14. Taty Yuniarti_UAS Bu Hetty

16
UAS STABILITAS BANGUNAN AIR NAMA : TATY YUNIARTI NIM. 95014318 DOSEN IR. SRI HETTY SUSANTIN, M.ENG PRORAM STUDI MAGISTER PENGELOLAAN SUMBER DAYA AIR INSTITUT TEKNOLOGI BANDUNG 2015

description

Stabilitas Bangunan Air

Transcript of 14. Taty Yuniarti_UAS Bu Hetty

Page 1: 14. Taty Yuniarti_UAS Bu Hetty

UASSTABILITAS BANGUNAN AIR

NAMA : TATY YUNIARTINIM. 95014318

DOSENIR. SRI HETTY SUSANTIN, M.ENG

PRORAM STUDI MAGISTER PENGELOLAAN SUMBER DAYA AIRINSTITUT TEKNOLOGI BANDUNG

2015

Page 2: 14. Taty Yuniarti_UAS Bu Hetty

Problem 1 - Lateral Pressure

Dik:

A

17.4

φ = 26

c = 14.36

zH = 6 m

ket: tensile crack terjadi pada kedalaman zc

BDit:a) Kedalaman zcb) Tekanan aktif rankine dan lokasinya sebelum tensile crack terjadic) Tekanan aktif rankine dan lokasinya sesudah tensile crack terjadi

Jawab:

>> Ka =

= 0.390

a) Kedalaman zc

= 2 x 14.36

17.4 x 0.62

= 2.64 m

b)sebelum tensile crack

>> Tekanan tanah lateral

= 0.00 - 17.946248

ϒ = kN/m3

o

kN/m3

tg2 (45+φ/2)

�_ − √ ℎ�=�_�.�_�=�.�.�_� 2� (�_�)

� = /(_� 2� )�√��

Page 3: 14. Taty Yuniarti_UAS Bu Hetty

= -17.95

= 40.76 - 17.946248= 22.82

>> Diagram tekanan tanah lateral

-17.95

I ket: (+)

zc = 2.641

H-Zc = 3.36

II

>> GayaPa1 = 0.5 x -17.95 x 2.64

= -23.702253 kN/m

Pa2 = 0.5 x 3.36 x 22.82= 38.3173728 kN/m

>> Tekanan tanah aktif rankine (Pa) sebelum tensile crackPa = Pa1 + Pa2

= -23.702253 + 38.317373= 14.6151199 kN/m

>> Lokasi Pa sebelum tensile crack

= -23.7 x (( 2/3 x 2.64 ) +38.3 x ( 1/3 x 3.36 )

14.61512

= -121.34 + 42.9014.61512

= -5.3675404 m

kN/m2

kN/m2

(tanda negatif menunjukan bahwa lokasi berada di bawah titik B)

�=(∑▒ 〖����� �� ������〗 ) /�_�

�_ − √ ℎ�=�_�.�_�=�.�.�_� 2� (�_�)

Page 4: 14. Taty Yuniarti_UAS Bu Hetty

c)sesudah tensile crack

>> Tekanan tanah lateral

= 22.82 - 17.946248

= 4.87

= 40.76 - 17.946248

= 22.82

>> Diagram tekanan tanah lateral

AI ket:

(+)zc = 2.641

c 4.87

H-Zc = 3.36 III

B>> Gaya

Pa1 = 0.5 x 17.95 x 3.36= 30.1364905 kN/m

Pa2 = 3.36 x 4.87= 16.3617646 kN/m

>> Tekanan tanah aktif rankine (Pa) setelah tensile crackPa = Pa1 + Pa2

= 30.1364905 + 16.361765= 46.4982551 kN/m

>> Lokasi Pa setelah tensile crack

= 30.1 x 1/3 x 3.36 +16.4 x 1/2 x 3.36

(tanda negatif menunjukan bahwa lokasi berada di bawah titik B)

kN/m2

kN/m2

�_ − √ )ℎ�=�_�.�_�=�.�−��.�_� 2� (�_�

�=(∑▒ 〖����� �� ������〗 ) /�_�

�_ − √ ℎ�=�_�.�_�=�.�.�_� 2� (�_�)

Page 5: 14. Taty Yuniarti_UAS Bu Hetty

46.498255

= 33.74 + 27.4846.498255

= 1.31647542 m (tanda negatif menunjukan bahwa lokasi berada di atas titik B)

