Time reversed acoustics - Mathias Fink

63
Time Reversed Acoustics

Transcript of Time reversed acoustics - Mathias Fink

Page 1: Time reversed acoustics - Mathias Fink

Time Reversed Acoustics

Page 2: Time reversed acoustics - Mathias Fink

( ),p r t acoustic pressure field (scalar)is the density and is the sound velocity in an heterogeneous medium( )rρ ( )c r

This equation contains only ( )2

2

,p r tt

∂∂

Then if is a solution( ),p r t

( ),p r t− is also a solution

because ( ) ( )2 2

2 2

, ,p r t p r tt t

∂ ∂ −=

∂ ∂

t0

t1 t0

t1

( )p r t,−( )p r t,

Acoustic propagation in a non dissipative fluid

In Linear Acoustics 0),()()(

1)(

),((2

2

2 =∂

∂−

ttrp

rcrrtrpgraddiv

ρρIn Non Linear Acoustics 0),(

),(),(1

),(),((

2

2

2 =∂

∂−

ttrp

prcprprtrpgraddiv

ρρ

Spatial Reciprocity Time Reversal Invariance

Page 3: Time reversed acoustics - Mathias Fink

Elementary transducers

RAMsACOUSTIC SOURCE

Heterogeneous Medium

ACOUSTIC SINK ??

( )p r ti,

( )p r T ti, −TRANSMIT MODE

RECEIVE MODE

Time Reversal Cavity

Page 4: Time reversed acoustics - Mathias Fink

Elementary transducers

RAMsACOUSTIC SOURCE

Heterogeneous Medium ( )pr ti,

( )p r T ti, −TRANSMIT MODE

RECEIVE MODE

DIFFRACTION LIMITED FOCAL SPOT

DEPENDING ON THE MIRROR ANGULAR APERTURE

INFORMATION LOST

Theory by D. Cassereau, M. Fink, D. Jackson, D.R. Dowling

Time Reversal Mirror

Page 5: Time reversed acoustics - Mathias Fink

Source

Time reversed signals

Time Reversal in a multiple scattering medium

?

TRM array

Multiple scatteringmedium

A.Derode, A. Tourin, P. Roux, M. Fink

Page 6: Time reversed acoustics - Mathias Fink

The experimental setup

Linear array, 128 transducersElement size ¾ λ

Acoustic sourceν=3 MHz, λ=0.5 mm Steel rods forest

Page 7: Time reversed acoustics - Mathias Fink

20 40 60 80 100 120 140 160

20 40 60 80 100 120 140 160

Time (µs)20 40 60 80 100 120 140 160

Transmitted signal through the rods recorded on transducer 64

Time reversed wave recorded at the source location

Transmitted signal through water recorded on transducer 64

Time (µs)

Time (µs)

Am

plitu

deA

mpl

itude

Am

plitu

de

Page 8: Time reversed acoustics - Mathias Fink

Spatial focusing of the time reversed wave

Mobile hydrophone

-10 - 5 0 5 10-30-25-20-15-10-50

Distance (mm)

Am

plitu

de

Page 9: Time reversed acoustics - Mathias Fink

One-bit versus 8-bit time reversal

One-bit time reversal, L=40 mm

-3

-1.5

0

1.5

3

-50 -25 0 25 50

time (µs)

8 bit time-reversal, L=40 mm

-1-0.5

00.5

1

-50 -25 0 25 50time (µs)

-30

-25

-20

-15

-10

-5

0-12 -6 0 6 12 (mm)

dB 8 bitOne bit

Page 10: Time reversed acoustics - Mathias Fink

-10 -5 0 5 10-30

-25

-20

-15

-10

-5

0

Distance from the source (mm)

dB

Directivity patterns of the time-reversed wavesaround the source position with 128 transducers(blue line) and 1 transducer (red line).

One channel time reversal mirror

Time reversed signal

S

Page 11: Time reversed acoustics - Mathias Fink

Time Reversal versus Phase Conjugation

( )

*

*

*

. ( , ) ( ,- )

If the source is monochromatic( , ) Re ( ) ( ) ( )

with ( ) complex function

( ) = ( )Thus the .

