Bda31103 Lect03 -2 Dof Part2

66
7 Assume harmonic motion. Let, ( ) ( ) [ ] φ ω ω φ ω + = + = t A A x x t A A x x sin sin 2 2 1 2 1 2 1 2 1 & & & & .......(2) Substitute (2) into (1); 0 ) ( ) ( 0 0 2 1 3 2 2 2 2 1 2 1 2 2 2 1 = + + + A A k k k k k k A A m m ω ω

description

2 DEGGREE OF FREEDOM

Transcript of Bda31103 Lect03 -2 Dof Part2

Page 1: Bda31103 Lect03 -2 Dof Part2

7

Assume harmonic motion. Let,

( )

( )[ ]φωω

φω

+−

=

+

=

tA

A

x

x

tA

A

x

x

sin

sin

2

2

1

2

1

2

1

2

1

&&

&&

.......(2)

Substitute (2) into (1);

0)(

)(

0

0

2

1

322

221

2

1

2

2

2

1 =

+−

−++

A

A

kkk

kkk

A

A

m

m

ωω

Page 2: Bda31103 Lect03 -2 Dof Part2

8

.......(3)

For non-trivial solution, matrix [ ] = 0

=

−+−

−−+

0

0

2

1

2

2322

2

2

121

A

A

mkkk

kmkk

ωω

02

2322

2

2

121 =

−+−

−−+

ωω

mkkk

kmkk

Note:

Cramer’s Rule; 02221

1211 =

AA

AA

( )( ) ( )( ) 012212211 =− AAAA

Page 3: Bda31103 Lect03 -2 Dof Part2

9

{ }{ } 0))((

)()()(

2

23221

132221

4

21

=−+++

+++−

kkkkk

mkkmkkmm ωω

A

ACBBx

cBxAx

x

Substitute

mm

kkkkkk

m

kk

m

kk

2

4

0

,

0)()()(

2

2

2

21

1332212

2

32

1

214

−±−=

=++

=

=

+++

++

+−

ω

ωω

Page 4: Bda31103 Lect03 -2 Dof Part2

10

The roots are;

2/12

21

2

23221

21

132221

21

1322212

2

2

1

))((4

)()(

2

1

)()(

2

1,

−++

+++

±

+++

=

mm

kkkkk

mm

mkkmkk

mm

mkkmkkωω

The roots are called natural frequencies of the

system.

22

11

frequency natural second

frequency naturalfirst

n

n

ωω

ωω

==

==

.......(4)

Page 5: Bda31103 Lect03 -2 Dof Part2

11

Equation (3) can be shown as below;

=

−+−

−−+

0

01

1

22

2322

2

2

121

AA

mkkk

kmkk

ωω

Replace, rA

A=

1

2

=

−+−

−−+

0

012

2322

2

2

121

rmkkk

kmkk

ωω

Page 6: Bda31103 Lect03 -2 Dof Part2

12

.......(5)

( ) ( )( ) 0)1(

0)1(

2

2

2322

12

2

121

=−++−

=−+−+

rmkkk

rkmkk

ω

ω

Amplitude ratio;

2

2232

22

2

2

11211

ω

ω

mkk

kr

k

mkkr

−+=

−+=

Page 7: Bda31103 Lect03 -2 Dof Part2

13

From equation (2), the solution will be (1 DOF),

)sin(1

)(

)sin(1

)(

22

2

22

11

1

11

φω

φω

+

=

+

=

tr

Atx

tr

Atx

.......(6)

)sin(1

)sin(1

)(

)(22

2

211

1

1

2

1 φωφω +

++

=

t

rAt

rA

tx

tx

)sin()sin()(

)sin()sin()(

222211112

2221111

φωφω

φωφω

+++=

+++=

trAtrAtx

tAtAtx .......(7)

Apply initial condition to get constant value;

2121 ,,, φφAA

The general solution is (2 DOF),

Page 8: Bda31103 Lect03 -2 Dof Part2

14

Example:

