[ACS Symposium Series] Insect Pheromone Technology: Chemistry and Applications Volume 190 ||...

10
11 Monitoring the Performance of Eastern Spruce Budworm Pheromone Formulations C. J. WIESNER and P. J. SILK New Brunswick Research and Productivity Council, Fredericton, New Brunswick, E3B 5H1, Canada New methods and apparatus are described for evaluating the pheromone release characteristics of controlled release formulations of Δ11-tetradecenal both in the laboratory and following aerial application in the field. Laboratory release rates determined by these methods correlate well with rates observed in the field. The first attempts to influence mating behaviour of insects in their natural habitat using broadcast formulations of sex pheromones were conducted in the early seventies (1, 2., 3 ) . Beroza and his co-workers were able to show effective reduction of mating success in low-level infestations of gypsy moth. In the intervening ten years, a large number of "mating-disruption" tests have been carried out against both agricultural and forest insects (4). In virtually all instances, the problem has proven to be far more complex than had been anticipated. The interplay of biological, chemical and environmental factors has often led to inconclusive field trial results. All too often the criteria for success have not been met, while the cause for failure has been obscured due to a lack of control or understanding of the many variables. One of these variables which obviously has a powerful in- fluence on the result is the performance of the controlled re- lease formulation. Happily, this variable is one which can, in principle, be predicted and controlled. The eastern spruce budworm, Choristoneura fumiferana, Clem., is one of the most economically important coniferous forest defo- liators in the world. Several mating disruption experiments and field trials have been conducted since the mid 1970 T s (_5, 6), A great deal has been learned in the process but no clear-cut con- clusions regarding the feasibility of this approach as a manage- ment tool have, as yet, emerged. In an effort to simplify the interpretation of future field experiments, we undertook a study 0097-6156/82/0190-0209$06.00/0 © 1982 American Chemical Society Downloaded by PURDUE UNIV on August 28, 2014 | http://pubs.acs.org Publication Date: June 18, 1982 | doi: 10.1021/bk-1982-0190.ch011 In Insect Pheromone Technology: Chemistry and Applications; Leonhardt, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

Transcript of [ACS Symposium Series] Insect Pheromone Technology: Chemistry and Applications Volume 190 ||...

Page 1: [ACS Symposium Series] Insect Pheromone Technology: Chemistry and Applications Volume 190 || Monitoring the Performance of Eastern Spruce Budworm Pheromone Formulations

11

Monitoring the Performance of Eastern Spruce Budworm Pheromone Formulations

C. J. WIESNER and P. J. SILK

New Brunswick Research and Productivity Council, Fredericton, New Brunswick, E3B 5H1, Canada

New methods and apparatus are described for evaluating the pheromone release characteristics o f controlled release formulations of Δ11-tetradecenal both in the laboratory and following aerial application in the field. L a b o r a t o r y release r a t e s determined by these methods correlate well with rates observed in the field.

The f i r s t attempts t o i n f l u e n c e mating b e h a v i o u r of i n s e c t s i n t h e i r n a t u r a l h a b i t a t u s i n g b r o a d c a s t f o r m u l a t i o n s of sex pheromones were conducted i n the e a r l y s e v e n t i e s ( 1 , 2., 3 ) . Beroza and h i s co-workers were a b l e t o show e f f e c t i v e r e d u c t i o n of mating success i n l o w - l e v e l i n f e s t a t i o n s of gypsy moth. I n the i n t e r v e n i n g t e n y e a r s , a l a r g e number of " m a t i n g - d i s r u p t i o n " t e s t s have been c a r r i e d out a g a i n s t both a g r i c u l t u r a l and f o r e s t i n s e c t s ( 4 ) . I n v i r t u a l l y a l l i n s t a n c e s , the problem has proven to be f a r more complex than had been a n t i c i p a t e d . The i n t e r p l a y of b i o l o g i c a l , c h e m i c a l and env i r o n m e n t a l f a c t o r s has o f t e n l e d to i n c o n c l u s i v e f i e l d t r i a l r e s u l t s . A l l too o f t e n the c r i t e r i a f o r success have not been met, w h i l e the cause f o r f a i l u r e has been obscured due t o a l a c k of c o n t r o l o r u n d e r s t a n d i n g of the many v a r i a b l e s .