( , ) ( ) ( )or

( ) ( )

j t j t j t

j x

j t j t

TR operation p x t p x t

p x t P x e P x e P x eP x

P x P x eTR operation

p x t P x e P x e

P x P x

ω ω ω

φ

ω ω

→ ⇔

= ∝ +

→− ∝ +

⇔ ( ) ( ),or, x xφ φ⇔ −

Page 12: Time reversed acoustics - Mathias Fink

xMax p(x,t)

.Source location 1 channel TRM

( )P x PointlikePhase Conjugated Mirror

Time Reversal versus Phase Conjugation

Field modulus

TR

PC

Page 13: Time reversed acoustics - Mathias Fink

Im

Re

A Complex Representation of the Field

Im

Source location

Off axis

Field Modulus

Focusing quality depends on the field to field correlation ()( * δω) ωω +ΨΨ

t

Polychromatic Focusing

Page 14: Time reversed acoustics - Mathias Fink

-Field-field correlation )()(ω * δωω+Ψ Ψ = fourier transform of the travel time distribution )(tI

0 50 100 150 200 250Time (µs)

)(tI

δω = 8 kΗz

2 2.5 3 3.5 4 4.5 5

MHz

ω∆

?δω

Thoules time, δτ =D2/L ~ 150 µs ∆ω/δω =150

FT

2 2.5 3 3.5 4 4.5 5

MHz

δω

FT

How many uncorrelated speckles ?

Page 15: Time reversed acoustics - Mathias Fink

Focusing in monochromatic mode : the lens

D

F

λF/D

Spatial Diversity

Page 16: Time reversed acoustics - Mathias Fink

Spatial and frequency diversity

One element time reversal mirror

-10 -5 0 5 10-25

-20

-15

-10

-5

0

-10 -5 0 5 10-25

-20

-15

-10

-5

0

dB

Phase conjugation Time-reversal

128 elements time reversal mirror

-10 -5 0 5 10-35

-30

-25

-20

-15

-10

-5

0

-10 -5 0 5 10-35

-30

-25

-20

-15

-10

-5

0

dB

TR1

PC1

PC128 TR128

Spatial and Frequency Diversity

Page 17: Time reversed acoustics - Mathias Fink

Communications in diffusive media with TRM

20-element Arraypitch ~ λ

5 receivers4 λ apart

Central frequency 3.2 MHz (λ=0.46 mm)

Distance 27 cm (~ 600 λ)

L=40 mm, 4.8mm=*

A.Derode, A. Tourin, J. de Rosny, M. Tanter, M. Fink, G. Papanicolaou

Page 18: Time reversed acoustics - Mathias Fink

T0 = 3.5 µs

-1+1

0.7µs

Transmission of 5 random sequences of 2000 bits to the receivers

#1 #2 #3 #4 #5 Error rate

Diffusive medium 0 0 0 1 0 10-4

Homogeneousmedium 489 640 643 602 503 28.77 %

Modulation BPSK

Page 19: Time reversed acoustics - Mathias Fink

Spatial focusing

- 1 5 - 1 0 - 5 0 5 1 0 1 5

- 2 5

- 2 0

- 1 5

- 1 0

- 5

0

1 2 3 4 5

12345

10 µs

16mm

Diffusive medium water

Page 20: Time reversed acoustics - Mathias Fink

Shannon Capacity (MIMO)

C = Log2 det (I+SNR × tH* H) bits/s/Hz

(Cover and Thomas 1991, Foschini 1998)

R = H E

Propagation OperatorFT

thij H(ω)

Page 21: Time reversed acoustics - Mathias Fink

The Time Reversal Operator tH* H

T R

tHH* E*

array

EH

HE

H*E*tHTR

array

tH* H E

M. Tanter

Page 22: Time reversed acoustics - Mathias Fink

C = Log2 det (I+SNR × tH* H )

∗= VDUH T

C = Log2 det (I+SNR × tU* D2 U )

U tU*= I

C = Log2 det (I+SNR × D2 )