21 xx >

Find the free vibration response of the system

shown with k1 = k2 = k3 = k, m1 = m2 = m for the

initial conditions

assume0)0(,0)0(

0)0( ,1)0(

22

11

==

==

xx

xx

&

&

Page 9: Bda31103 Lect03 -2 Dof Part2

15

2221223

1121211

)(

)(

xmxxkxk

xmxxkxk

maF

&&

&&

=−+−

=−−−

=+→ ∑

FBD;

Rearrange;

0)(

0)(

1223222

2212111

=−++

=−++

xkxkkxm

xkxkkxm

&&

&&………...(1)

Page 10: Bda31103 Lect03 -2 Dof Part2

16

In matrix form;

=

+−

−++

0

0

)(

)(

0

0

2

1

322

221

2

1

2

1

x

x

kkk

kkk

x

x

m

m

&&

&&.......(1)

Page 11: Bda31103 Lect03 -2 Dof Part2

17

Assume harmonic motion. Let,

( )

( )[ ]φωω

φω

+−

=

+

=

tA

A

x

x

tA

A

x

x

sin

sin

2

2

1

2

1

2

1

2

1

&&

&&

.......(2)

Substitute (2) into (1);

0)(

)(

0

0

2

1

322

221

2

1

2

2

2

1 =

+−

−++

A

A

kkk

kkk

A

A

m

m

ωω

Page 12: Bda31103 Lect03 -2 Dof Part2

18

.......(3)

For non-trivial solution, matrix [ ] = 0

=

−+−

−−+

0

0

2

1

2

2322

2

2

121

A

A

mkkk

kmkk

ωω

02

2322

2

2

121 =

−+−

−−+

ωω

mkkk

kmkk

Note:

Cramer’s Rule; 02221

1211 =

AA

AA

( )( ) ( )( ) 012212211 =− AAAA

Page 13: Bda31103 Lect03 -2 Dof Part2

19

{ }{ } 0))((

)()()(

2

23221

132221

4

21

=−+++

+++−

kkkkk

mkkmkkmm ωω

A

ACBBx

cBxAx

x

Substitute

mm

kkkkkk

m

kk

m

kk

2

4

0

,

0)()()(

2

2

2

21

1332212

2

32

1

214

−±−=

=++

=

=

+++

++

+−

ω

ωω

Page 14: Bda31103 Lect03 -2 Dof Part2

20

The roots are;

2/1

21

2

23221

2

21

132221

21

1322212

2

2

1

))((4

)()(

2

1

)()(

2

1,

−++

+++

+++

=

mm

kkkkk

mm

mkkmkk

mm

mkkmkk

m

ωω

.......(4)

Page 15: Bda31103 Lect03 -2 Dof Part2

21

Given,

mmm

kkkk

==

===

21

321

From equation (4),

m

k

m

k±=

22ω

The two natural frequencies are;

m

k

m

k 3& 21 == ωω

Page 16: Bda31103 Lect03 -2 Dof Part2

22

Equation (3) can be shown as below;

=

−+−

−−+

0

01

1

22

2322

2

2

121

AA

mkkk

kmkk

ωω

Replace, rA

A=

1

2

=

−+−

−−+

0

012

2322

2

2

121

rmkkk

kmkk

ωω

Page 17: Bda31103 Lect03 -2 Dof Part2

23

.......(5)

( ) ( )( ) 0)1(

0)1(

2

2

2322

12

2

121

=−++−

=−+−+

rmkkk

rkmkk

ω

ω

Amplitude ratio;