One of these v a r i a b l e s which o b v i o u s l y has a p o w e r f u l i n ­f l u e n c e on the r e s u l t i s the performance of the c o n t r o l l e d r e ­l e a s e f o r m u l a t i o n . H a p p i l y , t h i s v a r i a b l e i s one which can, i n p r i n c i p l e , be p r e d i c t e d and c o n t r o l l e d .

The e a s t e r n spruce budworm, C h o r i s t o n e u r a f u m i f e r a n a , Clem., i s one of the most e c o n o m i c a l l y important c o n i f e r o u s f o r e s t d e f o ­l i a t o r s i n the w o r l d . S e v e r a l mating d i s r u p t i o n experiments and f i e l d t r i a l s have been conducted s i n c e the mid 1970 Ts (_5, 6), A gr e a t d e a l has been l e a r n e d i n the p r o c e s s but no c l e a r - c u t con­c l u s i o n s r e g a r d i n g the f e a s i b i l i t y of t h i s approach as a manage­ment t o o l have, as y e t , emerged. I n an e f f o r t t o s i m p l i f y the i n t e r p r e t a t i o n of f u t u r e f i e l d e x p eriments, we undertook a study

0097-6156/82/0190-0209$06.00/0 © 1982 American Chemical Society

Dow

nloa

ded

by P

UR

DU

E U

NIV

on

Aug

ust 2

8, 2

014

| http

://pu

bs.a

cs.o

rg

Pub

licat

ion

Dat

e: J

une

18, 1

982

| doi

: 10.

1021

/bk-

1982

-019

0.ch

011

In Insect Pheromone Technology: Chemistry and Applications; Leonhardt, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

Page 2: [ACS Symposium Series] Insect Pheromone Technology: Chemistry and Applications Volume 190 || Monitoring the Performance of Eastern Spruce Budworm Pheromone Formulations

210 I N S E C T P H E R O M O N E T E C H N O L O G Y

of the performance of v a r i o u s c o n t r o l l e d r e l e a s e f o r m u l a t i o n s of ΔΙΙ-tetradecenal (TDAL), the sex pheromone of the e a s t e r n spruce budworm. The aim was t o f i n d one o r more f o r m u l a t i o n s whose p e r ­formance i s p r e d i c t a b l e and e f f i c i e n t under our p a r t i c u l a r N o r t h ­e a s t e r n e n v i r o n m e n t a l c o n d i t i o n s . T h i s paper d e s c r i b e s and i l l u s ­t r a t e s the t e c h n i q u e s which were developed d u r i n g the course of t h a t study.

E a r l y experiments i n our l a b o r a t o r y were concerned w i t h methods f o r sampling and a n a l y s i s of TDAL from f o r m u l a t i o n s ( 6 ) , i n s e c t s (7_) and from the f o r e s t atmosphere ( 8 ) . T h i s work was l a r g e l y founded upon concepts developed p r e v i o u s l y by B e r o z a et_ a l . ( 9, 1Ό, 11). S i n c e t h e n , s e v e r a l o t h e r groups have a p p l i e d these concepts t o the measurement of a number of d i f f e r e n t i n s e c t pheromone r e l e a s e r a t e s (12, 13). On the b a s i s of our e a r l y f i n d i n g s , we were convi n c e d t h a t the e x i s t i n g l a b o r a t o r y t e c h ­niques f o r r e l e a s e r a t e d e t e r m i n a t i o n from f o r m u l a t i o n s were inadequate. L a b o r a t o r y t e s t e d f o r m u l a t i o n s d i d not e x p e r i e n c e the extremes of c l i m a t i c v a r i a t i o n which a r e the norm i n the f i e l d and c o n s e q u e n t l y the r e l e a s e r a t e r e s u l t s were not t r a n s f e r a b l e to f i e l d performance.

I n o r d e r t o d e v i s e r e l e a s e r a t e methods which more c l o s e l y s i m u l a t e d the n a t u r a l ageing p r o c e s s , we c o n c e n t r a t e d our e f f o r t s on t h r e e main a s p e c t s of f o r m u l a t i o n e v a l u a t i o n : 1. Wind Tunnel A g e i n g , 2. E f f l u v i a l A n a l y s i s , and 3. Atmospheric C o n c e n t r a t i o n .

