f Current density-electric field dependence}}Blue {Frictional Drag between Graphene Sheets}centerline {Blue {Acoustic Phonon Emission}}centerline {Blue {Acoustic Phonon Emission}}centerline {Blue {Summary}}