C = Log2 1 + SNR × λi2∑

= Ni ..1

N independant channels, N degrees of freedom

Shannon Capacity in Diffusive Media

Page 23: Time reversed acoustics - Mathias Fink

Experimental results : singular values distribution

Homogeneous medium Diffusive medium40×40 inter-element impulse responses

→ At 3.2 MHz : 34 / 6 singular values (–32 dB)

The number of singular values is equal to the number ofindependant focal spots that one can create on the receivingarray

Page 24: Time reversed acoustics - Mathias Fink

( )p r , tiacoustic source

elementarytransducers

reflecting boundaries

( )p r ,T ti −

Receive mode

Transmit mode

The effect of boundaries on Time Reversal Mirror

Page 25: Time reversed acoustics - Mathias Fink

-1

-0,5

0

0,5

1

-40 0 40

Time (µs)

Ampl

itude

-50

-40

-30

-20

-10 0 -20-10

010

20m

m

dB

80

0

40

Time (µs)

Dep

th(m

m)

0

-40

1 -Time Reversal in an Ultrasonic Waveguide

Hau

teur

du

guid

e (m

m)

80µs0 40

40

0

0

-40

S

O y

x

L

H

vertical transducer

array

water

reflecting boundaries128 elements

P. Roux, M. Fink

Page 26: Time reversed acoustics - Mathias Fink

The Kaleidoscopic Effect : Virtual Transducers

pointsource S real

TRM

TRMimage

apertureof the TRM

in free water

apertureof the TRM

in thewaveguide

-50

-40

-30

-20

-10

0-20 -10 0 10 20

mmA

mpl

itude

(dB

)

guide d'ondeeau libre

A comparison between the focal spot with and without the waveguide

Open space

Waveguide effect

If the pitch is to large : grating lobes

Page 27: Time reversed acoustics - Mathias Fink

3.5 kHz tranceiver

3.5 kHz SRA (’99 and ’00)

L = 78 mN = 29

B. Kuperman, SCRIPPSTime Reversal in Ocean Acoustics

Page 28: Time reversed acoustics - Mathias Fink

Up-slope Experiment: Elba

1 m

Diffraction limit

30 m

100 m

10 km

Page 29: Time reversed acoustics - Mathias Fink

2 - Time-Reversal in a Chaotic Billiard

Silicon wafer – chaotic geometry

Transducers

Coupling tips

Carsten Draeger, J de Rosny, M. Fink

Ergodicity

Page 30: Time reversed acoustics - Mathias Fink
Page 31: Time reversed acoustics - Mathias Fink

2 ms : Heisenberg time of the cavity : time for any ray to reachthe vicinity of any point inside the cavity (in a wavelength)

Time-reversed field observed with an optical probe

Page 32: Time reversed acoustics - Mathias Fink

15 mm15 mm

waferscannedregion

(a) (b)

(c) (d)

(f)(e)

R R

R R

R R

How many uncorrelated speckle in the frequency bandwidth of thetransducers ?

For an ergodic cavity it is equalto the number of modes in thebandwidth :

In our case 400 modes : thusthe SNR is the square of the modenumber = 20

Why Ergodicity does not garantee aperfect time reversal ?

Waves are not particles and even notrays : Modal theory only

With a one channel TRM, what is the SNR ?

Page 33: Time reversed acoustics - Mathias Fink

The Cavity Formula

),,(),,(),,( ),,( tBBgtAAgtABgtABg ⊗−=⊗−

AB

In terms of the cavity modesA and B cannot exchangeall informations, becauseA and B are always at theantinodes of some modes

nψ eigenmodes

)sin()()(),,( ∑=n n

nnn

tBAtABgωωψψ

Carsten Draeger

Page 34: Time reversed acoustics - Mathias Fink

Origin of the diffraction limit

Wave focusing : 3 steps

Converging only

Both convergingand diverging

waves interfereDiverging only

Diffraction limit(λ/2)J. de Rosny, M. Fink

Monochromatic

exp j(kr+ωt) / rwith singularity

exp j(-kr+ωt) / rwith singularity

Sin (kr)/r . exp(jωt)without singularity

Page 35: Time reversed acoustics - Mathias Fink

Goal

convergingNo interferenceand singularity

« Perfect » TR - the acoustic sink

No diffraction limit

exp j(kr+ωt) / r

with singularity

Page 36: Time reversed acoustics - Mathias Fink

Principle of the acoustic sinkOut of phase

Page 37: Time reversed acoustics - Mathias Fink

The Acoustic Sink Formalism

Propagatingterm

Point-likesource

Source at r0 excited by f(-t)