Wind Tunnel Ageing

E s t i m a t i o n of r e l e a s e r a t e s by measurement of r e s i d u a l p h e r ­omone as a f u n c t i o n of age i s s i m p l e and eco n o m i c a l . However, s i n c e the method q u a n t i t a t e s the amount of a c t i v e i n g r e d i e n t s r e m a i n i n g i n the f o r m u l a t i o n , the r e l e a s e r a t e i s determined by i n f e r e n c e and does not take i n t o account e i t h e r d e g r a d a t i o n or p o l y m e r i z a t i o n ( 1 4 ) . G i v e n a l a b i l e a l d e h y d i c pheromone such as TDAL, these p o t e n t i a l c h e m i c a l changes must be taken i n t o account. N e v e r t h e l e s s , a l a b o r a t o r y method f o r s i m u l a t i n g the n a t u r a l ageing p r o c e s s i s e s s e n t i a l .

Our f i r s t s t e p was t o develop a s i m p l e e f f e c t i v e wind t u n n e l which a l l o w e d us t o age f o r m u l a t i o n s i n the l a b o r a t o r y under v e r y n e a r l y n a t u r a l c o n d i t i o n s . Rather than attempt to c o n t r o l a l l c l i m a t i c parameters - temperature, p r e s s u r e , h u m i d i t y , l i g h t i n ­t e n s i t y , wind speed, t u r b u l e n c e , e t c . - which would have been a f o r m i d a b l e e n g i n e e r i n g t a s k , a v e r y s i m p l e d e s i g n was chosen i n which o n l y a i r speed, temperature and i l l u m i n a t i o n were c o n t r o l l e d The o n l y r e a l d e f i c i e n c y i n t h i s system i s the l a c k of c o n t r o l of h u m i d i t y . However, t h a t aspect was addressed s e p a r a t e l y by meas­u r i n g the pheromone r e l e a s e r a t e of each f o r m u l a t i o n under con­d i t i o n s of v e r y h i g h and v e r y low h u m i d i t y . To d a t e , none of the c a n d i d a t e s t e s t e d has shown a major h u m i d i t y dependence.

The wind t u n n e l i s shown i n F i g u r e 1. A i r f l o w which i s gen­e r a t e d by an exhaust fan(D) can be v a r i e d from about 0.2 - 3.0

Dow

nloa

ded

by P

UR

DU

E U

NIV

on

Aug

ust 2

8, 2

014

| http

://pu

bs.a

cs.o

rg

Pub

licat

ion

Dat

e: J

une

18, 1

982

| doi

: 10.

1021

/bk-

1982

-019

0.ch

011

In Insect Pheromone Technology: Chemistry and Applications; Leonhardt, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

Page 3: [ACS Symposium Series] Insect Pheromone Technology: Chemistry and Applications Volume 190 || Monitoring the Performance of Eastern Spruce Budworm Pheromone Formulations

11. wiESNER A N D S I L K Eastern Spruce Budworm Pheromone 211

meters per second. A i r i s drawn through a h e a t e r ( A ) , passes i n t o a m i x i n g chamber(B) and i n t o the t e s t s e c t i o n ( C ) . Access t o the t e s t s e c t i o n i s through a g l a s s p o r t ( E ) which a l s o p e r m i t s i l l u m ­i n a t i o n by a s t a n d a r d sunlamp(F).

The o p e r a t i n g c o n d i t i o n s were a r r i v e d a t e m p i r i c a l l y by ad­j u s t i n g temperature, wind speed and i l l u m i n a t i o n on a d i u r n a l c y c l e u n t i l c o n d i t i o n s were found which generated the same r e ­s i d u a l pheromone curve from a st a n d a r d f o r m u l a t i o n i n the t u n n e l as t h a t f o r m u l a t i o n e x p e r i e n c e d i n the f i e l d . F o r t h i s s t a n d a r d ­i z a t i o n , o n e - e i g h t h i n c h square Hereon f l a k e s c o n t a i n i n g an a v e r ­age 13.3% TDAL by weight were used. T h i s , as w e l l as a l l o t h e r f o r m u l a t i o n s , were t e s t e d , as n e a r l y as p o s s i b l e , i n the same form which they would have upon a e r i a l a p p l i c a t i o n . They were e i t h e r coated o r mixed w i t h a recommended s t i c k e r and measured a l i q u o t s were a p p l i e d t o rounds of f i l t e r paper. These were then mounted on r a c k s i n the t e s t s e c t i o n of the t u n n e l .

