Basic Acoustics P773 - linkwitzlab.com

66
1 P773 Acoustics June, 2008

Transcript of Basic Acoustics P773 - linkwitzlab.com

Page 1: Basic Acoustics P773 - linkwitzlab.com

1

P773 AcousticsJune, 2008

Page 2: Basic Acoustics P773 - linkwitzlab.com

2

Physicalprinciple

Page 3: Basic Acoustics P773 - linkwitzlab.com

3

Page 4: Basic Acoustics P773 - linkwitzlab.com

4

Denotes anExample

Page 5: Basic Acoustics P773 - linkwitzlab.com

5

Page 6: Basic Acoustics P773 - linkwitzlab.com

6

Measure pressure inside sealed box

Page 7: Basic Acoustics P773 - linkwitzlab.com

7Acoustic impulse response inside the box

Page 8: Basic Acoustics P773 - linkwitzlab.com

8

Page 9: Basic Acoustics P773 - linkwitzlab.com

9

Air spring only

Page 10: Basic Acoustics P773 - linkwitzlab.com

10

Page 11: Basic Acoustics P773 - linkwitzlab.com

11

For Plane Waves

Page 12: Basic Acoustics P773 - linkwitzlab.com

12More later…

Page 13: Basic Acoustics P773 - linkwitzlab.com

13

Mathematicalprinciple

Page 14: Basic Acoustics P773 - linkwitzlab.com

14

Along the wavedirection, longitudinal

Page 15: Basic Acoustics P773 - linkwitzlab.com

15

= p v

Page 16: Basic Acoustics P773 - linkwitzlab.com

16

Motivate thiswith energyconservation

Page 17: Basic Acoustics P773 - linkwitzlab.com

17

Page 18: Basic Acoustics P773 - linkwitzlab.com

18

Page 19: Basic Acoustics P773 - linkwitzlab.com

19

Out of phase,reactive flow

In-phase,power flow

Page 20: Basic Acoustics P773 - linkwitzlab.com

20

Page 21: Basic Acoustics P773 - linkwitzlab.com

21

Page 22: Basic Acoustics P773 - linkwitzlab.com

22

Measure pressure outside sealed box at dust cap

Page 23: Basic Acoustics P773 - linkwitzlab.com

23Acoustic impulse response at cone surface

Page 24: Basic Acoustics P773 - linkwitzlab.com

24

Page 25: Basic Acoustics P773 - linkwitzlab.com

25Relative acoustic frequency response: [at cone]/[inside box]

Slope of 40dB/decade

Page 26: Basic Acoustics P773 - linkwitzlab.com

26

Page 27: Basic Acoustics P773 - linkwitzlab.com

27

Showsp=f(r,t)/r

Page 28: Basic Acoustics P773 - linkwitzlab.com

28

However, for a 3-dimensional spherically-spreadingwave from a point source, the amplitude of theharmonic solution to the wave equation for thepressure [1,2] can be written as

p(r,ω) = ρ jω U exp(−jkr)/(4πr),

where U is the volume velocity [m3/s] of the pointsource. The jω factor represents a time derivative,and we can thus write the solution in the time domainas

p(r,t) = ρ A(t-r/c)/(4πr),

where A(..) is the volume acceleration [m3/s2] of thesource. Note that the solution for the pressure doesnot change shape as it propagates, but the amplitudefalls off as 1/r.

Page 29: Basic Acoustics P773 - linkwitzlab.com

29

The particle velocity, v, relates to the pressure by theNewtonian equation of motion for the air

∇p = −ρ ∂v/∂t.

Mathematically, for a spherically-symmetric wavesolution, ∇p=∂p/∂r, and thus

∇[exp(−jkr)/r]=−jk exp(−jkr)/r−exp(−jkr)/r2.

Page 30: Basic Acoustics P773 - linkwitzlab.com

30

As a result, the Newtonian equation relates thepressure to the particle velocity of the air, at radius r,as

(1 + 1/jkr) p = ρ c v,

which can also be written as

(jkr + 1) p = jkr ρ c v = ρ j ω r v = ρ a r,

where a is the acceleration of the air particles.

Page 31: Basic Acoustics P773 - linkwitzlab.com

31

Plot of Z = R+jωM for a sphere.

For a sphere, the acoustic impedance iseasy to work out. For kr<<1, the size ofthe sphere is much less than awavelength, and the shape of the sourceis not very important.

Thus we expect all acoustic impedancesof monopole acoustic sources to actsimilarly.

