A Summary of Hydrogen Spectroscopyradphys4.c.u-tokyo.ac.jp/leap2016/talks/20160308/... · 545 nm...

30
A Summary of Hydrogen Spectroscopy Jochen Walz Institut f¨ ur Physik, Johannes Gutenberg-Universit¨ at Mainz Helmholtz-Institut Mainz

Transcript of A Summary of Hydrogen Spectroscopyradphys4.c.u-tokyo.ac.jp/leap2016/talks/20160308/... · 545 nm...

  • A Summary of

    Hydrogen Spectroscopy

    Jochen Walz

    Institut für Physik, Johannes Gutenberg-Universität Mainz

    Helmholtz-Institut Mainz

  • Theodor W. Hänsch,

    Arthur L. Schawlow, and

    Geoge W. Series:

    “The Spectrum of Atomic Hydrogen,”

    Sci. Am. March 1979, p. 72–86

  • T. W. Hijmans et al., J. Opt. Soc. Am. B 6 (1989) 2235–43

  • 1 S – 2 P and 1 S – 2 S Transitions

    2 P: τ ' 1.6 ns → ∼ 100 MHz natural linewidthstrong transition, λ = 121.6 nm (Lyman-α)

    use: laser-cooling

    2 S: τ ' 120 ms → ∼ 1 Hz natural linewidthtwo-photon transition, each photon at λ = 243 nm

    linear Doppler-effect cancels,

    if photons come from opposite directions

    ν/ν0 = 1 + ~k · ~v − v2/2c2 +O(v4/c4)

    use: test of QED, ground-state Lamb-shift, rD/rp,

    Rydberg constant (combined with other transitions),

    drift of fundamental constants, . . .

    2 S – 2 P mixing: electric field (few V / cm)

    → can detect 2 S excitation by fluorescence at Lyman-alpha

  • 1 S –2 P

    Lyman-α spectroscopy

  • Four-wave mixing in mercury vapour

    LN2 trap

    pumpturbo

    ������������������ ����

    alignmentµ30 m pinhole

    CW Ti:Sapph.

    LBO

    798 nm

    SHG

    BBO

    SHG

    rotation

    DM

    DM

    polarisation

    Single modeAr−ion laser 257 nm

    (900 mW)

    399 nm(920 mW)Ar−ion laser

    CW Dye−laser

    545 nm (1.7 W)

    514 nm

    He

    f=20 cm

    220 oCmercury heatpipe

    1.014 umAPD

    2MgF L − filtersα

    vacuum setup

    PM

    121.56 nm

    counterphoton

    DM6 P

    6 S

    12 P

    1

    7 S1

    6 P3

    1

    257 nm

    399 nm

    545 nm

    121.6 nm

    Hg

    1014 nm

    1,3

    Hg

    AC

    ACLyman-α generation

    laser system

    K. S. Eikema et al. PRL 83 (1999) 3828, M. Scheid at al. Opt. Lett. 32 (2007) 955

  • ����������� � ������ ���� �� ������

    α

    LN2trap

    LN2trap

    turbopump

    turbopump

    turbopump

    turbo−pump

    He

    LN2 trap

    15 mmcool

    ing

    + 15 cm

    wavelengthsfundamental

    heated

    mercuryheatpipe

    cooledHg

    heated

    MgF2

    argon

    MgF2 lenses

    pinhole0.5 mm

    APDDM

    1014 nm filter

    dissociator

    collimation 1:250

    80K

    LN2

    0.8 mm

    PM

    vacuum

    photon counting

    Lyman−filters

    PM

    Lyman −α

    H2

    �������� �������������� ����������

  • Lyman-α spectrum at almost natural linewidth

    1s2S

    1/22p

    2P

    3/2

    Fg

    = 0

    Fg

    = 1

    0 1000 2000 3000 4000

    detuning at 121,56 nm [MHz]

    100

    300

    500

    700

    VUV fluorescence[counts/0,5 s]

    Fg=1

    Fg=0

    1420.4 MHz

    23.7 MHzF

    e=2

    Fe=1

    12S

    1/2

    22P,S

    1/2

    22P

    3/2

    1 25 λ = 121.56 nm

    Γ2p

    = 99.7 MHz

    FWHM = 119± 2 MHzfür Fg = 1

    FWHM = 120± 3 MHzfür Fg = 0

    the natural linewidth isΓ = 99,7 MHz

    K. S. E. Eikema, J. W., and T. W. Hänsch: PRL 86 (2001) 56798

  • 1 S –2 S

    two-photon spectroscopy

  • Early 1 S – 2 S two-photon spectroscopy

    pulsed dye laser (pressure-tuned) (at λ = 486 nm → frequency-doubling)comparison with Balmer-β

