Z0+- Method to determine hadronic tau efficiencyiktp.tu-dresden.de/bndschool/student/fischer.pdf ·...

22
Z 0 τ + τ - Method to determine hadronic tau efficiency Gordon Fischer Deutsches Elektronen Synchrotron - DESY Summer school Rathen 2009 Gordon Fischer (DESY) Z 0 τ + τ - 21.09.2009 1 / 22

Transcript of Z0+- Method to determine hadronic tau efficiencyiktp.tu-dresden.de/bndschool/student/fischer.pdf ·...

  • Z0 → τ+τ− → Method to determinehadronic tau efficiency

    Gordon Fischer

    Deutsches Elektronen Synchrotron - DESY

    Summer school Rathen 2009

    Gordon Fischer (DESY) Z0 → τ+τ− 21.09.2009 1 / 22

  • Schedule

    What do I have to do?

    Efficiency determination

    Embedding method

    Summary and Outlook

    Gordon Fischer (DESY) Z0 → τ+τ− 21.09.2009 2 / 22

  • What do I have to do?

    What do I have to do?

    "....determine the hadronic tau selection efficiencyfrom channel Z0 → τ+τ− → had ` in first data atATLAS...."

    I Why?

    I How?

    Gordon Fischer (DESY) Z0 → τ+τ− 21.09.2009 3 / 22

  • What do I have to do?

    Why Tau Leptons?

    Gordon Fischer (DESY) Z0 → τ+τ− 21.09.2009 4 / 22

  • What do I have to do?

    Why Tau Leptons? Higgs search!

    I Higgs boson couples tomass favouring thedecay to the heaviertau-leptons

    I for light Higgs masses→ τ τ final statebecomes important

    I bb̄ is difficult to measure

    I third generation is veryuseful for new physics! Figure: BR for different possible Higgs

    masses

    Gordon Fischer (DESY) Z0 → τ+τ− 21.09.2009 5 / 22

  • What do I have to do?

    Why Tau Leptons? SUSY search!

    I τ leptons often finalstate in SUSY models

    I τ̃L , τ̃R mixing → τ̃1 , τ̃2→ τ̃1 and τ productionenhanced

    I BR for χ̃02 → τ̃1 τ largerthan for e or µ decays

    I τ final states provideinformation for e.g. τ̃masses

    I tau decay offersopportunity to measuretau polarization →χ̃01,χ̃02, τ̃1 coupling

    Figure: typical SUSY chain with τ ’s in thefinal state

    Gordon Fischer (DESY) Z0 → τ+τ− 21.09.2009 6 / 22

  • What do I have to do?

    Motivation for the channel Z0 → τ+τ− → had `

    I in first data Z0 → τ+τ− → had ` is useful (τ ) channel for (τ )trigger studies, with hadronic channel trigger studies notpossible

    I most important control channel (together with W → τνand t → τνb) to control the tau reconstruction

    I Comparison with Z0 → µ+µ− or Z0 → e+e− allowsefficiency determination using Z-Resonance

    Gordon Fischer (DESY) Z0 → τ+τ− 21.09.2009 7 / 22

  • What do I have to do?

    different τ decay channels → what does that mean?

    Gordon Fischer (DESY) Z0 → τ+τ− 21.09.2009 8 / 22

  • What do I have to do?

    important detector moduls for hadronic τ identification

    I to select 1 prong and3 prong decays →good tracking system

    I τ Jets have a smallerEM-radius than QCDDi-Jets→ for τ Jets and QCDDi-Jets separationgood calorimetersystem required

    I QCD background is abig challenge!

    Gordon Fischer (DESY) Z0 → τ+τ− 21.09.2009 9 / 22

  • What do I have to do?

    Selection cutsI Event cuts:

    - Missing ET and Sum ET(QCD BG reduction)

    I Particle cuts:- trigger e10, mu10i- PT for Tau-Jet or Leptoncandidate- |Charge| and η- mT- different identification cuts

    I for τ ,` combinations:- |∆ΦTauJet,Lepton|- invariant Mass window

    - opposite minus samesign charge (OS-SS)Assumption: forBackground OS-SS ≈ 0 (forstatistical reasons)⇒ good backgroundrejection

