Boundary Layer Flow: Blasius solution for laminar …kshollen/ME347/Handouts/Blasius.pdfBoundary...

2
Boundary Layer Flow: Blasius solution for laminar flow over a flat plate Assume: Steady, constant property, 2-D flow of a Newtonian fluid with negligible body forces Governing Equations: Conservation of Mass: u x + v y = 0 (1) Momentum Balance (x-direction): ρ u u x + v u y = μ 2 u y 2 (2) Boundary Conditions: uy = 0 ( ) = vy = 0 ( ) = 0 and uy = δ ( ) = U Variable Substitution: η = U ν x y = Re x y x , f η () = ψ ν xU , and u U = df dη = ʹ f η () Reduced Equation: ʹ ʹ ʹ f + 1 2 f ʹ ʹ f = 0 (3) Boundary Conditions: fy = 0 ( ) = ʹ f y = 0 ( ) = 0 and ʹ f y →∞ ( ) = 1 Solution: Disturbance Thickness: δ x = 5.0 Re x from η = 5.0 where u/U = 0.99 Displacement Thickness: δ * x = δ * δ δ x = 1.72 Re x Momentum Thickness: θ x = θ δ δ x = 0.665 Re x Wall Shear Stress: τ w = μ u y y = 0 = μ U ʹ f ∂η ∂η y y = 0 = μ U ʹ ʹ f η = 0 ( ) U ν x = 0.332 ρ U 2 Re x Friction Coefficient: c f = τ w 1 2 ρ U 2 = 0.664 Re x Drag Coefficient for Friction: C D, f = 1 A c f dA = 1 0.664 Re x dx x=0 = 1.328 Re

Transcript of Boundary Layer Flow: Blasius solution for laminar …kshollen/ME347/Handouts/Blasius.pdfBoundary...

Boundary Layer Flow: Blasius solution for laminar flow over a flat plate Assume: Steady, constant property, 2-D flow of a Newtonian fluid with negligible body forces Governing Equations:

Conservation of Mass:

∂u∂x

+∂v∂y

= 0 (1)

Momentum Balance (x-direction):

ρ u∂u∂x

+ v∂u∂y

⎝ ⎜

⎠ ⎟ = µ

∂ 2u∂y 2

(2)

Boundary Conditions:

u y = 0( ) = v y = 0( ) = 0 and

u y = δ( ) =U

Variable Substitution: η =Uν x

y = Rexyx

,

f η( ) =ψν x U

, and

uU

=dfdη

= ʹ f η( )

Reduced Equation:

ʹ ́ ́ f + 12 f ʹ ́ f = 0 (3)

Boundary Conditions:

f y = 0( ) = ʹ f y = 0( ) = 0 and

ʹ f y →∞( ) =1 Solution:

Disturbance Thickness:

δx

=5.0Rex

from

η = 5.0 where u/U = 0.99

Displacement Thickness:

δ*

x=δ*

δ

⎝ ⎜

⎠ ⎟ δx⎛

⎝ ⎜ ⎞

⎠ ⎟ =

1.72Rex

Momentum Thickness:

θx

=θδ

⎝ ⎜ ⎞

⎠ ⎟ δx⎛

⎝ ⎜ ⎞

⎠ ⎟ =0.665Rex

Wall Shear Stress:

τw = µ∂u∂y y =0

= µ U∂ ʹ f ∂η

∂η∂y

⎝ ⎜

⎠ ⎟

y =0

= µ U ʹ ́ f η = 0( ) Uν x

=0.332 ρU 2

Rex

Friction Coefficient:

cf =τw

12 ρU 2 =

0.664Rex

Drag Coefficient for Friction: CD, f =1A

cf dA∫ =1ℓ

0.664Rex

dxx=0

∫ =1.328Reℓ

Blasius solution for laminar flow over a flat plate.

η = y Uν x

f η( )

ʹ f η( ) =uU

ʹ ́ f η( )

0.0 0.0000 0.0000 0.3321 0.5 0.0415 0.1659 0.3309 1.0 0.1656 0.3298 0.3230 1.5 0.3701 0.4868 0.3026 2.0 0.6500 0.6298 0.2668 2.5 0.9964 0.7513 0.2174 3.0 1.3969 0.8461 0.1614 3.5 1.8378 0.9131 0.1078 4.0 2.3059 0.9555 0.0642 4.5 2.7903 0.9795 0.0340 5.0 3.2834 0.9916 0.0159 5.5 3.7807 0.9969 0.0066 6.0 4.2798 0.9990 0.0024 6.5 4.7795 0.9997 0.0008 7.0 5.2794 0.9999 0.0002 7.5 5.7794 1.0000 0.0001 8.0 6.2794 1.0000 0.0000

Dimensionless velocity profile from Blasius solution for laminar flow over a flat plate.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

1

2

3

4

5

6

7

8

u/ U

η