Download - Casimir Friction Aleksandr VolokitinAleksandr Volokitin Research Center Ju¨lich and Samara State Technical University Casimir Forces Near-Field Radiative Heat Transfer Casimir Friction

Transcript
Page 1: Casimir Friction Aleksandr VolokitinAleksandr Volokitin Research Center Ju¨lich and Samara State Technical University Casimir Forces Near-Field Radiative Heat Transfer Casimir Friction

Casimir Friction

Aleksandr VolokitinResearch Center Julich and Samara State Technical University

Casimir Forces Near-Field Radiative Heat Transfer

Casimir Friction

Non-Contact Friction

Frictional Drag

Fluctuational Electrodynamics

– p. 1

Page 2: Casimir Friction Aleksandr VolokitinAleksandr Volokitin Research Center Ju¨lich and Samara State Technical University Casimir Forces Near-Field Radiative Heat Transfer Casimir Friction

Fluctuation-Dissipation Theorem

mx+mω20x+ Γx = F (t)

Γ = (kBT )−1Re

0 dt⟨

F(t)F(0)⟩

The detection of single spins by MRFM for: (a) 3Datomic imaging (b) quantum computation

Measurements of gravitation force at short length scale

Measurements of Casimir forces

– p. 2

Page 3: Casimir Friction Aleksandr VolokitinAleksandr Volokitin Research Center Ju¨lich and Samara State Technical University Casimir Forces Near-Field Radiative Heat Transfer Casimir Friction

Rytov’s Theory

∇× E = iω

cB

∇×H = −iω

cD+

cjf

jfi (r)jf∗k (r′)

ω=

~

(2π)2

(

1

2+ n(ω)

)

ω2Imεik(r, r′, ω)

n(ω) = [e~ω/kBT − 1]−1

– p. 3

Page 4: Casimir Friction Aleksandr VolokitinAleksandr Volokitin Research Center Ju¨lich and Samara State Technical University Casimir Forces Near-Field Radiative Heat Transfer Casimir Friction

Origin of Non-Contact Friction

A.I. Volokitin and B.N.J. Persson, Rev.Mod.Phys., 79, 1291(2007)

– p. 4

Page 5: Casimir Friction Aleksandr VolokitinAleksandr Volokitin Research Center Ju¨lich and Samara State Technical University Casimir Forces Near-Field Radiative Heat Transfer Casimir Friction

Non-contact Friction

Experiment: Stipe B.C. et.al PRL, 87, 096801 (2001)

Ffriction = Γv, Γ ∼ 10−13 − 10−12kg/s at d ∼ 1− 100 nm.

Γ ≈ d−n with n = 1.3± 0.3 and n = 0.5± 0.3, Γ ∼ V 2

Theory: A.I. Volokitin and B.N.J. Persson, PRB, 73, 165423(2006)

– p. 5

Page 6: Casimir Friction Aleksandr VolokitinAleksandr Volokitin Research Center Ju¨lich and Samara State Technical University Casimir Forces Near-Field Radiative Heat Transfer Casimir Friction

Electronic versus Phononic Friction

Experiment: M. Kisiel et.al Nat. Materials, 10, 119 (2011)

– p. 6

Page 7: Casimir Friction Aleksandr VolokitinAleksandr Volokitin Research Center Ju¨lich and Samara State Technical University Casimir Forces Near-Field Radiative Heat Transfer Casimir Friction

Electronic versus Phononic Friction

Theory: A.I. Volokitin and B.N.J. Persson, PRB, 73, 165423(2006)

– p. 7

Page 8: Casimir Friction Aleksandr VolokitinAleksandr Volokitin Research Center Ju¨lich and Samara State Technical University Casimir Forces Near-Field Radiative Heat Transfer Casimir Friction

Casimir Friction

v

ω+q vx ω-q vx

Pendry J.B. JPCM 9, 10301 (1997)A.I. Volokitin and B.N.J. Persson, JPCM, 11, 345 (1999)

– p. 8

Page 9: Casimir Friction Aleksandr VolokitinAleksandr Volokitin Research Center Ju¨lich and Samara State Technical University Casimir Forces Near-Field Radiative Heat Transfer Casimir Friction

Frictional Stress

σxz =

0

i=(s,p)

d2q

(2π)2~qxsgn(ω

′)(

n2(ω′)− n1(ω)

)

Γi(ω,q),

Γi(ω,q) =1

2kz | 1− e2ikzdR1i(ω)R2i(ω′) |2

×[

(kz + k∗z)(1− | R1i(ω) |2)(1− | R2i(ω

′ |2)

+4(kz − k∗z)ImR1i(ω)ImR2i(ω′)e−2dImkz

]