    T. W. Hänsch, S. A. Lee, R. Wallenstein, and C. Wieman, Phys. Rev. Lett. 34 (1975) 307

    continuous dye laser, 130Te2 wavelength reference

    J. R. M. Barr et al., Phys. Rev. Lett. 56 (1986) 580

    D. H. McIntyre et al., Phys. Rev. A 39 (1989) 4591 7× 10−10

  • Hydrogen atomic beam apparatus at MPQ Garching

    T. W. Hänsch, Nobel Lecture 2005

  • T. W. Hänsch, Nobel Lecture 2005

  • Transportable infrared frequency reference

    CH4-stabilized HeNe-laser at 3.392 µm (Chebotaev-group, Novosibirsk)

    fr = 88 376 181 599.67(15) kHz, 1.8× 10−12

    7-th harmonic of fr:

    618.633 THz

    1 S – 2 S transition frequency:

    f0 = 2 466.061 413 187 018 (11) THz

    frequency of the blue laser (λ = 486 nm), f0/4:

    616.515 THz

    → can use fr as a frequency reference, but there is a2.1 THz frequency gap in the blue

  • T. Andreae et al., Phys. Rev. Lett. 69 (1992) 1923 2.8× 10−11

  • Thomas Udem

    Habilitationsschrift

    2004

  • Optical frequency interval divider

    H. R. Telle et al., Opt. Lett. 15 (1990) 532

  • Optical frequency interval divider chain

    Th. Udem et al., Phys. Rev. Lett. 79 (1997) 2646, 3.4× 10−13

  • M. Niering et al., Phys. Rev. Lett. 84 (2000) 5496 1.8× 10−14

    measurement with

    frequency-comb

    referenced to

    Cs atomic clock

  • M. Fischer et al., Phys. Rev. Lett. 92 (2004) 230802 1.4× 10−14

    measurement with

    self-referenced

    frequency-comb,

    referenced to

    Cs atomic clock

  • 1 S –2 S frequency measurement referenced to national standard Cs clock

    A. Matveev et al., Phys. Rev. Lett. 110 (2013) 230801, 4.5× 10−15

  • A. Matveev et al., Phys. Rev. Lett. 110 (2013) 230801, 4.5× 10−15

  • 2 466 061 413 187 018 (11) Hz

    A. Matveev et al., Phys. Rev. Lett. 110 (2013) 230801, 4.5× 10−15

  • spectroscopy with

    trapped hydrogen atoms

  • Spectroscopy with trapped hydrogen atoms

    Amsterdam: J. T. M. Walraven et al. pulsed Lyman-α laser cooling

    MIT: D. Kleppner et al. 1 S – 2 S spectroscopy

    Motivation for both experiments: Bose-Einstein condensation

    Relevance to our field: use few antihydrogen atoms efficiently

  • O. J. Luiten et al., Appl. Phys. B 59 (1994) 311

  • Pulsed Lyman-α laser cooling at Amsterdam

    I. D. Setija et al., “Optical cooling of atomic hydrogen in a magnetic trap,” Phys. Rev. Lett. 70 (1993) 2257

  • Claudio Lenz Cesar, PhD thesis (MIT), 1995

  • 1 S – 2 S two-photon spectroscopy at MIT

    Claudio L. Cesar et al., “Two-Photon Spectroscopy of Trapped Atomic Hydrogen,” Phys. Rev. Lett. 77 (1996) 255

    diagnostic for Bose-Einstein condensation: Dayle G. Fried et al., Phys. Rev. Lett. 81 (1998) 3811

  • Spectroscopy and cooling of trapped antihydrogen

    Some publications:

    G. Gabrielse, in Fundamental Symmetries (Plenum, New York, 1987), p. 59

    T. W. Hänsch and C. Zimmermann, Hyp. Int. 76 (1993) 47

    J. T. M. Walraven, Hyp. Int. 76 (1993) 205

    Claudio L. Cesar, Phys. Rev. A 64 (2001) 023418

    K. Blaum and M. G. Raizen, White Paper to FLAIR at GSI, 2009

    Saijun Wu, Roger C. Brown, William D. Phillips, and J. V. Porto, Phys. Rev. Lett. 106 (2011) 213001

    P. H. Donnan, M. C. Fujiwara, and F. Robicheaux, J. Phys. B, 46 (2013) 025302

    . . . and many others

  • Summary

    . . . many things have been left out . . .

    celebrated hydrogen success stories�

    �1 S–2 S spectroscopy

    �magnetic trapping

    cold atomic beam apparatus pulsed Lyman-α laser cooling

    ultra-stable 243 nm laser source Bose-Einstein condensation

    optical frequency metrology

    (future) antihydrogen spectroscopy

    1 S–2 S: magnetic trapping (ALPHA, ATRAP)

    hyperfine: polarized atomic beam (ASACUSA)

    many, many orders of magnitude fewer atoms . . .

    detection, however, can be much more efficient

    → hyperfine spectroscopy (ALPHA)