Page 6: 14. Taty Yuniarti_UAS Bu Hetty

ket: tensile crack terjadi pada kedalaman zc

Page 7: 14. Taty Yuniarti_UAS Bu Hetty

22.82

3.36 +

(tanda negatif menunjukan bahwa lokasi berada di

Page 8: 14. Taty Yuniarti_UAS Bu Hetty

22.82

Page 9: 14. Taty Yuniarti_UAS Bu Hetty

(tanda negatif menunjukan bahwa lokasi berada di

Page 10: 14. Taty Yuniarti_UAS Bu Hetty

Problem 2 - Cantilever Retaining wall

Dik:x1 = 0.25 m α

A

16

φ1 = 32

c1 = 0

H = 6 m

B

18 D 1.5 m

φ2 = 15 x5 = 0.5 m

c2 = 45 Cx3 x2 = x4 =

1.2 m 0.5 m 3 m

Dit:SF guling dan SF geser dengan teori rankinecatatan: Drainase berfungsi maksimal dan tekanan tanah lateral pasif dipertimbangkan

Jawab:

active earth pressure coefficient (Ka)

28 30 32 34 36 38 400 0.361 0.333 0.307 0.283 0.26 0.283 0.2175 0.366 0.337 0.311 0.286 0.262 0.24 0.219

10 0.38 0.35 0.321 0.294 0.27 0.246 0.22515 0.409 0.373 0.341 0.311 0.283 0.258 0.23520 0.461 0.414 0.374 0.338 0.306 0.277 0.2525 0.573 0.494 0.434 0.385 0.343 0.307 0.275

>> Koefisieni = 1/3 φ1 cos i = 0.984807753

= 1/3 32 cos I ^2 = 0.9698463104= 10.67 ≈ 10 cos φ2 = 0.9659

cos φ2 ^2= 0.9330 Dari tabel didapat nila Ka, untuk

= 10φ1 = 32Ka1 = 0.321

= 0.984807753 1.17670.7929

Kp = 1.46156

>> Tekanan tanah lateral aktif

= 0.00 - 0.00= 0.00

= 30.82 - 0.00= 30.82

= 33.38 - 0.00= 33.38

ϒ1 = kN/m3

o

kN/m3

ϒ2 = kN/m3

o

kN/m3

α (deg) φ'(deg)

I =α

kN/m2

kN/m2

kN/m2

�_ 1 1.0 1− _1 √ 1 )ℎ�=�_�.�_� =� .�_� 2� (�_�

�_ 1 1 1− _1 √ 1 )ℎ�=�_�.�_� =� .�.�_� 2� (�_�

�_ 1 1. 5) 1− _1 √ 1 )ℎ�=�_�.�_� =� (�+� .�_� 2� (�_�

� cos _�=���� 〖� +√( 〖���〗 ^2 − � 〖���〗^2 2) � 〗 /(cos √〖�− ( 〗〖��� ^2 − � 〖�

〗�� ^2 ) � 〗 2)