ω′ = ω−qxv, ni(ω) = [exp(~ω/kBTi)−1]−1, kz =√

(ω/c)2 − q2

A.I. Volokitin and B.N.J. Persson, JPCM, 11, 345 (1999)

– p. 9

Page 10: Casimir Friction Aleksandr VolokitinAleksandr Volokitin Research Center Ju¨lich and Samara State Technical University Casimir Forces Near-Field Radiative Heat Transfer Casimir Friction

Small Velocities

v ≪ vT = kBTd/~, d ≪ λT = c~/kBT,

σxz = γv,

γ =~2

8π3kBT

0

sinh(~ω/kBT )

i=p,s

d2qq2xe−2qd

×ImR1i(ω)ImR2i(ω)

| 1− e−2qdR1i(ω)R2i(ω) |2,

Γ =

dSγ(z(x, y))

– p. 10

Page 11: Casimir Friction Aleksandr VolokitinAleksandr Volokitin Research Center Ju¨lich and Samara State Technical University Casimir Forces Near-Field Radiative Heat Transfer Casimir Friction

Adsorbate enhancement of Casimir friction

log d (Angstrom)

log

Γ (k

g/s)

Cs/Cu(100)

A.I. Volokitin and B.N.J. Persson, PRB, 73, 165423 (2006)

– p. 11

Page 12: Casimir Friction Aleksandr VolokitinAleksandr Volokitin Research Center Ju¨lich and Samara State Technical University Casimir Forces Near-Field Radiative Heat Transfer Casimir Friction

Radiative Heat Transfer.

0

1

2

3

4

5

6

7

8

9

10

0.5 1 1.5 2 2.5 3 3.5 4 4.50

5

10

1 2 3 4

log

(S /

Jm

s

)-2

-1

with adsorbates

clean surfaces

log (d / A)o

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

0.5 1 1.5 2 2.5 3

1 2 34

6

8

log

(S /

1Jm

s

)

-2-1

log (d / 1A)o

K/Cu(001) SiC

T1 = 273 K, T2 = 0 K

Volokitin A.I. and Persson B.N.J. PRB, 69, 045417 (2004)

– p. 12

Page 13: Casimir Friction Aleksandr VolokitinAleksandr Volokitin Research Center Ju¨lich and Samara State Technical University Casimir Forces Near-Field Radiative Heat Transfer Casimir Friction

Two ways to study Casimir friction

v

U

2

1

1

J = n ev22

+++

---

..

..

.

.

.

. ...

......

.

.

.. .

..

.. .

..

.

. . .

..

.. .

.

.

.

. .

..

.

. .

. ..

. ..

..

.

..

Left:Upper block is sliding relative to block at the bottomRight: The current is induced in the upper block .

– p. 13

Page 14: Casimir Friction Aleksandr VolokitinAleksandr Volokitin Research Center Ju¨lich and Samara State Technical University Casimir Forces Near-Field Radiative Heat Transfer Casimir Friction

Frictional Drag in 2D-systems

V

Layer 2

Layer 1 J1

E 2 (J =0)2

d

Theory - Coulomb Drag. M. B. PogrebenskiiSov.Phys.Second.,11 (1977) 372, P. J. Price PhysicaB+C,117 (1983) 750Experiment - Quantum wells T. J. Gramila et.al PRL,66(1991) 1216, U. Sivan et.al PRL,68 (1992) 1196Experiment - Graphene Sheets S. Kim et.al PRB,83 (2011)161401, R.V. Gorbachev et.al Nat.Phys.,8 (2012) 896Theory - Casimir Friction. A.I. Volokitin and B.N.J. Persson,J.Phys.:Condens.Matter, 13, 859 (2001); ibid, EPL 10324002 (2013)

– p. 14

Page 15: Casimir Friction Aleksandr VolokitinAleksandr Volokitin Research Center Ju¨lich and Samara State Technical University Casimir Forces Near-Field Radiative Heat Transfer Casimir Friction

Quantum Friction

qxv = ω1 + ω2

Pendry J.B. JPCM 9, 10301 (1997)Volokitin A.I. and Persson B.N.J. JPCM, 11, 345 (1999)Volokitin A.I. and Persson B.N.J. PRB, 78, 155437 (2008)

– p. 15

Page 16: Casimir Friction Aleksandr VolokitinAleksandr Volokitin Research Center Ju¨lich and Samara State Technical University Casimir Forces Near-Field Radiative Heat Transfer Casimir Friction

Anomalous Doppler Effect

v

ω+q vx ω-q vx

Normal Doppler effect ω′ = ω − qxv > 0Anomalous Doppler effect ω′ = ω − qxv<0Thermal fluctuations dominate at v < vT = kBTd/~Quantum fluctuations dominate at v > vT = kBTd/~