(TR source)Converging

wave

)()(),(1022 rrtftr p

t

c∆ −−=−

∂∂

− δ

)()(),(1022 rrtftr p

t

c∆ −=

∂∂

− δ

Page 38: Time reversed acoustics - Mathias Fink
Page 39: Time reversed acoustics - Mathias Fink

Focal spots with and without an acoustic sink

λ/14 tip

Page 40: Time reversed acoustics - Mathias Fink

1 m

1 m

accelerometer100Hz <∆Ω < 10kHz

timeam

plitu

de

Green’s function:GA(t)

A

A nice application of Chaos : Interactive Objects

R. Ing, N. Quieffin, S. Catheline, M. Fink

How to transform any object in a tactile screen ?

Page 41: Time reversed acoustics - Mathias Fink

ampl

itude

Green’s function:GA(t)

Time Reversal:GA(-t)

1 m

1 m

A

Page 42: Time reversed acoustics - Mathias Fink

MEMORY

10msamp. GA(t)

A

B

C

amp. GB(t)

10ms

amp. GC(t)

10ms

Training step: library of Green functions

Page 43: Time reversed acoustics - Mathias Fink

MEMORY

amp. GA(-t)

amp. GB(-t)

amp. GC(-t)

amp. GB

’(t)

B

amp.

amp.

amp.

0.21

0.98

0.33

maxima:

POINT B

Localisation step by cross correlation

Page 44: Time reversed acoustics - Mathias Fink

Tactile Objects

Page 45: Time reversed acoustics - Mathias Fink

Some other examples

Page 46: Time reversed acoustics - Mathias Fink

• A new concept of smart transducer design with reverberation and programmable transmitters

• What happens if the source is outside the waveguide ?

Time Reversal in Leaky Cavities andWaveguides

Page 47: Time reversed acoustics - Mathias Fink

A first example : the D shape billiard

half-cylinder hydrophone needlecontact transducer

Page 48: Time reversed acoustics - Mathias Fink

h( , t)

Principle of time reversal focusing

Hydrophone needle

Time reversal process: )t,r(h)t,r(h)t,r(u 0t

−⊗=

u( , t)

h( , -t)x

y

z

0r

0r

0r

r

Page 49: Time reversed acoustics - Mathias Fink

Time Reversal Focusing with steering

Abs

ciss

ax

(mm

)

-25

0

25

75 100 125Time of arrival

xy

z

contact transducer

100mm

130mmmoving pulsed source

Page 50: Time reversed acoustics - Mathias Fink

A second example : the SINAI BILLIARD

30 emissiontransducers(1.5 MHz , 5mm x 8 mm pitch 1 mm)

Motors

z

xy

hydrophone electronics

Electronics :

Fully programmable multi-channelsystem.

Large transducer

element, not optimized

Page 51: Time reversed acoustics - Mathias Fink

2 µs

400 µs400 µs

Hydrophone

Emission transducers

Principle of TR Focusing

2 µs

Page 52: Time reversed acoustics - Mathias Fink

-45

-5

-15

-25

-35

0dB

FUN

DA

ME

NT

AL

0 20 40 60 80 100-0.4

-0.2

0

0.2

0.4

0.6

0.8A

mpl

itude

Time (µs) Distance(mm)

Dis

tanc

e(m

m)

TR Kaleidoscope (Fundamental and Harmonics)

-45

-5

-15

-25

-35

0dB

Dis

tanc

e(m

m)

Distance(mm)

HA

RM

ON

IC

0 20 40 60 80 100

-0.4

-0.2

0

0.2

0.4

0.6

Am

plitu

de

Time (µs)