2

2232

22

2

2

11211

ω

ω

mkk

kr

k

mkkr

−+=

−+=

Page 18: Bda31103 Lect03 -2 Dof Part2

24

To determine the mode shape, from (5),

atm

k=1ω

12

1 =−

=k

kkr

Motion at first mode,

First mode =

1

1

Page 19: Bda31103 Lect03 -2 Dof Part2

25

atm

k32 =ω

132

2 −=−

=kk

kr

Motion at second mode,

Second mode =

−1

1

Page 20: Bda31103 Lect03 -2 Dof Part2

26

From equation (2), the solution will be (1 DOF),

)sin(1

)(

)sin(1

)(

22

2

22

11

1

11

φω

φω

+

=

+

=

tr

Atx

tr

Atx

.......(6)

)sin(1

)sin(1

)(

)(22

2

211

1

1

2

1 φωφω +

++

=

t

rAt

rA

tx

tx

)sin()sin()(

)sin()sin()(

222211112

2221111

φωφω

φωφω

+++=

+++=

trAtrAtx

tAtAtx .......(7)

Apply initial condition to get constant value;

2121 ,,, φφAA

The general solution is (2 DOF),

Page 21: Bda31103 Lect03 -2 Dof Part2

27

Substitute value into equation (7),

)sin()sin()(

)sin()sin()(

222211112

2221111

φωφω

φωφω

+++=

+++=

trAtrAtx

tAtAtx

)sin()1()sin()1()(

)sin()sin()(

2221112

2221111

φωφω

φωφω

+−++=

+++=

tAtAtx

tAtAtx

21 & rr

)sin()sin()(

)sin()sin()(

2221112

2221111

φωφω

φωφω

+−+=

+++=

tAtAtx

tAtAtx.......(8)

Page 22: Bda31103 Lect03 -2 Dof Part2

28

Apply initial condition,

)sin()sin(0

)sin()sin()(

222111

2221112

φωφω

φωφω

+−+=

+−+=

tAtA

tAtAtx

0)0(,0)0(

0)0( ,1)0(

22

11

==

==

xx

xx

&

&

From equation (8),

)sin()sin(1

)sin()sin()(

222111

2221111

φωφω

φωφω

+++=

+++=

tAtA

tAtAtx

.......(9)

.......(10)

Page 23: Bda31103 Lect03 -2 Dof Part2

29

Equation (9) - (10),

1

1sin2

1

φ=A

From equation (8), the velocity equation & initial

condition,

.......(11)2

2sin2

1

φ=A

222111

222211111

coscos0

)cos()cos()(

φωφω

φωωφωω

AA

tAtAtx

+=

+++=&

.......(12)

.......(13)222111

222211112

coscos0

)cos()cos()(

φωφω

φωωφωω

AA

tAtAtx

−=

+−+=&

From equation (12) and (13),

0&0 2121 ≠≠≠≠ AAωω

Page 24: Bda31103 Lect03 -2 Dof Part2

30

So,

Where m & n are odd numbers.