– p. 16

Page 17: Casimir Friction Aleksandr VolokitinAleksandr Volokitin Research Center Ju¨lich and Samara State Technical University Casimir Forces Near-Field Radiative Heat Transfer Casimir Friction

Classical Vavilov-Cherenkov Radiation

Cherenkov P.A. Dokl. Akad. Nauk SSSR, 2, 451 (1934)Resonant condition: qxv = cq/n > v0 = cqx/nThreshold velocity: v > c/n

– p. 17

Page 18: Casimir Friction Aleksandr VolokitinAleksandr Volokitin Research Center Ju¨lich and Samara State Technical University Casimir Forces Near-Field Radiative Heat Transfer Casimir Friction

Quantum Vavilov-Cherenkov Radiation

Frank M.I. J.Phys.USSR, 7, 49 (1943)Doppler effect (a): ωph = ω0 − gxv > 0

Doppler effect (b): ω0 − gxv < 0;ωph = qxv − ω0

– p. 18

Page 19: Casimir Friction Aleksandr VolokitinAleksandr Volokitin Research Center Ju¨lich and Samara State Technical University Casimir Forces Near-Field Radiative Heat Transfer Casimir Friction

The Landau criterion for the critical

velocity of a superfluid

p

ε(p)

E = Mv2

2 + ε(p)− pv

ε(p)− pv < 0

v > vc = min(

ε(p)p

)

Landau L.D., Zh. Eksp. Teor. Fiz. 11, 592 (1941)

– p. 19

Page 20: Casimir Friction Aleksandr VolokitinAleksandr Volokitin Research Center Ju¨lich and Samara State Technical University Casimir Forces Near-Field Radiative Heat Transfer Casimir Friction

Radiation at shearing two transparent plates

Pendry J.B. JMO 45, 2389 (1998).Magreby F.M., Golestian R., and Kardar M., PRA 88,042509 (2013).Volokitin A.I. and Persson B.N.J. PRB 93, 035407 (2016).

– p. 20

Page 21: Casimir Friction Aleksandr VolokitinAleksandr Volokitin Research Center Ju¨lich and Samara State Technical University Casimir Forces Near-Field Radiative Heat Transfer Casimir Friction

Non-Relativistic Theory

0 10 20 30 40 50 60 70 80 90 100

v/vo

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fs 1x [n

orm

aliz

ed]

Resonant condition: ωph = qxv − cq/n = cq/n, v > v0 = 2c/n

F s1x = ~v0

π3d4Fs1x[normalized]

Rs =

(ω/c)2 − q2 −√

(nω/c)2 − q2√

(ω/c)2 − q2 +√

(nω/c)2 − q2

Magreby F.M., Golestian R., and Kardar M., PRA 88,042509 (2013).Volokitin A.I. and Persson B.N.J. PRB 93, 035407 (2016).

– p. 21

Page 22: Casimir Friction Aleksandr VolokitinAleksandr Volokitin Research Center Ju¨lich and Samara State Technical University Casimir Forces Near-Field Radiative Heat Transfer Casimir Friction

Relativistic Theory

0.8 0.84 0.88 0.92 0.960

1

2

3

4

v/c

F1x

[nor

mal

ized

]

0.96 0.97 0.98 0.99 1.00

20

40

60

80

v/cF

1x

[norm

aliz

ed]

ωph = qxv − cq′/γn = cq/n, v > v0 = 2cn/(n2 + 1)

Volokitin A.I. and Persson B.N.J. PRB 78, 155437 (2008)Volokitin A.I. and Persson B.N.J. PRB 93, 035407 (2016).

– p. 22

Page 23: Casimir Friction Aleksandr VolokitinAleksandr Volokitin Research Center Ju¨lich and Samara State Technical University Casimir Forces Near-Field Radiative Heat Transfer Casimir Friction

Radiation From Moving Neutral Particle

2

1 1 1

v v

a) b) c)

v

ωph = qxv − ω0/γ = cq/n, v > v0 = c/n

Pieplow G. and Henkel C., JPCM 27, 035407 (2015).Volokitin A.I. and Persson B.N.J. arxiv.org/abs/1512.04366(2016).