    Electron m_T [GeV]0 20 40 60 80 100 120

    # el

    ectr

    on

    s

    0

    500

    1000

    1500

    2000

    2500

    Electron m_T [GeV]0 20 40 60 80 100 120

    # el

    ectr

    on

    s

    0

    500

    1000

    1500

    2000

    2500

    Electron mT distribution

    Muon m_T [GeV]0 20 40 60 80 100 120

    # m

    uo

    ns

    0

    500

    1000

    1500

    2000

    2500

    3000

    Muon m_T [GeV]0 20 40 60 80 100 120

    # m

    uo

    ns

    0

    500

    1000

    1500

    2000

    2500

    3000

    Muon mT distribution

    Tau m_T [GeV]0 20 40 60 80 100 120

    # ta

    us

    0

    2000

    4000

    6000

    8000

    10000

    12000

    14000

    16000

    18000

    20000

    22000

    Tau m_T [GeV]0 20 40 60 80 100 120

    # ta

    us

    0

    2000

    4000

    6000

    8000

    10000

    12000

    14000

    16000

    18000

    20000

    22000Taus mT distribution

    Ztautau

    W->taunu

    W->munu

    W->enu

    Z->mumu

    Z->ee

    Figure: mT distribution for final state leptons

    Gordon Fischer (DESY) Z0 → τ+τ− 21.09.2009 10 / 22

  • Efficiency determination

    τ -efficiencyhadronic τ efficiency is defined as:

    �τ→had =NselZ0→τ+τ−

    N iniZ0→τ+τ− ·BRτ→had ·BRτ→lep · �kinZ0→τ+τ− · �τ→lep

    (1)

    possible to substitute N iniZ0→τ+τ−

    with

    NselZ0→µ+µ− ·BRZ0→µ+µ−

    BRZ0→τ+τ−

    �kinZ0→µ+µ− · �2µ(2)

    Finally for efficiency calculation:

    �τ→had=�kinZ0→µ+µ−

    �kinZ0→τ+τ−·

    NselZ0→τ+τ− ·BRZ0→µ+µ− · �µNselZ0→µ+µ− ·BRτ→lep ·BRτ→had ·BRZ0→τ+τ−

    (3)

    Gordon Fischer (DESY) Z0 → τ+τ− 21.09.2009 11 / 22

  • Efficiency determination

    Parameter for L = 100 pb−1I all BR available from PDG

    I kinematic efficiencies (systematic studies for uncertainties of kin.efficiencies upcoming! Assume error O(10 %) just in order to checkwhether this would lead to acceptable order of magnitude of overallerror)

    �kinZ0→µ+µ− = 0.26 ± 0.026

    �kinZ0→τ+τ− = 0.0230 ± 0.002I selected number of events

    NselZ0→τ+τ− = 219 ± 14NselZ0→µ+µ− = 21517 ± 147

    I Muon efficiency (uncertainty from ATLAS Note)

    �µ =

    √√√√ NselZ0→µ+µ−σZ0→µ+µ−·100pb

    −1

    �kinZ0→µ+µ−

    = 0.85 ± 0.05

    Gordon Fischer (DESY) Z0 → τ+τ− 21.09.2009 12 / 22

  • Efficiency determination

    Current values for hadronic efficiency

    I Tau-Jet,Tau-Lepton combinations for L = 100 pb−1

    Signal OS SS OS-SSselected taus 208 11 197

    selected taus truthmatched 201 2 199Background OS SS OS-SSselected taus 96 91 5

    I hadronic efficiency �had for (OS-SS) (uncertainty with errorpropagation)�had (Signal) = 0.537 ± 0.0642�had (Signal (truth)) = 0.542 ± 0.0654�had (Signal + BG) = 0.550 ± 0.073

    I effects from selection uncertainties have to be studied in detail

    Gordon Fischer (DESY) Z0 → τ+τ− 21.09.2009 13 / 22

  • Embedding method

    Challenge: determine kinematic efficiency for Z0 → τ+τ− and

    Z0 → µ+µ−

    I don’t know all detector (and trigger) effects in detail → challenge todetermine

    �kinZ0→µ+µ−

    �kinZ0→τ+τ−

    I Idea 1: select µ pairs from Z decay (in real data)

    I kinematic behaviour of µ and τ (before decaying) is the same →allowed

    I replace µ with τ

    I let τ decay and run full reconstruction chain again

    I compare number of (kinematic) selected τ and µ → no more initialinformation needed

    1Markus Schumacher, Nicolas Möser (Uni Bonn), Martin Schmitz (UniBonn) et al.

    Gordon Fischer (DESY) Z0 → τ+τ− 21.09.2009 14 / 22

  • Embedding method

    recipe for kinematic efficiency determination from dataI select µ pairs from Z0 → µ+µ− with pT > 5 GeV, opposite chargeI determine correction factor for lepton pT −→ ξ = E

    2−mτ|p|2 and replace µ

    with τI let τ decay (TAUOLA) → digitisation → reconstruction → embedding→ Z0 → τ+τ−

    I Embedding → ∆R matching of τ to corresponding µI all track segments in muon spectrometer are deleted → track

    information from Z → ττ eventsI Track particles and tracks of µ are deleted and replecad by tracks

    from Z → ττ eventsI all higher-level objects and missing et will be reconstructed (Offline

    reconstruction (e.g. MuTag or STACO)

    I run the kinematic selection and ratio�kinZ0→µ+µ−original

    �kinZ0→τ+τ−replaced

    yields the

    required efficiency!