From equation (11),

0coscos 21 == φφ

2&

221

πφ

πφ mn ==

2

121 == AA

Page 25: Bda31103 Lect03 -2 Dof Part2

31

Substitute value of into equation (8),

So,

)sin()sin()(

)sin()sin()(

2221112

2221111

φωφω

φωφω

+−+=

+++=

tAtAtx

tAtAtx

+−

+=

++

+=

2

3sin

2

1

2sin

2

1)(

2

3sin

2

1

2sin

2

1)(

2

1

ππ

ππ

tm

kt

m

ktx

tm

kt

m

ktx

+

−+

+

=

2sin

1

1

2

1

2sin

1

1

2

1

)(

)(

2

1 ππt

m

kt

m

k

tx

tx

Or,

21,2121 ,,,, φφωω AA

Page 26: Bda31103 Lect03 -2 Dof Part2

32

=

+

=

tm

kt

m

ktx

tm

kt

m

ktx

3cos

2

1cos

2

1)(

3cos

2

1cos

2

1)(

2

1

tm

kt

m

k

tx

tx 3cos

1

1

2

1cos

1

1

2

1

)(

)(

2

1

−+

=

Or,

Or,

Page 27: Bda31103 Lect03 -2 Dof Part2

OTHER EXAMPLE

33

Page 28: Bda31103 Lect03 -2 Dof Part2

34

Deriving 2-DOF mathematical model

Page 29: Bda31103 Lect03 -2 Dof Part2

35

2221223

1121211

)(

)(

xmxxkxk

xmxxkxk

maF

&&

&&

=−+−

=−−−

=∑

Free Vibration of an Undamped 2-DOF

System

Page 30: Bda31103 Lect03 -2 Dof Part2

36

Free Vibration of an Undamped 2-DOF

System

� These are coupled eqns of motion. For normal mode of oscillation, each mass undergoes harmonic motion of same freq passing through the equilibrium position.

� In matrix form, (1)

)1(0)(

0)(

1223222

2212111

=−++

=−++

xkxkkxm

xkxkkxm

&&

&&

0)(

)(

0

0

2

1

322

221

2

1

2

1 =

+−

−++

x

x

kkk

kkk

x

x

m

m

&&

&&

Page 31: Bda31103 Lect03 -2 Dof Part2

37

Free Vibration of an Undamped 2-DOF

System

� Assume harmonic motion. Let,

( )

)sin((

2

)sin(

2

2

1

2

1

2

1

2

1

φωω

φω

+−

=

+

=

tX

X

x

x

tX

X

x

x

&&

&&

Page 32: Bda31103 Lect03 -2 Dof Part2

38

Subst. (2) into (1)

)3(0)(

(

0)(

)(

0

0

2

1

2

2322

2

2

121

2

1

322

221

2

1

2

2

2

1

=

−+−

−−+

=

+−

−++

X

X

mkkk

kmkk

or

X

X

kkk

kkk

X

X

m

m

ω

ω

ω

ω

Page 33: Bda31103 Lect03 -2 Dof Part2

39

� For non-trivial solution,

0))(())((

0

':

12212211

2221

1211

=−

=

AAAA

AA

AA

RulesCramerNote

{ }{ } 0

)(

)(det

32

2

22

221

2

1 =

++−−

−++−

kkmk

kkkm

ω

ω

Page 34: Bda31103 Lect03 -2 Dof Part2

40

or{ }

{ } 0))((

)()()(

2

23221

132221

4

21

=−+++

+++−

kkkkk

mkkmkkmm ωω

A

ACBBx

cBxAx

x

Substitute

mm

kkkkkk

m

kk

m

kk

2

4

0

,

0)()()(

2

2

2

21

1332212

2

32

1

214

−±−=

=++

=

=

+++

++

+−

ω

ωω

Page 35: Bda31103 Lect03 -2 Dof Part2

41

which is called the frequency or characteristic

equation. Hence the roots are:

The roots are called natural frequencies of the system.

2/1

21

2

23221

2

21

132221

21

1322212

2

2

1

))((4

)()(

2

1

)()(

2

1,

−++

+++

+++

=

mm

kkkkk

mm

mkkmkk

mm

mkkmkk

m

ωω

22

11

frequency natural second

frequency naturalfirst

n

n

ωω

ωω

==

==

Page 36: Bda31103 Lect03 -2 Dof Part2

42

The normal modes of vibration corresponding to ω12 and ω2

2 can

be expressed, respectively, as

)(

)(

)(

)(

)3(

32

2

22

2

2

21

2

21

)2(

1

)2(

22

32

2

12

2

2

21

2

11

)1(

1

)1(

21

kkm

k

k

kkm

X

Xr

kkm

k

k

kkm

X

Xr

From

++−=

++−==

++−=

++−==

ωω

ωω

To determine the values of X1 and X2,

=

=

=

=)2(

12

)2(

1

)2(

2

)2(

1)2(

)1(

11

)1(

1

)1(

2

)1(

1)1( and Xr

X

X

XX

Xr

X

X

XX

rr

Known as the modal vectors of the system.

