34.CLEBSCH-GORDAN COEFFICIENTS,SPHERICALHARMONICS…pdg.lbl.gov/2002/clebrpp.pdf ·...

1
34. Clebsch-Gordan coefficients 010001-1 34. CLEBSCH-GORDAN COEFFICIENTS, SPHERICAL HARMONICS, AND d FUNCTIONS Note: A square-root sign is to be understood over every coefficient, e.g., for -8/15 read - p 8/15. Y 0 1 = r 3 4π cos θ Y 1 1 = - r 3 8π sin θe Y 0 2 = r 5 4π 3 2 cos 2 θ - 1 2 Y 1 2 = - r 15 8π sin θ cos θe Y 2 2 = 1 4 r 15 2π sin 2 θe 2Y -m =(-1) m Y m* hj 1 j 2 m 1 m 2 |j 1 j 2 JMi =(-1) J -j 1 -j 2 hj 2 j 1 m 2 m 1 |j 2 j 1 JMi d m,0 = r 4π 2+1 Y m e -imφ d j m 0 ,m =(-1) m-m 0 d j m,m 0 = d j -m,-m 0 d 1 0,0 = cos θ d 1/2 1/2,1/2 = cos θ 2 d 1/2 1/2,-1/2 = - sin θ 2 d 1 1,1 = 1 + cos θ 2 d 1 1,0 = - sin θ 2 d 1 1,-1 = 1 - cos θ 2 d 3/2 3/2,3/2 = 1 + cos θ 2 cos θ 2 d 3/2 3/2,1/2 = - 3 1 + cos θ 2 sin θ 2 d 3/2 3/2,-1/2 = 3 1 - cos θ 2 cos θ 2 d 3/2 3/2,-3/2 = - 1 - cos θ 2 sin θ 2 d 3/2 1/2,1/2 = 3 cos θ - 1 2 cos θ 2 d 3/2 1/2,-1/2 = - 3 cos θ +1 2 sin θ 2 d 2 2,2 = 1 + cos θ 2 2 d 2 2,1 = - 1 + cos θ 2 sin θ d 2 2,0 = 6 4 sin 2 θ d 2 2,-1 = - 1 - cos θ 2 sin θ d 2 2,-2 = 1 - cos θ 2 2 d 2 1,1 = 1 + cos θ 2 (2 cos θ - 1) d 2 1,0 = - r 3 2 sin θ cos θ d 2 1,-1 = 1 - cos θ 2 (2 cos θ + 1) d 2 0,0 = 3 2 cos 2 θ - 1 2 + 1 5/2 5/2 + 3/2 3/2 + 3/2 1/5 4/5 4/5 -1/5 5/2 5/2 -1/2 3/5 2/5 -1 -2 3/2 -1/2 2/5 5/2 3/2 -3/2 -3/2 4/5 1/5 -4/5 1/5 -1/2 -2 1 -5/2 5/2 -3/5 -1/2 + 1/2 + 1 -1/2 2/5 3/5 -2/5 -1/2 2 + 2 + 3/2 + 3/2 5/2 + 5/2 5/2 5/2 3/2 1/2 1/2 -1/3 -1 + 1 0 1/6 + 1/2 + 1/2 -1/2 -3/2 + 1/2 2/5 1/15 -8/15 + 1/2 1/10 3/10 3/5 5/2 3/2 1/2 -1/2 1/6 -1/3 5/2 5/2 -5/2 1 3/2 -3/2 -3/5 2/5 -3/2 -3/2 3/5 2/5 1/2 -1 -1 0 -1/2 8/15 -1/15 -2/5 -1/2 -3/2 -1/2 3/10 3/5 1/10 + 3/2 + 3/2 + 1/2 -1/2 + 3/2 + 1/2 + 2 + 1 + 2 + 1 0 + 1 2/5 3/5 3/2 3/5 -2/5 -1 + 1 0 + 3/2 1 + 1 + 3 + 1 1 0 3 1/3 + 2 2/3 2 3/2 3/2 1/3 2/3 + 1/2 0 -1 1/2 + 1/2 2/3 -1/3 -1/2 + 1/2 1 + 1 1 0 1/2 1/2 -1/2 0 0 1/2 -1/2 1 1 -1 -1/2 1 1 -1/2 + 1/2 + 1/2 + 1/2 + 1/2 -1/2 -1/2 + 1/2 -1/2 -1 3/2 2/3 3/2 -3/2 1 1/3 -1/2 -1/2 1/2 1/3 -2/3 + 1 + 1/2 + 1 0 + 3/2 2/3 3 3 3 3 3 1 -1 -2 -3 2/3 1/3 -2 2 1/3 -2/3 -2 0 -1 -2 -1 0 + 1 -1 2/5 8/15 1/15 2 -1 -1 -2 -1 0 1/2 -1/6 -1/3 1 -1 1/10 -3/10 3/5 0 2 0 1 0 3/10 -2/5 3/10 0 1/2 -1/2 1/5 1/5 3/5 + 1 + 1 -1 0 0 -1 + 1 1/15 8/15 2/5 2 + 2 2 + 1 1/2 1/2 1 1/2 2 0 1/6 1/6 2/3 1 1/2 -1/2 0 0 2 2 -2 1 -1 -1 1 -1 1/2 -1/2 -1 1/2 1/2 0 0 0 -1 1/3 1/3 -1/3 -1/2 + 1 -1 -1 0 + 1 0 0 + 1 -1 2 1 0 0 + 1 + 1 + 1 + 1 1/3 1/6 -1/2 1 + 1 3/5 -3/10 1/10 -1/3 -1 0 + 1 0 + 2 + 1 + 2 3 + 3/2 +1/2 + 1 1/4 2 2 -1 1 2 -2 1 -1 1/4 -1/2 1/2 1/2 -1/2 -1/2 + 1/2 -3/2 -3/2 1/2 1 0 0 3/4 + 1/2 -1/2 -1/2 2 + 1 3/4 3/4 -3/4 1/4 -1/2 + 1/2 -1/4 1 + 1/2 -1/2 + 1/2 1 + 1/2 3/5 0 -1 + 1/2 0 + 1/2 3/2 + 1/2 + 5/2 + 2 -1/2 + 1/2 + 2 + 1 + 1/2 1 2 × 1/2 3/2 × 1/2 3/2 × 1 2 × 1 1 × 1/2 1/2 × 1/2 1 × 1 Notation: J J M M ... ... . . . . . . m 1 m 2 m 1 m 2 Coefficients -1/5 2 2/7 2/7 -3/7 3 1/2 -1/2 -1 -2 -2 -1 0 4 1/2 1/2 -3 3 1/2 -1/2 -2 1 -4 4 -2 1/5 -27/70 + 1/2 7/2 + 7/2 7/2 + 5/2 3/7 4/7 + 2 + 1 0 1 + 2 + 1 + 4 1 4 4 + 2 3/14 3/14 4/7 + 2 1/2 -1/2 0 + 2 -1 0 +1 +2 + 2 + 1 0 -1 3 2 4 1/14 1/14 3/7 3/7 + 1 3 1/5 -1/5 3/10 -3/10 + 1 2 + 2 + 1 0 -1 -2 -2 -1 0 +1 +2 3/7 3/7 -1/14 -1/14 + 1 1 4 3 2 2/7 2/7 -2/7 1/14 1/14 4 1/14 1/14 3/7 3/7 3 3/10 -3/10 1/5 -1/5 -1 -2 -2 -1 0 0 -1 -2 -1 0 +1 + 1 0 -1 -2 -1 2 4 3/14 3/14 4/7 -2 -2 -2 3/7 3/7 -1/14 -1/14 -1 1 1/5 -3/10 3/10 -1 1 0 0 1/70 1/70 8/35 18/35 8/35 0 1/10 -1/10 2/5 -2/5 0 