Having shown t h a t i d e n t i c a l a geing c u r v e s c o u l d be generated w i t h one f o r m u l a t i o n , the assumption was made t h a t , under the same o p e r a t i n g c o n d i t i o n s , o t h e r f o r m u l a t i o n s would a l s o behave s i m i l a r l y i n the t u n n e l and the f o r e s t . The o p e r a t i n g c o n d i t i o n s of the t u n n e l a r e as f o l l o w s :

L i g h t / 8 hours / 25 ± 1°C / 2.4 ± 0.1 m/s Dark / 16 hours / 14 ± 1°C / 0.55 ± 0.02 m/s

E f f l u v i a l A n a l y s i s

The a c t u a l a i r v e l o c i t y i n our o r i g i n a l e f f l u v i a l pumping chamber (6) o p e r a t i n g a t 100 cc/min was about 5 cm/min, which we r e g a r d as n e g l i g i b l e . T h i s , we b e l i e v e d , was l a r g e l y r e s p o n s i b l e f o r the l a c k of c o r r e l a t i o n between l a b o r a t o r y e f f l u v i a l and f i e l d r e s i d u a l pheromone r e l e a s e r a t e s . I n o r d e r t o a c h i e v e r e a l i s t i c a i r v e l o c i t i e s , the diameter of the chamber was c o n s t r i c t e d con­s i d e r a b l y . The m o d i f i e d chamber i s shown i n F i g u r e 2. The form­u l a t i o n i s suspended on a w i r e i n the case of l a r g e p a r t i c l e s w h i l e m i c r o d i s p e r s e d m a t e r i a l s a r e coa t e d on a wooden p o p s i c l e s t i c k . These a r e p l a c e d i n the i n n e r tube(A) w i t h o u t t o u c h i n g the g l a s s w a l l . The tube i s then i n s e r t e d through a stop p e r i n t o the l a r g e r chamber(B) t o w i t h i n 2 cm of the bed of Porapak Q® r e s i n ( C ) supported on a g l a s s s i n t e r . The apparatus i s p l a c e d i n a temper­a t u r e c o n t r o l l e d chamber and connected t o a n i t r o g e n s o u r c e . With t h i s arrangement, i t i s p o s s i b l e to generate a i r v e l o c i t i e s up t o 102 m/min i n the i n n e r tube. The samples are pumped f o r two hours a f t e r which the r e s i n and the w a l l s of the main chamber are washed w i t h pentane. The TDAL i s then q u a n t i t a t e d by GC. Exper­iments run a t maximum f l o w r a t e s w i t h two adso r b e r s i n s e r i e s , showed n e g l i g i b l e b r e a k t h r o u g h (approx. 0.4%). The a n a l y t i c a l methods have been d e s c r i b e d i n d e t a i l elsewhere ( 7 ) .

T h i s apparatus i s used f o r two types of experiments: 1. A i r v e l o c i t y dependence of the r e l e a s e r a t e a t 25°C and 2.7,

Dow

nloa

ded

by P

UR

DU

E U

NIV

on

Aug

ust 2

8, 2

014

| http

://pu

bs.a

cs.o

rg

Pub

licat

ion

Dat

e: J

une

18, 1

982

| doi

: 10.

1021

/bk-

1982

-019

0.ch

011

In Insect Pheromone Technology: Chemistry and Applications; Leonhardt, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

Page 4: [ACS Symposium Series] Insect Pheromone Technology: Chemistry and Applications Volume 190 || Monitoring the Performance of Eastern Spruce Budworm Pheromone Formulations

212 I N S E C T P H E R O M O N E T E C H N O L O G Y

Mixing Chamber Β

[v/ννννννγι

w w w w ^ Λ Λ Λ Λ Λ Λ Λ Α νΛΛΛΛΛΛΛ/ > Λ Λ Λ Λ Λ Λ Λ Γ

Sunlamp F

, Heat Sensor

7 '

Heater A

Test Section C

Figure 1. Wind tunnel for formulation aging. Dimensions of test section are: length, 40; width, 20; and height, 20 cm.

N;

PORAPAK Q c

FLOWMETER

Figure 2. Modified effluvial pumping chamber. Key: A, inner tube; B, larger chamber; and C, Porapak Q resin.