Page 37: Bda31103 Lect03 -2 Dof Part2

43

Modal vector

First mode

Second mode

.)2(

2

)2(

12

)1(

2

)1(

1121

XandXasatand

XandXastocorrespondXandXofValues

ω

ω

Page 38: Bda31103 Lect03 -2 Dof Part2

44

Initial conditions. The initial conditions are

mode second)cos(

)cos(

)(

)()(

modefirst )cos(

)cos(

)(

)()(

22

)2(

12

22

)2(

1

)2(

2

)2(

1)2(

11

)1(

11

11

)1(

1

)1(

2

)1(

1)1(

=

+

+=

=

=

+

+=

=

φω

φω

φω

φω

tXr

tX

tx

txtx

tXr

tX

tx

txtx

r

r

The free vibration solution or the motion in time can be

expressed itself as

0)0(,)0(

,0)0(constant, some )0(

2

)(

12

1

)(

11

====

=====

txXrtx

txXtx

i

i

i

&

&

Page 39: Bda31103 Lect03 -2 Dof Part2

45

Thus the components of the vector can be expressed

as

)cos()cos(

)()()(

)4()cos()cos(

)()()(

22

)2(

1211

)1(

11

)2(

2

)1(

22

22

)2(

111

)1(

1

)2(

1

)1(

11

φωφω

φωφω

+++=

+=

+++=

+=

tXrtXr

txtxtx

tXtX

txtxtx

where the unknown constants can be determined

from the initial conditions:

Page 40: Bda31103 Lect03 -2 Dof Part2

46

Substituting into Eq.(4) leads to

)0()0(),0()0(

),0()0(),0()0(

2222

1111

xtxxtx

xtxxtx

&&

&&

====

====

2

)2(

1221

)1(

1112

2

)2(

121

)1(

112

2

)2(

121

)1(

111

2

)2(

11

)1(

11

sinsin)0(

coscos)0(

)5(sinsin)0(

coscos)0(

φωφω

φφ

φωφω

φφ

XrXrx

XrXrx

XXx

XXx

−−=

+=

−−=

+=

&

&

Page 41: Bda31103 Lect03 -2 Dof Part2

47

The solution can be expressed as

−−

=

−−−

=

−+−

=

−−

=

)(

)0()0(sin,

)(

)0()0(sin

)0()0(cos,

)0()0(cos

122

2112

)2(

1

121

2121

)1(

1

12

2112

)2(

1

12

2121

)1(

1

rr

xxrX

rr

xxrX

rr

xxrX

rr

xxrX

ωφ

ωφ

φφ

&&&&

Page 42: Bda31103 Lect03 -2 Dof Part2

48

from which we obtain the desired solution

{ }[ { } ]{ } { }

{ }[ { } ]{ } { }

+−−

=

=

−+−

=

=

−++−

−=

+=

−−+−

−=

+=

−−

−−

)0()0([

)0()0(tan

cos

sintan

)0()0([

)0()0(tan

cos

sintan

)0()0()0()0(

)(

1

sincos

)0()0()0()0(

)(

1

sincos

2112

2111

2

)2(

1

2

)2(

11

2

2121

2121

1

)1(

1

1

)1(

11

1

2/1

2

2

2

2112

211

12

2/12

2

)2(

1

2

2

)2(

1

)2(

1

2/1

2

1

2

2122

212

12

2/12

1

)1(

1

2

1

)1(

1

)1(

1

xxr

xxr

X

X

xxr

xxr

X

X

xxrxxr

rr

XXX

xxrxxr

rr

XXX

ωφφ

φ

ωφφ

φ

ω

φφ

ω

φφ

&&

&&

&&

&&

Page 43: Bda31103 Lect03 -2 Dof Part2

49

Example:

Find the free vibration response of the system

shown with k1 = 30, k2 = 5, k3 = 0, m1 = 10, and

m2 = 1 for the initial conditions

).0()0()0( ,1)0( 2211 xxxx && ===

Page 44: Bda31103 Lect03 -2 Dof Part2

50

2221223

1121211

)(

)(

xmxxkxk

xmxxkxk

maF

&&

&&

=−+−

=−−−

=+→ ∑

FBD;

Rearrange;

0)(

0)(

1223222

2212111

=−++

=−++

xkxkkxm

xkxkkxm

&&

&&………...(1)

Page 45: Bda31103 Lect03 -2 Dof Part2

51

In matrix form;

=

+−

−++

0

0

)(

)(

0

0

2

1

322

221

2

1

2

1

x

x

kkk

kkk

x

x

m

m

&&

&&.......(1)

Assume harmonic motion. Let,

( )

( )[ ]φωω

φω

+−

=

+

=

tA

A

x

x

tA

A

x

x

sin

sin

2

2

1

2

1

2

1

2

1

&&

&&

.......(2)

Page 46: Bda31103 Lect03 -2 Dof Part2

52

Assume harmonic motion. Let,

( )

( )[ ]φωω

φω

+−

=

+

=

tA

A

x

x

tA

A

x

x

sin

sin

2

2

1

2

1

2

1

2

1

&&

&&

.......(2)

Substitute (2) into (1);

0)(

)(

0

0

2

1

322

221

2

1

2

2

2

1 =

+−

−++

A

A

kkk

kkk

A

A

m

m

ωω

Page 47: Bda31103 Lect03 -2 Dof Part2

53

=

−+−

−−+

0

0

2

1

2

2322

2

2

121

A

A

mkkk

kmkk

ωω

.......(3)

=

−−

−−

0

0

55

51035

2

1

2

2

A

A

ωω

=

−−

−−

0

0

55

510352

2

ωω

0))(())((

0

':

12212211

2221

1211

=−

=

AAAA

AA

AA

RulesCramerNote

Page 48: Bda31103 Lect03 -2 Dof Part2

54

( ) ( )( )[ ] 025535503510 24 =−++− ωω

A

ACBBx

x

Substitute

2

4

01508510

,

2

2

2

−±−=

=+−

=

ωω

ω

01508510 24 =+− ωω

Page 49: Bda31103 Lect03 -2 Dof Part2

55

)10(2

)150)(10(4)85()85(,

2

2

2

2

1

−−±−−=ωω

01508510 2 =+− ωω

75.125.4,

20

35

20

85,

2

2

2

1

2

2

2

1

±=

±=

ωω

ωω

4494.2,5811.1

6,5.2

21

2

2

2

1

==

==

ωω

ωω

The two natural frequencies are;

Page 50: Bda31103 Lect03 -2 Dof Part2

56

Equation (3) can be shown as below;

=

−−

−−

0

01

55

510352

2

rωω

( ) ( )( ) 05)1(5

05)1(1035

2

2

1

2

=−+−

=−+−

r

r

ω

ω

Page 51: Bda31103 Lect03 -2 Dof Part2

57

.......(5)

( ) ( )( ) 05)1(5

05)1(1035

2

2

1

2

=−+−

=−+−

r

r

ω

ω

Amplitude ratio;

2

2

2

2

11

5

5

5

1035

ω

ω

−=

−=

r

r

Page 52: Bda31103 Lect03 -2 Dof Part2

58

To determine the mode shape, from (5),

at 5.22

1 =ω

25

)5.2(10351 =

−=r

Motion at first mode,

First mode =

2

1

Page 53: Bda31103 Lect03 -2 Dof Part2

59

at 62

2 =ω

565

52 −=

−=r

Motion at second mode,

Second mode =

−5

1

Page 54: Bda31103 Lect03 -2 Dof Part2

60

)sin()sin()(

)sin()sin()(

222211112

2221111

φωφω

φωφω

+++=

+++=

trAtrAtx

tAtAtx .......(7)