0 0 0 2/5 -2/5 -1/10 1/10 0 1/5 1/5 -1/5 -1/5 1/5 -1/5 -3/10 3/10 + 1 2/7 2/7 -3/7 + 3 1/2 + 2 + 1 0 1/2 + 2 + 2 + 2 + 1 + 2 + 1 + 3 1/2 -1/2 0 +1 +2 3 4 + 1/2 + 3/2 + 3/2 + 2 + 5/2 4/7 7/2 + 3/2 1/7 4/7 2/7 5/2 + 3/2 + 2 + 1 -1 0 16/35 -18/35 1/35 1/35 12/35 18/35 4/35 3/2 +3/2 + 3/2 -3/2 -1/2 +1/2 2/5 -2/5 7/2 7/2 4/35 18/35 12/35 1/35 -1/2 5/2 27/70 3/35 -5/14 -6/35 -1/2 3/2 7/2 7/2 -5/2 4/7 3/7 5/2 -5/2 3/7 -4/7 -3/2 -2 2/7 4/7 1/7 5/2 -3/2 -1 -2 18/35 -1/35 -16/35 -3/2 1/5 -2/5 2/5 -3/2 -1/2 3/2 -3/2 7/2 1 -7/2 -1/2 2/5 -1/5 0 0 -1 -2 2/5 1/2 -1/2 1/10 3/10 -1/5 -2/5 -3/2 -1/2 + 1/2 5/2 3/2 1/2 + 1/2 2/5 1/5 -3/2 -1/2 +1/2 +3/2 -1/10 -3/10 + 1/2 2/5 2/5 + 1 0 -1 -2 0 + 3 3 3 + 2 2 + 2 1 + 3/2 + 3/2 + 1/2 + 1/2 1/2 -1/2 -1/2 + 1/2 + 3/2 1/2 3 2 3 0 1/20 1/20 9/20 9/20 2 1 3 -1 1/5 1/5 3/5 2 3 3 1 -3 -2 1/2 1/2 -3/2 2 1/2 -1/2 -3/2 -2 -1 1/2 -1/2 -1/2 -3/2 0 1 -1 3/10 3/10 -2/5 -3/2 -1/2 0 0 1/4 1/4 -1/4 -1/4 0 9/20 9/20 + 1/2 -1/2 -3/2 -1/20 -1/20 0 1/4 1/4 -1/4 -1/4 -3/2 -1/2 + 1/2 1/2 -1/2 0 1 3/10 3/10 -3/2 -1/2 + 1/2 + 3/2 + 3/2 + 1/2 -1/2 -3/2 -2/5 + 1 + 1 + 1 1/5 3/5 1/5 1/2 + 3/2 + 1/2 -1/2 + 3/2 + 3/2 -1/5 + 1/2 6/35 5/14 -3/35 1/5 -3/7 -1/2 +1/2 +3/2 5/2 2 × 3/2 2 × 2 3/2 × 3/2 -3 Figure 34.1: The sign convention is that of Wigner (Group Theory, Academic Press, New York, 1959), also used by Condon and Shortley (The Theory of Atomic Spectra, Cambridge Univ. Press, New York, 1953), Rose (Elementary Theory of Angular Momentum, Wiley, New York, 1957), and Cohen (Tables of the Clebsch-Gordan Coefficients, North American Rockwell Science Center, Thousand Oaks, Calif., 1974). The coefficients here have been calculated using computer programs written independently by Cohen and at LBNL.