Dow

nloa

ded

by P

UR

DU

E U

NIV

on

Aug

ust 2

8, 2

014

| http

://pu

bs.a

cs.o

rg

Pub

licat

ion

Dat

e: J

une

18, 1

982

| doi

: 10.

1021

/bk-

1982

-019

0.ch

011

In Insect Pheromone Technology: Chemistry and Applications; Leonhardt, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

Page 5: [ACS Symposium Series] Insect Pheromone Technology: Chemistry and Applications Volume 190 || Monitoring the Performance of Eastern Spruce Budworm Pheromone Formulations

11. wiESNER A N D S I L K Eastern Spruce Budworm Pheromone 213

26.9 and 102 m/min and 2. Temperature dependence of t h a t r a t e a t f o u r temperatures (10°, 15°, 20° and 30°C) and 26.9 m/min a i r v e l ­o c i t y . A l l measurements a r e made on f o r m u l a t i o n s which have been aged f o r seven days i n the wind t u n n e l .

L a b o r a t o r y R elease Rate R e s u l t s

To d a t e , over a dozen d i f f e r e n t f o r m u l a t i o n s have been t e s t e d i n our l a b o r a t o r y . The f o l l o w i n g t h r e e examples r e p r e s e n t a c r o s s -s e c t i o n of the t e s t r e s u l t s and are p r e s e n t e d t o i l l u s t r a t e the

a p p l i c a t i o n of these new t e c h n i q u e s : (A) Hereon 1/8" f l a k e s , (B) C a p s u l a r P r o d u c t s Company m i c r o c a p s u l e s , (C) I m p e r i a l Chemical I n d u s t r i e s m i c r o c a p s u l e s .

The wind t u n n e l r e s i d u a l pheromone curve s f o r the t h r e e f o r ­m u l a t i o n s a r e shown i n F i g u r e 3.

Exa m i n a t i o n of these curves suggests immediately t h a t formu­l a t i o n s A and C have r e a s o n a b l y c o n s t a n t r a t e s of r e l e a s e and an e f f e c t i v e l i f e - t i m e of p o s s i b l y f o r t y days w h i l e Β has l o s t 90% o f i t s a c t i v e i n g r e d i e n t i n the f i r s t week. The s c a t t e r about the curve C may be due t o the d i f f i c u l t y of r e p r o d u c i b l y sampling m i c r o d i s p e r s e d f o r m u l a t i o n s .

F i g u r e 4. shows the e f f e c t of a i r v e l o c i t y upon the r e l e a s e r a t e of f o r m u l a t i o n "A" pumped f o r a t o t a l of s i x hours. Measure­ments were made a t t h r e e f l o w r a t e s (2.7, 26.9 and 102 m/min) and at 25°C. Each p o i n t r e p r e s e n t s the average r e l e a s e r a t e of a c t i v e i n g r e d i e n t i n the p r e c e d i n g two hours of pumping. A t 2.7 m/min the r a t e o f r e l e a s e i s c o n s t a n t w i t h time of pumping, however, a t the h i g h e r f l o w r a t e s about f o u r hours of exposure were r e q u i r e d t o a c h i e v e a s t e a d y - s t a t e r a t e of r e l e a s e .

A b r i e f i n s p e c t i o n of the s l o p e o f the r e s i d u a l pheromone curve "A" i n F i g u r e 3. i n d i c a t e s a r e l e a s e r a t e of 4.3% per day on day 7 and 1.1% per day on day 28. T h i s t r a n s l a t e s t o 2 yg/hr and 0.5 yg/hr, r e s p e c t i v e l y . The seven day v a l u e compares v e r y w e l l w i t h 1.75 yg/hr, the steady s t a t e r e l e a s e r a t e measured a t 102 m/min. ( F i g u r e 4.)

F i g u r e 5. i l l u s t r a t e s the s t e a d y - s t a t e r e l e a s e r a t e depend­ence of f o r m u l a t i o n C. I n a l l c a s e s , e x t r a p o l a t i o n of the curves suggests t h a t they p l a t e a u beyond about 100 m/min.

F i n a l l y , F i g u r e 6. i l l u s t r a t e s the temperature dependence of f o r m u l a t i o n A.