The general solution is (2 DOF),

Substitute value into equation (7),21 & rr

)sin()5()sin()2()(

)sin()sin()(

2221112

2221111

φωφω

φωφω

+−++=

+++=

tAtAtx

tAtAtx

)sin(5)sin(2)(

)sin()sin()(

2221112

2221111

φωφω

φωφω

+−+=

+++=

tAtAtx

tAtAtx.......(8)

Page 55: Bda31103 Lect03 -2 Dof Part2

61

Apply initial condition,

2211

2221112

sin5sin20

)sin()sin()(

φφ

φωφω

AA

tAtAtx

−=

+−+=

0)0(,0)0(

0)0( ,1)0(

22

11

==

==

xx

xx

&

&

From equation (8),

2211

2221111

sinsin1

)sin()sin()(

φφ

φωφω

++=

+++=

AA

tAtAtx

.......(9)

.......(10)

Page 56: Bda31103 Lect03 -2 Dof Part2

62

Equation (9) X 2 - (10),

1

1sin7

5

φ=A

From equation (8), the velocity equation & initial

condition,

.......(11)2

2sin7

2

φ=A

222111

222211111

coscos0

)cos()cos()(

φωφω

φωωφωω

AA

tAtAtx

+=

+++=&

.......(12)

.......(13)222111

222211112

cos5cos20

)cos(5)cos(2)(

φωφω

φωωφωω

AA

tAtAtx

−=

+−+=&

From equation (12) and (13),

0&0 2121 ≠≠≠≠ AAωω

Page 57: Bda31103 Lect03 -2 Dof Part2

63

So,

Where m & n are odd numbers.

From equation (11),

0coscos 21 == φφ

2&

221

πφ

πφ mn ==

7

2,

7

521 == AA

Page 58: Bda31103 Lect03 -2 Dof Part2

64

Substitute value of into equation (8),

So,

)sin(5)sin(2)(

)sin()sin()(

2221112

2221111

φωφω

φωφω

+−+=

+++=

tAtAtx

tAtAtx

+−

+=

++

+=

24494.2sin

7

10

25811.1sin

7

10)(

24494.2sin

7

2

25811.1sin

7

5)(

2

1

ππ

ππ

tttx

tttx

21,2121 ,,,, φφωω AA

Page 59: Bda31103 Lect03 -2 Dof Part2

65

Or,

Or,

( ) ( )

( ) ( )tttx

tttx

4494.2cos7

105811.1cos

7

10)(

4494.2cos7

25811.1cos

7

5)(

2

1

−=

+=

( ) ( )tttx

tx4494.2cos

5

1

7

25811.1cos

2

1

7

5

)(

)(

2

1

−+

=

+

−+

+

=

24494.2sin

5

1

7

2

25811.1sin

2

1

7

5

)(

)(

2

1 ππtt

tx

tx

Or,

Page 60: Bda31103 Lect03 -2 Dof Part2

QUESTION:

Determine the natural frequencies and mode shapes for

system,

66

m1 = m2 = m

k1 = k2 = k

)0()0( ),0()0(

)0()0( ),0()0(

2222

1111

xtxxtx

xtxxtx

&&

&&

====

====

Page 61: Bda31103 Lect03 -2 Dof Part2

67

Free Vibration of an Undamped 2-DOF

System

k2

k1

x1

x2

m1

m2

1 1 1 1 2 2 1 1

1 1 1 2 1 2 2

( ) 0

( ) 0

m x k x k x x F

m x k k x k x

+ − − = =

+ + − =

&&

&&

2 2 2 2 1 2

2 2 2 1 2 2

( ) 0

0

m x k x x F

m x k x k x

+ − = =

− + =

&&

&&

1 1 1 2 1 2 2

2 2 2 1 2 2

1 1 1 2 2 1

2 2 2 2 2

( ) 0

0

can be written in matrix

0 ( ) 0

0 0

m x k k x k x

m x k x k x

m x k k k x

m x k k x

+ + − =

− + =

+ − + = −

&&

&&

&&

&&

1 1 2 2sin( ) sin( )x A t x A tω ω= =

2 2

1 1 2 2sin( ) sin( )x A t x A tω ω ω ω= − = −&& &&

Page 62: Bda31103 Lect03 -2 Dof Part2

68

1 1 1 2 2 1

2 2 2 2 2

0 ( ) 0

0 0

m x k k k x

m x k k x

+ − + = −

&&

&&

1 1

2 2

sin( )