    Gordon Fischer (DESY) Z0 → τ+τ− 21.09.2009 15 / 22

  • Embedding method

    Performance plots

    ET for visible τ vs. Full detector energy on:

    I case 1: truth level

    I case 2: reconstructionlevelwith truth match

    I case 3: reconstructionlevel

    without truth match

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

    22

    full detector transv. energy [GeV]0 100 200 300 400 500 600

    visi

    ble

    tru

    th t

    au p

    air

    tran

    sv. e

    ner

    gy

    [GeV

    ]

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200Energy Tau vs. Full Energy

    Energy_NewTaus_10TeVEntries 79681Mean x 259.6Mean y 47.33RMS x 99.95RMS y 25.25

    Energy Tau vs. Full Energy

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    full detector transv. energy [GeV]0 100 200 300 400 500 600

    visi

    ble

    rec

    o t

    au p

    air

    ener

    gy

    mat

    ched

    [GeV

    ]

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200Energy Reco-Tau vs. Full Energy

    EnergyReco_NewTaus_10TeVEntries 49479Mean x 268.7Mean y 42.29RMS x 99.93RMS y 26.92

    Energy Reco-Tau vs. Full Energy

    0

    2

    4

    6

    8

    10

    12

    14

    full detector transv. energy [GeV]0 100 200 300 400 500 600

    visi

    ble

    rec

    o t

    au p

    air

    ener

    gy

    [GeV

    ]

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200Energy Reco-Tau vs. Full Energy without Truth Match

    EnergyReal_NewTaus_10TeVEntries 78787Mean x 249.7Mean y 87.77RMS x 92.2RMS y 43.33

    Energy Reco-Tau vs. Full Energy without Truth Match

    Gordon Fischer (DESY) Z0 → τ+τ− 21.09.2009 16 / 22

  • Embedding method

    case 2: reconstructed (and truth matched) τ ’sI =⇒ τ pair energy contribution relative small

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    full detector transv. energy [GeV]0 100 200 300 400 500 600

    visi

    ble

    rec

    o t

    au p

    air

    ener

    gy

    mat

    ched

    [GeV

    ]

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    Energy Reco-Tau vs. Full EnergyEnergyReco_Taus_10TeV

    Entries 13153Mean x 268.7Mean y 41.65RMS x 99.74RMS y 26.48

    Energy Reco-Tau vs. Full Energy

    Gordon Fischer (DESY) Z0 → τ+τ− 21.09.2009 17 / 22

  • Embedding method

    Performance plots → Embedding

    I choose Z0 → µ+µ− →full embedding chain

    I compare with regularZ0 → τ+τ− sample(same production)

    I plot pT fromreconstructed τ

    I compare R = #τ`#µµ fortruth MC andEmbedding:

    htempEntries 705Mean 2.064e+04RMS 1.552e+04

    Tau_p_T0 20 40 60 80 100 120 140

    310×0

    10

    20

    30

    40

    50

    60

    70

    80htemp

    Entries 705Mean 2.064e+04RMS 1.552e+04

    Tau_p_T {Tau_p_T>1000 && Tau_p_T

  • Summary and Outlook

    Summary and Outlook

    Summary:

    I τ and µ kinematic well understood

    I technical problems solved

    I embedding method works fine (on this level)

    Outlook:

    I of course more statistic needed

    I disussion of further uncertainties (e.g. µ selection, TAUOLA, effectsfrom underlying events..)

    I more detailed studies of embedding tool will be done

    I .....

    Gordon Fischer (DESY) Z0 → τ+τ− 21.09.2009 19 / 22

  • Summary and Outlook

    Backup

    Gordon Fischer (DESY) Z0 → τ+τ− 21.09.2009 20 / 22

  • Summary and Outlook

    Embedding method in more detailI µµ declared as ττ → four vectors together with four vector of Z boson

    are written in HEPEVT formatI ASCII file read in into TAUOLA (→ lets τ decay) and PHOTOS (→

    final state radiation)I fed into ATLAS detector simulation, digitisation, reconstructionI Embedding → ∆R matching of τ to corresponding µI all track segments in muon spectrometer are deleted → track

    information from Z → ττ eventsI Track particles and tracks of µ are deleted and replecad by tracks

    from Z → ττ events

    I all higher-level objects and missing et will be reconstructed (Offline

    reconstruction (e.g. MuTag or STACO)

    Gordon Fischer (DESY) Z0 → τ+τ− 21.09.2009 21 / 22

  • Summary and Outlook

    Embedding flow

    ATL-COM-PHYS-2009-446.pdf

    Gordon Fischer (DESY) Z0 → τ+τ− 21.09.2009 22 / 22

    What do I have to do?Efficiency determinationEmbedding methodSummary and Outlook