Atmospheric C o n c e n t r a t i o n A n a l y s i s

The f i n a l step i n the t e s t i n g program e v a l u a t e s the p e r ­formance of m a t e r i a l a e r i a l l y a p p l i e d on s m a l l f i e l d p l o t s . S i n c e t h i s procedure aims t o d e f i n e the p h y s i c o - c h e m i c a l c h a r a c t e r i s t i c s of each p r o d u c t , not the b i o l o g i c a l e f f e c t , the f o l l o w i n g two proc e s s e s a r e monitored: 1. R e s i d u a l pheromone from f o r m u l a t i o n c o l l e c t e d i n the f i e l d z e r o t o f o r t y days po s t a p p l i c a t i o n and 2. atmospheric c o n c e n t r a t i o n of TDAL i n the f o r e s t canopy.

Dow

nloa

ded

by P

UR

DU

E U

NIV

on

Aug

ust 2

8, 2

014

| http

://pu

bs.a

cs.o

rg

Pub

licat

ion

Dat

e: J

une

18, 1

982

| doi

: 10.

1021

/bk-

1982

-019

0.ch

011

In Insect Pheromone Technology: Chemistry and Applications; Leonhardt, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

Page 6: [ACS Symposium Series] Insect Pheromone Technology: Chemistry and Applications Volume 190 || Monitoring the Performance of Eastern Spruce Budworm Pheromone Formulations

214 I N S E C T P H E R O M O N E T E C H N O L O G Y

χ

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 A G E (days)

Figure 3. Residual pheromone curves for formulations A, B, and C aged 3-4 weeks in the wind tunnel. Key: Α, (Πλ Hereon flakes; B, (O), Capsular Products

Company microcapsules; C, (X), Imperial Chemical Industries microcapsules.

Figure 4. Release rates at 3 wind velocities and 25°C of formulation A aged 7 days in the wind tunnel. Key: 2.7 m/min (^); 26.9 m/min (Αλ* and 102 m/min

(·)·

Dow

nloa

ded

by P

UR

DU

E U

NIV

on

Aug

ust 2

8, 2

014

| http

://pu

bs.a

cs.o

rg

Pub

licat

ion

Dat

e: J

une

18, 1

982

| doi

: 10.

1021

/bk-

1982

-019

0.ch

011

In Insect Pheromone Technology: Chemistry and Applications; Leonhardt, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

Page 7: [ACS Symposium Series] Insect Pheromone Technology: Chemistry and Applications Volume 190 || Monitoring the Performance of Eastern Spruce Budworm Pheromone Formulations

11. wiESNER A N D S I L K Eastern Spruce Budworm Pheromone 215

5 50 100

V E L O C I T Y (m/min)

Figure 5. Wind velocity dependence of the steady-state release rate of formulation C at 25°C, aged 7 days in the wind tunnel.

10 15 20 T E M P E R A T U R E °C

30

Figure 6. Temperature dependence of the release rate of formulation A aged 7 days in the wind tunnel at a wind velocity of 26.9 m/min.

Dow

nloa

ded

by P

UR

DU

E U

NIV

on

Aug

ust 2

8, 2

014

| http

://pu

bs.a

cs.o

rg

Pub

licat

ion

Dat

e: J

une

18, 1

982

| doi

: 10.

1021

/bk-

1982

-019

0.ch

011

In Insect Pheromone Technology: Chemistry and Applications; Leonhardt, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

Page 8: [ACS Symposium Series] Insect Pheromone Technology: Chemistry and Applications Volume 190 || Monitoring the Performance of Eastern Spruce Budworm Pheromone Formulations

216 I N S E C T P H E R O M O N E T E C H N O L O G Y

The measurement of pheromone c o n c e n t r a t i o n s i n the atmos­phere was f i r s t d e s c r i b e d by Caro et a l . f o r d i s p a r l u r e ( 1 1 ) . U s i n g an a d a p t a t i o n of h i s method we have developed sampling and a n a l y t i c a l t e c h n i q u e s s p e c i f i c a l l y f o r t e t r a d e c e n a l q u a n t i t a t i o n .