The rising low-frequency imaginary part represents the reasonablyconstant inertial air load.

Note the curve is very smooth with no resonances or interference. That istrue since diffraction from edges does not occur for a sphere.

Page 32: Basic Acoustics P773 - linkwitzlab.com

32

Figure 1. Showing the real and imaginary parts of theacoustic surface impedance for a piston in an infinitebaffle, versus ka, where a is the piston radius. AfterBeranek.

The LF imaginary part ofthe acoustic impedance isproportional to frequency,representing a constantinertial air load.

The real part is proportionalto frequency^2, which isexpected for a monopolesource.

The oscillations relate tointerference from edgereflections.

Piston in Infinite Baffle

Page 33: Basic Acoustics P773 - linkwitzlab.com

33

Page 34: Basic Acoustics P773 - linkwitzlab.com

34

Page 35: Basic Acoustics P773 - linkwitzlab.com

35

At bass frequencies

Page 36: Basic Acoustics P773 - linkwitzlab.com

36

Page 37: Basic Acoustics P773 - linkwitzlab.com

37

Listen to baffle…

Page 38: Basic Acoustics P773 - linkwitzlab.com

38

From Olson Acoustics

Conclusion: we need a huge baffle to give decent bass

Page 39: Basic Acoustics P773 - linkwitzlab.com

39

Horn design from Olsen

Horns are the most efficient speakers,but often give a coloured response.

Page 40: Basic Acoustics P773 - linkwitzlab.com

40The new “robot” lookfor the 800 series

Page 41: Basic Acoustics P773 - linkwitzlab.com

41

Page 42: Basic Acoustics P773 - linkwitzlab.com

42

Direct signalDiffraction from an edge

Emitting an impulse

Page 43: Basic Acoustics P773 - linkwitzlab.com

43

Point source tweeter1st-order diffraction

Point-source tweeter diffraction

Tweeter finite size diffraction

Approximate effect of boxincluding midrange

Diffraction calculations using a simple model

Page 44: Basic Acoustics P773 - linkwitzlab.com

44

Question: if equalized,could we hear this effect?

Page 45: Basic Acoustics P773 - linkwitzlab.com

45

For paper,f ~ 1.7kHz

Movie screen

Page 46: Basic Acoustics P773 - linkwitzlab.com

46

Directivity relatesto diffraction

Page 47: Basic Acoustics P773 - linkwitzlab.com

47

ka = 1 means550 Hz for a = 10cm

Page 48: Basic Acoustics P773 - linkwitzlab.com

48

This shows that asmall source will

be omnidirectionalif size << wavelength

ka = 1 means550 Hz for a = 10cm

Page 49: Basic Acoustics P773 - linkwitzlab.com

49

Page 50: Basic Acoustics P773 - linkwitzlab.com

50

Page 51: Basic Acoustics P773 - linkwitzlab.com

51

Ultrasonic frequenciesdecay rapidly

Page 52: Basic Acoustics P773 - linkwitzlab.com

52

Page 53: Basic Acoustics P773 - linkwitzlab.com

53

Page 54: Basic Acoustics P773 - linkwitzlab.com

54

This sloperepresents amass of air

of 0.85 x radius

The “air load”

Radiation impedance= pressure/velocity

Page 55: Basic Acoustics P773 - linkwitzlab.com

55

Page 56: Basic Acoustics P773 - linkwitzlab.com

56

Page 57: Basic Acoustics P773 - linkwitzlab.com

57

Low sensitivity

Page 58: Basic Acoustics P773 - linkwitzlab.com

58

Page 59: Basic Acoustics P773 - linkwitzlab.com

59

Acceleration is proportional to force

Conclusions: (1) Displacement is opposite direction to force ! (2) For constant displacement, acceleration is proportional to freq^2 (3) For constant force, displacement is proportional to 1/freq^2

Kinematics and dynamics of shaking a mass

Page 60: Basic Acoustics P773 - linkwitzlab.com

60

The 1925 Rice-Kellogloudspeaker model

Page 61: Basic Acoustics P773 - linkwitzlab.com

61

Page 62: Basic Acoustics P773 - linkwitzlab.com

62

Page 63: Basic Acoustics P773 - linkwitzlab.com

63

B&W philosophy is to:absorb the rear wave!

Page 64: Basic Acoustics P773 - linkwitzlab.com

64

Page 65: Basic Acoustics P773 - linkwitzlab.com

65

Page 66: Basic Acoustics P773 - linkwitzlab.com

66

The End