Z0/ γ *( l + l - )+jet Made in LANL

Post on 16-Jan-2016

44 views 0 download

description

Dilepton Tagged Jets via Angular Correlations. Z0/ γ *( l + l - )+jet Made in LANL. Paul Constantin, Gerd Kunde, Camelia Mironov. Made in LANL (with P. Constantin & G.J. Kunde). Camelia Mironov. S ignal B ackground M iscellaneous NEXT. Introduction Signal Background - PowerPoint PPT Presentation

Transcript of Z0/ γ *( l + l - )+jet Made in LANL

Z0/γ*(l+l-)+jet Made in LANL

Paul Constantin, Gerd Kunde, Camelia Mironov

Signal

Background

Miscellaneous

NEXT

Camelia Mironov

Introduction Signal Background Conclusions, applause, flowers etc.

Dilepton Tagged Jetsvia

Angular Correlations

Made in LANL

(with P. Constantin & G.J. Kunde)

2

p+p : z=pTassociated/pT

trigger Fragmentation function:

A+A: distribution of particles associated with a trigger after medium modification

have to disentangle the ‘jet’ component from the global ‘flow’

Azimuthal Correlations: h+h

)()(ρ

),(ρ)(

]1[

]2[

eventtrigger

eventpairs

trigger

associatedtriggerC

CARTOON

flow+jet

jetC

(ΔΦ

)

flow

BKG = B(1+2v2(pTasso)v2(pTtrig)cos(2))

p+p

A+A

Back side

Same side

Trigger Particle

Associated Particles

zdN

Nz pairsaway

trigger

D _1)(

hPt hadorn tagged (triggered) jet

3

Azimuthal Correlations: Z0/γ*+jet

__

qg

*/0Z

l l

q

h

*/0Z

l l

g

h

__

qq

no flow for dilepton flat global background

pTjet ~ pT

Z0/γ* jet energy determined

no ambiguities (π0->2γ, η etc) like in γ+jet

BKG = B(1+2v2(pTasso)v2(pTtrig)cos(2))

The DILEPTON is the tag

4

Theory: γ+jet Wang, Huang, Sarcevic PRL 77, 231 (1996)

Wang, Huang PRC 55, 3047 (1997)

Energy loss models (GLV, BDMS etc) connect partonic energy loss to fundamental properties of the medium – gluon density, system size etc

z = pT/pjet

measure D(z) in pp and AA

λa (parton inelastic scattering mean free path)

dEa/dx (parton energy loss)

Arleo et al (hep-ph/0410088), Arleo(hep-ph/0601075): γ-π0 and γ-γ correlations medium modified fragmentation functions

5

PYTHIA Signal at LHC =5.5TeV

Mass_γ* >12GeV (default)

|η| <3.0

PYTHIA v6.326

s

6

PYTHIA Signal at LHC =5.5TeVs

Luminosity = 0.5 (mbs)-1

Run time = 106 (s) (2 weeks)

~NUMBERS:

Z(pT>50 GeV/c) ~790

7

Cross-check for the PYTHIA number …Campbell and Maltoni: cross sections at NLO == MCFM (http://mcfm.fnal.gov)

BR*Lumi*runTime*A^2 ~720 Z0 with pT>50GeV/c

8

PYTHIA Z0 Signal

ΔΦ vs pTdilepton

z vs pTdilepton

z=pThadron/pT

dilepton

9

Heavy quarks and their semi-leptonic decay channels

Background

__

/ ccbb

__

/ DDBB

| | | | | | | |

| | | |__| | | |__

____ | |_____

xyl

xyl

xyl

xyl BR(D --> lxy) ≈ 6.7%BR(B --> lxy) ≈ 10.2%

10

Signal & Background : Theory

Gale, Srivastava,Awes nucle-th/0212081

11

)(_

cc

Understanding background: theory

NLO (HVQMNR) (Mangano, Nason, Ridolfi hep-th/xxxxx)

PYTHIA total

)(_

bb

CERN yellow report on heavy flavor production: hep-ph/0311048

12

My MNR: ΔΦ(ccbar) Distribution

pT(ccbar)>20GeV/cPt(ccbar)>150GeV/c

ccbar: independent trend in ΔΦ with increasing the momentum

13

My MNR: ΔΦ(bbbar) Distribution

)(_

bb

pT(bbbar)>20GeV/c pT(bbbar)>150GeV/c

bbbar: change in ΔΦ when increasing the momentum cut

14

Reduce Background

comon sense: DCA cut on displaced lepton track

…understand background first!!

vtx

dca

plepton

pmeson

lepton = e±, μ±

meson = D±, B±

(0,0,0) Profile histogram(value=mean, bars=rms)

Dca(mm)

3<plepton<5 GeV/c5<plepton<7 GeV/c

7<plepton<10 GeV/c10<plepton<13 GeV/c

15

If we assume a dca resolution in σrφ~20μm and σz~50μm

totalN

zdcardcaNfrac

150.0||060.0

Statistical error bars

can identify (reject) ~80% of the heavy background

pT dependent trend?

Reduce background: DCA

16

Before the end …

Use a weakly interacting probe (Z0/γ*(l+l-)+jet) to tackle the properties of a strong interacting medium

weak is good (this time)

Advantages over ‘traditional’ h-h, γ-h analyses: no flow, no high pT limit etc.

‘Smallish’ rates you can’t have everything (rates, high pT reach and purity) in life

La vita seems to be bella nevertheless …

17

The End

18

19

Z0/γ* - jetInitial state radiation

· Σ(pT_incomingPartons)!=0

pTjet !=pT

dilepton

γ*/Z0 γ*/Z0

Final state radiation

It will broden the jet

distribution

γ*/Z0 γ*/Z0

pT <100 <200 <300 <400 <500

(***) 0.00216774 4.23512e-05 2.35157e-06 3.25855e-07 5.0463e-08