ENGN 311 Fluid Mechanics Winter 2018 Final Exam Equation...

6
ENGN 311 Fluid Mechanics Winter 2018 Final Exam Equation Sheet Fluid Statics Pressure Fluid Statics Equation: - - p + ρg =0 Incompressible Fluid, Gravity Opposing z-Axis: p - p o = -ρg (z - z o ) Submerged Surfaces Resultant Force: F R = γh c A Line of Action: y P = I xx,c y c A + y c Buoyancy: F B = γ f V i

Transcript of ENGN 311 Fluid Mechanics Winter 2018 Final Exam Equation...

ENGN 311

Fluid Mechanics

Winter 2018

Final Exam Equation Sheet

Fluid Statics

Pressure

Fluid Statics Equation: −−→∇p+ ρ~g = 0

Incompressible Fluid, Gravity Opposing z-Axis: p− po = −ρg(z − zo)

Submerged Surfaces

Resultant Force: FR = γhcA

Line of Action: yP =Ixx,c

ycA+ yc

Buoyancy: FB = γfV

i

Fluid Dynamics

Fluid Kinematics

Material Derivate:D

Dt=

∂t+ (

−→V · −→∇)

Reynolds Transport Theorem:DB

Dt=

∂t

cvρb dV +

csρb(−→V · n̂

)dA

Fluid Deformation and Rotation

Volumetric Dilatation Rate:1

V

dV

dt=

−→∇ · −→V

Vorticity: ~ζ =−→∇ ×−→

V

Linear Strain Rates

εxx =∂u

∂x

εyy =∂v

∂y

εzz =∂w

∂z

Shear Strain Rates

εxy =1

2

(∂u

∂y+∂v

∂x

)

εyz =1

2

(∂v

∂z+∂w

∂y

)

εzx =1

2

(∂w

∂x+∂u

∂z

)

Along a Streamline

Bernoulli’s Equation:p

γ+V 2

2g+ z = constant

Finite Control Volume

Continuity: 0 =∂

∂t

cvρ dV +

csρ(−→V · n̂

)dA

Linear Momentum:∑

~F =∂

∂t

cvρ−→V dV +

csρ−→V(−→V · n̂

)dA

Energy Equation:Pin

γ+ αin

V 2in

2g+ zin + hpump =

Pout

γ+ αout

V 2out

2g+ zout + hturbine + hL

ii

General Pipe Flow

Major Losses: hL = fL

D

V 2

2g

Minor Losses: hL = KL

V 2

2g

Hydraulic Diameter: Dh =4Ac

p

Laminar, Fully-Developed, Steady, Incompressible Pipe Flow

Volumetric Flow Rate: V̇ =∆PπD4

128µL

Elevation Change: ∆P is replaced by ∆P − ρgL sin θ

Drag and Lift

Drag Coefficient: CD =FD

12ρV 2A

Lift Coefficient: CL =FL

12ρV 2A

Differential Analysis

Continuity:∂ρ

∂t+−→∇ · (ρ−→V ) = 0

Stream Function: u =∂ψ

∂y, v = −∂ψ

∂x, ur =

1

r

∂ψ

∂θ, uθ = −∂ψ

∂r

Incompressible Navier-Stokes: ρD−→V

Dt= ρ~g −−→∇P + µ∇2−→V

Shear Stress for xy/yx: τxy = τyx = µ

(∂u

∂y+∂v

∂x

)

Shear Stress for yz/zy: τyz = τzy = µ

(∂v

∂z+∂w

∂y

)

Shear Stress for zx/xz: τzx = τxz = µ

(∂w

∂x+∂u

∂z

)

Boundary Layer Analysis

Displacement Thickness: δ∗ =∫ ∞

0

(1 − u

U

)dy

Momentum Thickness: θ =∫ ∞

0

u

U

(1 − u

U

)dy

Skin Friction Coefficient: Cf,x =τw

12ρU2

iii

103

104

105

106

107

108

10−2

10−1

8

9

1.2

1.4

1.6

1.8

2

2.5

3

3.5

4

4.5

5

5.5

6

7

8

9

6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8

1e−005

2e−005

5e−005

0.0001

0.0002

0.0004

0.0006

0.00080.001

0.0015

0.002

0.003

0.004

0.006

0.008

0.01

0.0125

0.015

0.01750.02

0.025

0.03

0.035

0.040.0450.05

0.06

0.07

Laminarflow

Criticalzone

Transition zone Complete turbulence, rough pipes, R > 3500/r, 1/√f = 1.14 − 2 log r→ →← ←

Dar

cy−

Wei

sbac

h fr

ictio

n fa

ctor

fÍ ÄÄÄÄ

2hD

g

LV 2

Moody Diagram

r = 5e−006

r = 1e−006

Smooth pipes, r = 01/√f = 2 log(R √f ) − 0.8

MaterialÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

Riveted steelConcreteWood staveCast ironGalvanized ironAsphalted cast ironCommercial steelDrawn tubing

Reynolds number R Í ÄÄ (V in fps, D in ft, ν in ft 2/s)VDν

Rel

ativ

e ro

ughn

ess

rÍ Ä

in ft

, D in

ft)

ε D

Hagen−Poisseuille equationR ≤ 2300, f = 64/R

Colebrook equation, R ≥ 23001/√f = −2 log(r /3.7 + 2.51/(R √f ))

Acceleration at sea levellatitude 45°, g = 32.1740 ft/s2

VD for water at 60°F (V in fps, D in inches)0.1|

0.2|

0.4|

0.6|

0.8|

1|

2|

4|

6|

8|

10|

20|

40|

60| |

100|

200|

400|

600| |

1000|

2000|

4000|

6000| |

10000|____________________________________________________________________________________________________________________________________________________________________________________________

VD for atmospheric air at 60°F2|

4|

6|

8|

10|

20|

40|

60| |

100|

200|

400|

600| |

1000|

2000|

4000|

6000| |

10000|

20000|

40000|

60000| |

100000|

ε (ft)ÄÄÄÄÄÄÄÄÄÄ

0.003−0.030.001−0.010.0006−0.0030.000850.00050.00040.000150.000005

Fluid at 60°FÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

WaterAir (14.70 psia)

ν (ft2/s)ÄÄÄÄÄÄÄÄÄÄ

1.217e−0050.0001583

iv

v

vi