Transcript of 34.CLEBSCH-GORDAN COEFFICIENTS,SPHERICALHARMONICS…pdg.lbl.gov/2002/clebrpp.pdf ·...

Page 1: 34.CLEBSCH-GORDAN COEFFICIENTS,SPHERICALHARMONICS…pdg.lbl.gov/2002/clebrpp.pdf · 34.CLEBSCH-GORDAN COEFFICIENTS,SPHERICALHARMONICS, ANDdFUNCTIONS Note: A square-root sign is to

34. Clebsch-Gordan coefficients 010001-1

34. CLEBSCH-GORDAN COEFFICIENTS, SPHERICAL HARMONICS,

AND d FUNCTIONS

Note: A square-root sign is to be understood over every coefficient, e.g., for −8/15 read −√

8/15.

Y 01 =

√3

4πcos θ

Y 11 = −

√3

8πsin θ eiφ

Y 02 =

√5

(32

cos2 θ − 12

)Y 1

2 = −√

158π

sin θ cos θ eiφ

Y 22 =

14

√152π

sin2 θ e2iφ

Y −m` = (−1)mYm∗` 〈j1j2m1m2|j1j2JM〉= (−1)J−j1−j2〈j2j1m2m1|j2j1JM〉d `m,0 =

√4π

2`+ 1Ym` e−imφ

djm′,m = (−1)m−m

′djm,m′ = d

j−m,−m′ d 1

0,0 = cos θ d1/21/2,1/2

= cosθ

2

d1/21/2,−1/2

= − sinθ

2

d 11,1 =

1 + cos θ2

d 11,0 = − sin θ√

2

d 11,−1 =

1− cos θ2

d3/23/2,3/2

=1 + cos θ

2cos

θ

2

d3/23/2,1/2

= −√

31 + cos θ

2sin

θ

2

d3/23/2,−1/2

=√

31− cos θ

2cos

θ

2

d3/23/2,−3/2

= −1− cos θ2

sinθ

2

d3/21/2,1/2

=3 cos θ − 1

2cos

θ

2

d3/21/2,−1/2

= −3 cos θ + 12

sinθ

2

d 22,2 =

(1 + cos θ2

)2

d 22,1 = −1 + cos θ

2sin θ

d 22,0 =

√6

4sin2 θ

d 22,−1 = −1− cos θ

2sin θ

d 22,−2 =

(1− cos θ2

)2

d 21,1 =

1 + cos θ2

(2 cos θ − 1)

d 21,0 = −

√32

sin θ cos θ

d 21,−1 =

1− cos θ2

(2 cos θ + 1) d 20,0 =

(32

cos2 θ − 12

)

+1

5/25/2

+3/23/2

+3/2

1/54/5

4/5−1/5

5/2

5/2−1/23/52/5

−1−2

3/2−1/22/5 5/2 3/2

−3/2−3/24/51/5 −4/5

1/5

−1/2−2 1

−5/25/2

−3/5−1/2+1/2

+1−1/2 2/5 3/5−2/5−1/2

2+2

+3/2+3/2

5/2+5/2 5/2

5/2 3/2 1/2

1/2−1/3

−1

+10

1/6

+1/2

+1/2−1/2−3/2

+1/22/5

1/15−8/15

+1/21/10

3/103/5 5/2 3/2 1/2

−1/21/6

−1/3 5/2

5/2−5/2

1

3/2−3/2

−3/52/5

−3/2

−3/2

3/52/5

1/2

−1

−1

0

−1/28/15

−1/15−2/5

−1/2−3/2

−1/23/103/5

1/10

+3/2

+3/2+1/2−1/2

+3/2+1/2

+2 +1+2+1

0+1

2/53/5

3/2

3/5−2/5

−1

+10

+3/21+1+3

+1

1

0

3

1/3

+2

2/3

2

3/23/2

1/32/3

+1/2

0−1

1/2+1/22/3

−1/3

−1/2+1/2

1

+1 1

0

1/21/2

−1/2

0

0

1/2

−1/2

1

1

−1−1/2

1

1

−1/2+1/2

+1/2 +1/2+1/2−1/2

−1/2+1/2 −1/2

−1

3/2

2/3 3/2−3/2

1

1/3

−1/2

−1/2

1/2

1/3−2/3

+1 +1/2+10

+3/2

2/3 3

3

3

3

3

1−1−2−3

2/31/3

−22

1/3−2/3

−2

0−1−2

−10

+1

−1

2/58/151/15

2−1

−1−2

−10

1/2−1/6−1/3

1−1

1/10−3/10

3/5

020

10

3/10−2/53/10

01/2

−1/2

1/5

1/53/5

+1

+1

−10 0

−1

+1

1/158/152/5

2

+2 2+1

1/21/2

1

1/2 20

1/6

1/62/3

1

1/2

−1/2

0

0 2

2−21−1−1

1−11/2

−1/2

−11/21/2

00

0−1

1/3

1/3−1/3

−1/2

+1

−1

−10

+100

+1−1

2

1

00 +1

+1+1

+11/31/6

−1/2

1+13/5

−3/101/10

−1/3−10+1

0

+2

+1

+2

3

+3/2

+1/2 +11/4 2

2

−11

2

−21

−11/4

−1/2

1/2

1/2

−1/2 −1/2+1/2−3/2

−3/2

1/2

1003/4

+1/2−1/2 −1/2

2+13/4

3/4

−3/41/4

−1/2+1/2

−1/4

1

+1/2−1/2+1/2

1

+1/2

3/5

0−1

+1/20

+1/23/2

+1/2

+5/2

+2 −1/2+1/2+2

+1 +1/2

1

2×1/2

3/2×1/2

3/2×12×1

1×1/2

1/2×1/2

1×1

Notation:J J

M M

...