Spatial lobes : - 30 dB

Spatial Lobes ~ - 50 dB

Temporal lobes : - 38 dB

Temporal lobes : -60 dB

Page 53: Time reversed acoustics - Mathias Fink

Building a 3D Image

Emissiontransducers

Receptiontransducer(harmonic)

Object0

20

40

0

20

40-80

-60

-40

-20

0

Distance (mm)Distance (mm)

Dis

tanc

e (m

m)

Page 54: Time reversed acoustics - Mathias Fink

In a dissipative medium

The effect of dissipation on Time Reversal :an example : the skull and brain therapy

G. Montaldo; M. Tanter, M. Fink

Page 55: Time reversed acoustics - Mathias Fink

Influence of the trabecular bone on the acoustic propagation

Diploë :Porous zone(c = 2700 m.s- 1)

External wall(c = 3000 m.s- 1)

Internal wall(c = 3000 m.s- 1) 0

),(

)(

1

)(

),()()(1

2

2

2=

∂−

∂+

t

trp

rcr

trpgraddivr

tr

ρρτ

Breaking the time reversal invariance

Page 56: Time reversed acoustics - Mathias Fink

o(-t) e(t)T

h e

i t

e r

a t i

v e

m

e t

h o

d

d(t)

First transmit step :the objective

c(t)Emission of thelobes

e(-t)o(t)+d(t) T.R and reemission :reconstruction of theobjective

c(-t)-d(t)+d(t)

Lobes reconstruction

e(-t)-c(-t)o(t)-d(t)-The differenceeliminates the lobes

Page 57: Time reversed acoustics - Mathias Fink

0 20 30 40 50 60-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Distance in mm

Am

plit

ud

e in

Db

10

10

1

20

30

Experiments : improvement of the focal spot

128 elts.1.5 MHz

Pitch 0.5 mm

D = 60 mm

F = 60 mm

Water

AbsorbingAnd aberratingUreol sample

128 elts.1.5 MHz

Pitch 0.5 mm

Page 58: Time reversed acoustics - Mathias Fink

Distance in mm

Tim

e in

µs

10 20 30 40 50

1

2

3

4

5

6

7 -35

-30

-25

-20

-15

-10

-5

0

Distance in mm10 20 30 40 50

1

2

3

4

5

6

7

Time ReversalFocusing

Focusing after 30iterations

Experiments : Spatial and temporal focusing

• Very simple operations : time reversal + signal substraction• Inversion just limited by the propagation time• Here, optimal focusing can be achieved in a few ms !!!

Page 59: Time reversed acoustics - Mathias Fink

Focusing through the SkullOptimal signal to transmit Classical Cylindrical law

Transducernumber j

1 128

Transducernumber j

1

0

25

0

25

-20 -10 0 10 20-35

-30

-25

-20

-15

-10

-5

0

Distance from the initial point source (mm)

Pres

sure

(dB

)

Spatial focusing

Page 60: Time reversed acoustics - Mathias Fink

300 elements Time Reversal Mirror (Therapy/Imaging)

Front view(300 elements and C 4-2 echographic probe)

Spherical active surface:Aperture 180 mm

Focal dist. 140 mm

Global view(300 elements and C 4-2 echographic probe)

128 Channels of a HDI 1000 scanner

200 Emission boards for THERAPY

100 Emission/Reception boards for THERAPY+IMAGING

Coupling + cooling system

Page 61: Time reversed acoustics - Mathias Fink

Correction of skull aberrations using an implanted hydrophone

Experimental scanwithout correction

Experimental scanwith correction

(Time reversal + AmplitudeCompensation)

Acoustic Pressure measured at focus : - 70 Bars, 1600 W.cm-2 (with correction)

- 15 Bars, 80 W.cm-2 (without correction)

Page 62: Time reversed acoustics - Mathias Fink

Transkull in vivo experiments

Page 63: Time reversed acoustics - Mathias Fink

MRI Histology

Transkull in vivo experiments

Transkull in vivo thermally induced necrosis