The aldehyde i s trapped w i t h h i g h volume samplers suspended i n mid-canopy drawing 25 - 30 nrfyhr of a i r through a bed of 20 g of A m b e r l i t e XAD-2® r e s i n . O r i g i n a l l y the pheromone was d e r i v a t -i z e d t o the p e n t a f l u o r o b e n z y l oxime a f t e r s o l v e n t e x t r a c t i o n from the r e s i n ( 8 ) . T h i s was f o l l o w e d by s i l i c a g e l column clean-up and q u a n t i t a t i o n by c a p i l l a r y GC w i t h e l e c t r o n c a p t u r e d e t e c t i o n . T h i s gave s a t i s f a c t o r y r e s u l t s but was t e d i o u s and ex p e n s i v e . A l s o the d e r i v a t i z a t i o n produced e l e c t r o n c a p t u r i n g i m p u r i t i e s which o c c a s i o n a l l y i n t e r f e r e d w i t h the t e t r a d e c e n a l peak. Our pr e s e n t method of a n a l y s i s i n v o l v e s q u a n t i t a t i o n o f TDAL u s i n g a c a p i l l a r y column GC/MS t e c h n i q u e . The GC/Mass Spectrometer ( F i n n i g a n 4021) i s used i n the m u l t i p l e i o n d e t e c t i o n (MID) mode under computer c o n t r o l . S p e c i f i c i o n s i n both the i n t e r n a l s t a n ­dard (decylbenzene) and the pheromone are r e c o r d e d . The combin­a t i o n o f h i g h r e s o l u t i o n c a p i l l a r y gas chromatography and the s p e c i f i c i t y of the mass spectrometer i n the MID mode, makes t h i s t e c h n i q u e s u p e r i o r t o the oxime method, a l b e i t , a l i t t l e l e s s s e n s i t i v e . (EC MOO peg; MID ^500 peg)

F i g u r e 7. shows the r e s u l t s of a f i e l d t e s t o f f o r m u l a t i o n A. The p l a s t i c l a m i n a t e d f l a k e s were a p p l i e d a t a v e r y h i g h r a t e (500 g A.I./ha) on June 29th, 1980 t o a mixed s p r u c e / f i r stand near Machias, Maine. The two curves r e p r e s e n t mid-day (12:00 - 14:00) canopy c o n c e n t r a t i o n s of TDAL as w e l l as the temperatures a t t h a t time. A p e r i o d of heavy r a i n spanning J u l y 1 s t and 2nd i s r e ­f l e c t e d b o t h i n low noon temperatures and low aldehyde c o n c e n t r a ­t i o n s .

As mentioned above, the s l o p e o f r e s i d u a l pheromone curve "A" (Fi g U r e 3.) g i v e s the r e l e a s e r a t e on day 7 as 2 yg/hr and on day 28 as 0.5 yg/hr, a r a t i o of 4:1. The atmospheric c o n c e n t r a t i o n s on those days were 5 ng/m^ and 0.5 ng/m^, a r a t i o o f 10:1. I n view of the unknown d i l u t i o n e f f e c t o f v a r y i n g m e t e o r o l o g i c a l c o n d i t i o n s , the r e l a t i v e correspondence between r e l e a s e r a t e and atmospheric c o n c e n t r a t i o n i s q u i t e good.

C o n c l u s i o n s

The t e c h n i q u e s d e s c r i b e d and i l l u s t r a t e d above now enable us to p r e d i c t r e l i a b l y the i n f l u e n c e of the major c l i m a t i c v a r i a b l e s upon the r a t e o f r e l e a s e of ΔΙΙ-tetradecenal from c o n t r o l l e d r e ­l e a s e f o r m u l a t i o n s under f i e l d c o n d i t i o n s . With s u i t a b l e r e c a l -i b r a t i o n , these methods shou l d be a p p l i c a b l e t o any c l i m a t i c c o n d i t i o n s as w e l l as any c h e m i c a l s . A complete u n d e r s t a n d i n g o f the r e l e a s e performance of a g i v e n f o r m u l a t i o n w i l l , f o r the f i r s t t i m e , p e r m i t us t o i n t e r p r e t the r e s u l t s of a f i e l d treatment w i t h the c o n f i d e n c e t h a t we are d e a l i n g w i t h a b i o l o g i c a l e f f e c t , n o t a f o r m u l a t i o n e f f e c t .

Dow

nloa

ded

by P

UR

DU

E U

NIV

on

Aug

ust 2

8, 2

014

| http

://pu

bs.a

cs.o

rg

Pub

licat

ion

Dat

e: J

une

18, 1

982

| doi

: 10.