sin( )

x A t

x A t

ω

ω

=

=2

1 1

2

2 2

sin( )

sin( )

x A t

x A t

ω ω

ω ω

= −

= −

&&

&&

21 1 2 2 11

22 2 2 22

( ) 00

00

A k k k Am

A k k Am

ωω

+ − − + = −−

2

1 2 1 2 1

222 2 2

( ) 0

0

k k m k A

Ak k m

ω

ω

+ − − = − −

Can be solved only if

2

1 2 1 2

2

2 2 2

( )0

k k m k

k k m

ω

ω

+ − − =

− −

Page 63: Bda31103 Lect03 -2 Dof Part2

69

[ ]

2

1 2 1 2

2

2 2 2

4 2 2

1 2 1 2 2 2 1 1 2 2 2

( )0

( ) ( ) ( ) 0

k k m k

k k m

m m k k m k m k k k k

ω

ω

ω ω

+ − − =

− −

− + + + + − =

[ ] [ ]2 2

1 2 2 2 1 1 2 2 2 1 1 2 1 2 2 22 2

1 2

1 2

( ) ( ) 4( ) ( ),

2( )

k k m k m k k m k m m m k k k k

m mω ω

+ + ± + + − + − =

1 1

2 2

first natural frequency

first natural frequency

n

n

ω ω

ω ω

= =

= =

Page 64: Bda31103 Lect03 -2 Dof Part2

70

2

1 2 1 1 2 1

222 2 2 1

( ) 0

0

n

n

k k m k A

Ak k m

ω

ω

+ − − = − −

1at first natural frequency = nω ω

2 (1) (1)

1 2 1 1 1 2 2( ) 0nk k m A k Aω + − − =

2(1)

1 2 1 121 (1)

1 2

( ) nk k mAr

A k

ω+ −= =

2 (2) (2)

1 2 1 2 1 2 2( ) 0nk k m A k Aω + − − =

2(2)

1 2 1 222 (2)

1 2

( ) nk k mAr

A k

ω+ −= =

Modal vector1 1

1 1 1

1 1

2 1 1

A A

A r A

= =

( ) ( )

( )

( ) ( )A

(2) (2)

(2) 1 1

(2) (2)

2 2 1

A A

A r A

= =

A

First mode

Second mode

Page 65: Bda31103 Lect03 -2 Dof Part2

71

k

k

x1

x2

m

m

For a case

[ ]2 4 2 2( ) 3 0m km kω ω− + =

2 2 2 2 2 22

1 2 2

2

2

1

2

3 9 4 3 5

2 2

3 5 3 5

2 4 2 4

1.618

0.618

n

n

n

km k m m k km m k

m m

k k k k

m m m m

k

m

k

m

ω

ω

ω

+ − += =

= + = +

=

=

[ ]4 2 2

1 2 1 2 2 2 1 1 2 2 2( ) ( ) ( ) 0mm k k m k m k k k kω ω− + + + + − =m1 = m2 = m

k1 = k2 = k

Page 66: Bda31103 Lect03 -2 Dof Part2

72

Mode shapes

(1) 2

2

(1)

1

(2 ) (1.618) ( / )0.618

A k m k m

A k

−= = −

(1) 2

2

(1)

1

(2 ) (0.618) ( / )1.618

A k m k m

A k

−= =

1.0

-0.618

1.0

1.618

1

1.0

0.618φ

=

− 2

1.0

1.618φ

=