. . .

.

.

.

.

.

.

m1 m2

m1 m2 Coefficients

−1/52

2/7

2/7−3/7

3

1/2

−1/2−1−2

−2−1

0 4

1/21/2

−33

1/2−1/2

−2 1

−44

−2

1/5

−27/70

+1/2

7/2+7/2 7/2

+5/23/74/7

+2+10

1

+2+1

+41

4

4+23/14

3/144/7

+21/2

−1/20

+2

−10

+1+2

+2+10

−1

3 2

4

1/14

1/14

3/73/7

+13

1/5−1/5

3/10

−3/10

+12

+2+10

−1−2

−2−10

+1+2

3/7

3/7

−1/14−1/14

+11

4 3 2

2/7

2/7

−2/71/14

1/14 4

1/14

1/143/73/7

3

3/10

−3/10

1/5−1/5

−1−2

−2−10

0−1−2

−10

+1

+10

−1−2

−12

4

3/14

3/144/7

−2 −2 −2

3/7

3/7

−1/14−1/14

−11

1/5−3/103/10

−1

1 00

1/70

1/70

8/3518/358/35

0

1/10

−1/10

2/5

−2/50

0 0

0

2/5

−2/5

−1/10

1/10

0

1/5

1/5−1/5

−1/5

1/5

−1/5

−3/103/10

+1

2/7

2/7−3/7

+31/2

+2+10

1/2

+2 +2+2+1 +2

+1+31/2

−1/20

+1+2

34

+1/2+3/2

+3/2+2 +5/24/7 7/2

+3/21/74/72/7

5/2+3/2

+2+1

−10

16/35

−18/351/35

1/3512/3518/354/35

3/2

+3/2

+3/2

−3/2−1/2+1/2

2/5−2/5 7/2

7/2

4/3518/3512/351/35

−1/25/2

27/703/35

−5/14−6/35

−1/23/2

7/2

7/2−5/24/73/7

5/2−5/23/7

−4/7

−3/2−2

2/74/71/7

5/2−3/2

−1−2

18/35−1/35

−16/35

−3/21/5

−2/52/5

−3/2−1/2

3/2−3/2

7/2

1

−7/2

−1/22/5

−1/50

0−1−2

2/5

1/2−1/21/10

3/10−1/5

−2/5−3/2−1/2+1/2

5/2 3/2 1/2+1/22/5

1/5

−3/2−1/2+1/2+3/2

−1/10

−3/10

+1/22/5

2/5

+10

−1−2

0

+33

3+2

2+21+3/2

+3/2+1/2

+1/2 1/2−1/2−1/2+1/2+3/2

1/2 3 2

30

1/20

1/20

9/209/20

2 1

3−11/5

1/53/5

2

3

3

1

−3

−21/21/2

−3/2

2

1/2−1/2−3/2

−2

−11/2

−1/2−1/2−3/2

0

1−1

3/10

3/10−2/5

−3/2−1/2

00

1/41/4

−1/4−1/4

0

9/20

9/20

+1/2−1/2−3/2

−1/20−1/20

0

1/4

1/4−1/4

−1/4−3/2−1/2+1/2

1/2

−1/20

1

3/10

3/10

−3/2−1/2+1/2+3/2

+3/2+1/2−1/2−3/2

−2/5

+1+1+11/53/51/5

1/2

+3/2+1/2−1/2

+3/2

+3/2

−1/5

+1/26/355/14

−3/35

1/5

−3/7−1/2+1/2+3/2

5/22×3/2

2×2

3/2×3/2

−3

Figure 34.1: The sign convention is that of Wigner (Group Theory, Academic Press, New York, 1959), also used by Condon and Shortley (TheTheory of Atomic Spectra, Cambridge Univ. Press, New York, 1953), Rose (Elementary Theory of Angular Momentum, Wiley, New York, 1957),and Cohen (Tables of the Clebsch-Gordan Coefficients, North American Rockwell Science Center, Thousand Oaks, Calif., 1974). The coefficientshere have been calculated using computer programs written independently by Cohen and at LBNL.