Page 11: 14. Taty Yuniarti_UAS Bu Hetty

>> Tekanan tanah lateral pasif

= 39.46 + 192.25= 231.72

>> Diagram tekanan tanah lateral

A

6

I Pa

30.82B

IIPp

III 1.5C 33.38

231.7

>> Resultante Gaya-Gaya

aktifPa1 = 0.5 x 30.82 x 6.00

= 92.448 kN/mPa2 = 30.82 x 1.50

= 46.224 kN/mPa3 = 0.50 x ( 33.38 - 30.82 ) x 1.5

= 1.926 kN/m

Pa = 92.448 + 46.22 + 1.9= 140.60 kN/m

pasif

Pp = 0.5 x 231.72 x 1.50= 173.787132 kN/m

Resultante= 0

Pp-Pa = 173.787132 - 140.60= 33.19 kN/m

>> Jarak titik tangkap

aktifterhadap titik c

= 92.448 x (( 1/3 x 6.00 ) + 1.5 ) +

46.22 x ( 1/2 x 1.50 ) +

1.93 x ( 1/3 x 1.50 ) +

140.60

= 323.568 + 34.67 + 0.96140.60

= 2.554795 m

kN/m2

∑H

�_ 2 2 2+ _2 √ 2 )ℎ�=�_�.�_� =� .�.�_� 2� (�_�

�_ =(∑▒(� 〖����� ��������〗 ) )/�_�

Page 12: 14. Taty Yuniarti_UAS Bu Hetty

pasifterhadap titik c

= 173.7871 x ( 1/3 x 1.50 ) 173.787132

= 0.50 m

>> Gaya Vertikal α 10x1 = 0.25 m

W3 T

= 24 tan 10 = T

3

0.176326981 = T

3B1 T = 0.5289809

6B2 W4

W2x

1 W1D 1.5

B3 x5 = 0.5 m

x3 x2 = x4 =

1.2 m 0.5 m 3 mBerat DPT

B1 = alas x tinggi x

= 0.25 x 6 x 24= 36

B2 = 1/2 x alas x tinggi x

= 1/2 x 0.25 x 6 x 24= 18.00

B3 = alas x tinggi x

= 4.70 x 0.5 x 24= 56.4

Berat tanah

W1 = alas x tinggi x

= 1.2 x 1 x 18= 21.6

W2 = 1/2 x alas x tinggi x

= 1/2 x 0.04166667 x 1 x 18= 0.75

W3 = 1/2 x alas x tinggi x

= 1/2 x 3 x 0.5289809421 x 16= 25.39109

W4 = alas x tinggi x

= 3 x 6 x 16= 288

γbeton kN/m3

γbeton

kN/m2

γbeton

kN/m2

γbeton

kN/m2

γ2

kN/m2

γ2

kN/m2

γ1

kN/m2

γ2

kN/m2

�_ =(∑▒(� 〖����� ��������〗 ) )/�_�

Page 13: 14. Taty Yuniarti_UAS Bu Hetty

>> Perhitungan Momen terhadap titik C

Gaya Vertikal Lengan Gaya Horisontal lengan Momen Tahan Momen GulingW1 21.6 1 Pa 140.60 2.55 21.60 359.199W2 0.75 1.166667 Pp 173.787132 0.50 0.88 86.893566146W3 25.3911 6.676327 169.52W4 288 3.5 1008.00B1 36 3.5 126.00B2 18.0 2.5 45.00B3 56.4 0.25 14.10

jml 446.141 33.19 3.0547945 1385.09 446.092566146

>> Stabilitas geser

δ'=k1.φ2 c'a =k2c'2 10= 0.1763269807

= 446.1411 x 0.17632698 + 45 x 4.7

33.189132= 8.742823 > 1.5 ( aman terhadap geser)

>> Stabilitas guling

SF guling = Momen tahanMomen guling

= 1385.09419446.092566

= 3.10494792 > 2 (ok)

2/3φ2 =〖��〗 =(∑▒_����� 〖� )(�_2+� .� 〗 )/(∑ )▒�

� 2/3 =�� _2�

Page 14: 14. Taty Yuniarti_UAS Bu Hetty

Problem 3- Cantilever Sheet Pile

Dik Asand

16 L1= 1 m

φ1 = 30

c1 = 0B

sand

18

9.81 φ1' = 30 L2= 7 m

c1' = 0

C DL (Dredge Line)clay

φ2' = 0 D?

c2' = 40E

Dit:a) Hitung kedalaman penetrasi (D teori)?b) Jika Dact = 0.3 D teori, hitung panjang turap?c) Momem maksimum?

Jawaba) D teori

sand clay

>> Ka1 = Ka2 =

= 0.333 = 1.0

Kp1 = Kp2 =

= 3.000 = 1.0

>> Tekanan tanah lateral aktif

= 0.00 - 0= 0.00

= 5.333 - 0

= 5.333

Titik CDi kanan -> aktif

(lap.I) = 24.44 - 0= 24.44

(lap. 2) = 73.33 - 80= -6.67

Di kiri ->pasif

= 0.00 + 80= 80.00

Titik EDi kanan -> pasif

= ( 16.00 + 57.33 + 8.19 D) 1.0 + 80= 153.33 + 8.19 D

Di kiri -> aktif

= 8.19 D - 80= 8.19 D - 80

ϒ1 = kN/m3

o

kN/m3

ϒ1sat = kN/m3

ϒw = kN/m3 o

kN/m3

o

kN/m3

tg2 (45-φ1/2) tg2 (45-φ2/2)

tg2 (45+φ1/2) tg2 (45+φ2/2)