– p. 23

Page 24: Casimir Friction Aleksandr VolokitinAleksandr Volokitin Research Center Ju¨lich and Samara State Technical University Casimir Forces Near-Field Radiative Heat Transfer Casimir Friction

Quantum Friction for Particle

0.5 0.6 0.7 0.8 0.9 1.0

-22

-20

-18

-16

-14

-12

v/c

log

10f fr

ictio

n(N

)

1.6log10γ

0.4 0.6 0.8 1.0 1.2 1.4 1.8-12.2

-12

-11.8

-11.6

-11.4

-11.2

-11

-10.8

(a) (b)

– p. 24

Page 25: Casimir Friction Aleksandr VolokitinAleksandr Volokitin Research Center Ju¨lich and Samara State Technical University Casimir Forces Near-Field Radiative Heat Transfer Casimir Friction

Polar Dielectric SiO2

0 1 2 3 4 5 6v, 105 m/s

0

1

2

3

4

5

6

Ffr

ictio

n, 1

05 N/m

2

Resonant condition: ωph = qxv − ω0 = ω0

Threshold velocity: v > 2ω0/qxmax ∼ 2ω0d ∼ 2 · 105 m/s

– p. 25

Page 26: Casimir Friction Aleksandr VolokitinAleksandr Volokitin Research Center Ju¨lich and Samara State Technical University Casimir Forces Near-Field Radiative Heat Transfer Casimir Friction

Graphene on SiO2

grapheneelectrode

SiO2

Threshold velocity: v > vF + ω0/qxmax ≈ vF ∼ 106m/sResonant condition: ωph = qxv − vF q = ω0

Experiment:Freitag M.,Steiner M., Martin Y., Perebeinos V.,Chen Z., Tsang J.C., and Avouris P., Nano Lett. 9, 1883(2009).Theory:Volokitin A.I. and Persson B.N.J. PRL 106 094502(2011)

– p. 26

Page 27: Casimir Friction Aleksandr VolokitinAleksandr Volokitin Research Center Ju¨lich and Samara State Technical University Casimir Forces Near-Field Radiative Heat Transfer Casimir Friction

Current density-electric field dependence

in graphene on SiO2

J (m

A/µ

m)

0 0.2 0.4 0.6 0.8E (V/µm)

0

0.4

0.8

1.2

1.6

T=0 KT = 150 K

450 K

0 1 2 43

E (V/µm)

0

0.4

0.8

1.2

1.6

J (m

A/µ

m)

300 K

a)

0

3

6

9

5 7 9 11

T=300 K

0 K

v, 105 m/s

Fx,

103 N

/m2

b)

vsat ∼ vF ∼ 106m/sJsat = ensvsat ∼ 1mA/µm

– p. 27

Page 28: Casimir Friction Aleksandr VolokitinAleksandr Volokitin Research Center Ju¨lich and Samara State Technical University Casimir Forces Near-Field Radiative Heat Transfer Casimir Friction

Frictional Drag between Graphene Sheets

0 4 8 12 16 200

400

800

1200

v, 105 m/s

Fx,

N/m

2

T=600 K

300 K

0 K

a)

0 4 8 12 16 200

0.4

0.8

1.2

1.6

T=300 K

0 K100 K

Fx,

N/m

2

v, 105 m/s

b)

d=1 nm d=10 nmAt l v ≪ vF induced electric field E = ρDJ = µ−1v.

ρD =Γ

(ne)2=

h

e2πζ(3)

32

(

kBT

ǫF

)21

(kFd)21

(kTFd)2,

Fx0 =~v

d415ζ(5)

128π2

(

v

vF

)21

(kTFd)2.

Volokitin A.I. and Persson B.N.J. EPL 103 24002 (2013)

– p. 28

Page 29: Casimir Friction Aleksandr VolokitinAleksandr Volokitin Research Center Ju¨lich and Samara State Technical University Casimir Forces Near-Field Radiative Heat Transfer Casimir Friction

Acoustic Phonon Emission

z

d + u - ueq 0 1

solid 1

solid 0solid 0solid 0

σ(x, t) = K[u0(x− vt, t)− u1(x, t)],

Persson B.N.J., Volokitin A.I. and Ueba H., JPCM 23045009 (2011)

– p. 29

Page 30: Casimir Friction Aleksandr VolokitinAleksandr Volokitin Research Center Ju¨lich and Samara State Technical University Casimir Forces Near-Field Radiative Heat Transfer Casimir Friction

Acoustic Phonon Emission

3000 3400 3800 42004600 5000

v, m/s

10-1

100

101

102

103

σ, N

/m2

– p. 30

Page 31: Casimir Friction Aleksandr VolokitinAleksandr Volokitin Research Center Ju¨lich and Samara State Technical University Casimir Forces Near-Field Radiative Heat Transfer Casimir Friction

Summary

Casimir friction can be studied using modernexperimental setups for observation of frictional drag ingraphene systems..

The challenging problem is to study frictional drag forgraphene for strong electric field (large drift velocity)when Casimir friction is dominated by quantumfluctuations (quantum friction).

The challenging problem for experimentalists is todevelop setup for mechanical detection of Casimirfriction using AFM.

Quantum friction is strongly enhanced above thethreshold velocity.

The threshold velocity is determined by a type ofexcitations which are responsible for quantum friction.

– p. 31