1021

/bk-

1982

-019

0.ch

011

In Insect Pheromone Technology: Chemistry and Applications; Leonhardt, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

Page 9: [ACS Symposium Series] Insect Pheromone Technology: Chemistry and Applications Volume 190 || Monitoring the Performance of Eastern Spruce Budworm Pheromone Formulations

11. wiESNER A N D S I L K Eastern Spruce Budworm Pheromone 217

J U N E J U L Y A U G U S T

Figure 7. Midday pheromone concentrations and temperatures at mid-canopy following aerial application of formulation A (500 g a.i./ha).

Dow

nloa

ded

by P

UR

DU

E U

NIV

on

Aug

ust 2

8, 2

014

| http

://pu

bs.a

cs.o

rg

Pub

licat

ion

Dat

e: J

une

18, 1

982

| doi

: 10.

1021

/bk-

1982

-019

0.ch

011

In Insect Pheromone Technology: Chemistry and Applications; Leonhardt, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

Page 10: [ACS Symposium Series] Insect Pheromone Technology: Chemistry and Applications Volume 190 || Monitoring the Performance of Eastern Spruce Budworm Pheromone Formulations

2 1 8 I N S E C T P H E R O M O N E T E C H N O L O G Y

Acknowledgments

Support of t h i s p r o j e c t by the Canadian F o r e s t r y S e r v i c e , En­vironment Canada under C o n t r a c t 1SS80-00066, i s g r a t e f u l l y acknow­ledged.

Literature Cited

1. Stevens, L.J., and Beroza, M. J. Econ. Entomol. 1972, 65, 1090-5.

2. Beroza, M.; Stevens, L.J.; Bierl, B.A.; Philips, F.M.; T a r d i f f , J . G . R . Envi ron . Entomol. 1973, 2, 1051-7.

3. Beroza, M.; Hood, C.S.; Trefey, D . ; Leonard, D.E.; Klassen , W.; Stevens, L.J. J. Econ. Entomol. 1974, 67, 659-64.

4. Roelofs , Wendell L., Ed. "Es t ab l i sh ing E f f i cacy of Sex At t rac tan t s and Disruptants for Insect C o n t r o l " ; The Entom­ological Society of America, 1979.

5. Sanders, C.J. in "Chemical Ecology: Odour Communication i n Animals"; F.J. Ritter, E d . ; E l sev ie r /Nor th -Hol l and Biomedical Press : Amsterdam, 1979; p 281.

6. Wiesner, C.J., and Silk, P.J. "Report of Spruce Budworm Pher­omone Trials - Maritimes 1978"; Maritimes For . Res. Centre, File Rep.; 62-64.

7. S i l k , P.J.; Tan, S . H . ; Wiesner, C.J.; Ross, R.J.; Lonergan, G.C. Env i ron . Entomol. 1980, 9, 640-644.

8. Wiesner, C.J.; Silk, P.J.; Tan, S . H . ; Fullarton, S. Can. Ent . 1980, 112, 333-334.

9. Beroza, M.; Bierl, B.A.; James, R.; Devilbiss, D. J. Econ. Entomol. 1975, 68, 369-372.

10. Beroza, M. in "Pest Management wi th Insect Sex At t r ac tan t s and other Behaviour C o n t r o l l i n g Chemicals"; M. Beroza, E d . ; ACS Symposium Ser i e s , Number 23. American Chemical Soc ie ty : Washington, D . C . , 1976; p 99.

11. Caro, J.H.; Bierl, B.A.; Freeman, H.P.; Sonnet, P . E . J . Agric. Food Chem. 1978, 26, 461-463.

12. Look, M. J. Chem. E c o l . 1976, 2, 482-486. 13. Cross , J.H.; Tumlinson, J.H.; Heath, R.E.; Burnet t , D . E . J.

Chem. E c o l . 1980, 6, 759-770. 14. Cross , J . H . J. Chem. E c o l . 1980, 6, 789-795.

RECEIVED February 24, 1982.

Dow

nloa

ded

by P

UR

DU

E U

NIV

on

Aug

ust 2

8, 2

014

| http

://pu

bs.a

cs.o

rg

Pub

licat

ion

Dat

e: J

une

18, 1

982

| doi

: 10.

1021

/bk-

1982

-019

0.ch

011

In Insect Pheromone Technology: Chemistry and Applications; Leonhardt, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.