kN/m2

kN/m2

kN/m2

kN/m2

kN/m2

�_ 1 1.0 1− _1 √ 1 )ℎ�=�_�.�_� =� .�_� 2� (�_�

�_ 1 1 1 1− _1 √ 1 )ℎ�=�_�.�_� =� .� .�_� 2� (�_�

�_ 1 1= 1 1 1^′ 2 1− _1 ℎ�� =�_�.�_� (� .� +� .� )�_� 2�√ 1 )(�_�

�_ 2 2= 1 1 1^′ 2 2− _2 ℎ�� =�_�.�_� (� .� +� .� )�_� 2�√ 2 )(�_�

�_ 1 .ℎ 2+ _2 √ 2 )ℎ��=�_�.�_� =� .�_� 2� (�_�

�_ 1= 1 1 1^′ 2 γ^′ ) 2+ _2 √ 2 )ℎ��=�_�.�_� (� .� +� .� +� �_� 2� (�_�

�_ 1 ^′ 2− _2 √ 2 )ℎ��=�_�.�_� =� .�.�_� 2� (�_�

Page 15: 14. Taty Yuniarti_UAS Bu Hetty

>> Digram tekanan tanah lateral

Asand

L1= 1 m

I

B 5.33 sand

L2= 7 mII Pa = 106.885

III86.67

F C 24.44 DL (Dredge Line)clay

Pc

D?G

DZ Pe

HE 233.33

>> Gaya- gaya lateral diatas Dredge LinePa1 = 0.5 x 5.33 x 1.00

= 2.67 kN/m

Pa2 = 5.33 x 7.00= 37.33 kN/m

Pa3 = 0.5 x 19.11 x 7.00= 66.885 kN/m

>> Tekanan tanah aktif (Pa) Pa = Pa1 + Pa2 + Pa3

= 2.666667 + 37.333333 + 66.885= 106.885 kN/m

>> Lokasi Pa

= 2.67 x ( 1/3 x 1.00 ) + 7 +37.33 x ( 1/2 x 7.00 ) 66.9 x ( 1/3 x 7.00 )

106.9

= 19.56 + 130.7 + 156.1106.885

= 2.865577 m

>> Gaya- gaya lateral dibawah Dredge Line

Superposisi di titik C == 80.0 - -6.67= 86.7 kN/m

Pc = 86.67 x D= 86.67 D

Superposisi di titik E=

= ( 153.3 + 8.19 D ) - ( 8.19 D - 80.0 )= 233.3 + 0= 233.3 kN/m

Pe = 0.5 x 320 x z= 160 z

�=(∑▒ 〖����� �� ������〗 ) /�_�

�_ ℎ��− _� ℎ� 2�

�_ ℎ��− _ℎ� ��

Page 16: 14. Taty Yuniarti_UAS Bu Hetty

>> = 0Pa + Pe - Pc = 0

106.9 + 160 z - 86.67 D = 0z = 86.67 D - 106.9

160z = 0.541688 D - 0.668031

>> = 0

= 0

106.9 2.865577 + D + 160 z 1/3 z - 86.67 D 1/2D = 0

306.28722 + 106.9 D + 53.333333 - 43.335 = 0

306.28722 + 106.885 D + 53.333333 0.541688 D - 0.6680313 43.335 = 0

306.28722 + 106.885 D + 53.333333 0.293425 0.7237284 D+ 0.446266 - 43.3 = 0

306.28722 + 106.885 D + 15.649352 38.59885 D+ 23.80 - 43.335 = 0

-27.68565 68.28615 D + 330.09 = 0

dari rumus diatas di dapatkan nilai D teori sebesar = 4.8899 m

sehingga nilai z dapat dihitung:z = 0.541688 D - 0.6680313

= 2.648798 - 0.6680313= 1.980766 m

b) D aktual dan panjang turapD aktual = 1.3 x D teori

= 1.3 x 4.8899= 6.35687 m

Panjang turap yang dibutuhkan = L1 +L2 +D aktual= 1 + 7 + 6.35687= 14.35687 m

c) Momen Maksimum

>> overbudden pressure

= ( 16 x 1 )+ ( 8.19 x 7 )

= 73.33

>> Momen Maksimum

= 106.885 106.885 + 2.865577 - 1/2 106.88586.67 86.67

= 106.885 4.099 - 0.62

= 438.1022 - 65.907484= 372.1947 kN

∑H

∑ME

z2 D2

)2 - D2

D2- D2

D2- D2

D2 +

kN/m2

�� ) (1⁄3 ) (1⁄2 )(�+� +�� � −�� �

�=γ 1+γ^′ 21� �

� =_��� [(�� � /( _2 ) )−(1/2 _� 4� −� +� � � /( _2 ))]_� 4� −