Viscosities of Glycine, l -Alanine, and l -Valine in (0.2, 0.4, 0.6, and 0.8) mol·kg –1 Aqueous...

Post on 19-Feb-2017

213 views 0 download

Transcript of Viscosities of Glycine, l -Alanine, and l -Valine in (0.2, 0.4, 0.6, and 0.8) mol·kg –1 Aqueous...

Viscosities of Glycine, L‑Alanine, and L‑Valine in (0.2, 0.4, 0.6, and 0.8)mol·kg−1 Aqueous Trisodium Citrate Solutions at DifferentTemperaturesHarsh Kumar,* Meenu Singla, and Rajeev Jindal

Department of Chemistry, Dr B R Ambedkar National Institute of Technology, Jalandhar, 144 011 Punjab, India

ABSTRACT: The viscosities, η of glycine, L-alanine, and L-valine withtrisodium citrate (TSC) have been measured as a function of temperature atT = (288.15, 298.15, 308.15 and 318.15) K. The change in viscosity of aminoacids with increase in TSC concentration and temperature is attributed toamino acids−TSC interactions. The viscosity B coefficients and viscosityinteraction parameters obtained from Jones−Dole equation and transition statetheory, respectively, have been discussed to interpret interactions between ionsof amino acids and TSC.

1. INTRODUCTION

The interactional behavior of large biomolecules like hormones,enzymes, and especially proteins are difficult to understandbecause of many specific interactions. Amino acids are the lowmolar mass model compounds or building blocks of proteinswhich can be used for studies which are expected to impactthe solvation and conformation of proteins.1,2 In general theelectrolytes present in our body influence the properties ofbiological molecules like proteins which are the vital part of ourbody. Electrolytes like tripotassium citrate, potassium dihy-drogen phosphate, and dipotassium hydrogen phosphate whichare of valuable importance in industries like medicines,biosensors, optics, and cosmetics, also play a significant rolein various metabolic processes.3−5 The B coefficients obtainedfrom viscosity values and calculated using the Jones−Doleequation are a very good parameter to describe thekosmotropic and chaotropic nature of solute in differentsolvents. Much work has been done on the determination ofthe B coefficient of amino acid and peptides in aqueous6−11 andaqueous electrolyte solutions12−16, but there has been less focuson the interactions of amino acids with the salts which areinvolved in the biochemical process of the body17,18 such ascitrates and phosphates. In a continuation of our researchprogram on thermodynamics studies19−21 of amino acids withsalts of citrates, here, the viscosities η of glycine, L-alanine, andL-valine in (0.2, 0.4, 0.6 and 0.8) mol·kg−1 aqueous trisodiumcitrate (TSC) solutions at T = (288.15, 298.15, 308.15 and318.15) K have been reported. Our main aim here is to studythe interactional behavior of amino acids with these salts, whichwill further help us to better understand these classes ofcompounds.

2. EXPERIMENTAL SECTIONGlycine, L-alanine, and L-valine with mass fraction purities> 0.99 procured from Merck, Germany, and trisodium citratewith mass fraction purity > 0.99 purchased from SD FineChem. Ltd., India, were used as supplied. However, these werevacuum-dried before use and then were kept over P2O5 in adesiccator for 48 h. All the aqueous solutions were preparedafresh in double distilled and degassed water having specificconductance < 10−6 S·cm−1. The specifications of the chemicalsused have also been given in Table 1. All the weighings were

made on a Sartorius CPA225D balance having precision of± 0.00001 g. Uncertainty in the solution concentration wasestimated to be ± 2·10−5 mol·kg−1 in calculations.The AntonPaar Automated MicroViscometer (AMVn) was

used to determine dynamic viscosities η of the solutions. Thetemperature was controlled to ± 0.01.K by a built in Peltierthermostat. The measurement of viscosities with AMVn isbased on the falling ball principle. A calibrated glass capillary

Received: October 7, 2013Accepted: January 15, 2014Published: January 24, 2014

Table 1. Specification of Chemical Samples

chemicalname source

initial mass fractionpurity

purificationmethod

glycine Merck, Germany > 0.99 used as suchL-alanine Merck, Germany > 0.99 used as suchL-valine Merck, Germany > 0.99 used as suchtrisodiumcitrate

S D Fine Chem. Ltd.,India

> 0.99 used as such

Article

pubs.acs.org/jced

© 2014 American Chemical Society 419 dx.doi.org/10.1021/je400894j | J. Chem. Eng. Data 2014, 59, 419−425

Table 2. Dynamic Viscosities η of Glycine, L-Alanine, andL-Valine in Aqueous Solutions of TSC at DifferentTemperatures and Experimental Pressure, p = 0.1 MPa−1a

η/mPa·s

m/mol·kg T = 288.15 K T = 298.15 K T = 308.15 K T = 318.15 K

Glycine + Water0.00000 1.119 0.883 0.722 0.6110.01207 1.123 0.894 0.729 0.6160.0523 1.133 0.911 0.730 0.6180.1 0374 1.152 0.928 0.740 0.6320.20373 1.168 0.932 0.761 0.6400.30678 1.1 72 0.932 0.766 0.6420.41239 1.177 0.951 0.777 0.6580.50277 1.201 0.975 0.804 0.6730.60576 1.229 0.976 0.806 0.6760.68289 1.241 0.985 0.806 0.6760.82001 1.250 0.986 0.809 0.682

Glycine + 0.2 mol·kg−1 TSC0.00000 1.343 1.056 0.858 0.7190.01954 1.370 1.079 0.876 0.7330.05491 1.372 1.079 0.880 0.7350.09665 1.374 1.082 0.883 0.7390.20869 1.389 1.096 0.887 0.7500.3083 1.404 1.106 0.911 0.7520.40064 1.421 1.121 0.921 0.7650.50838 1.456 1.147 0.932 0.7780.59657 1.467 1.157 0.942 0.7890.69776 1.493 1.175 0.955 0.8220.80295 1.502 1.197 0.966 0.839

Glycine + 0.4 mol·kg−1 TSC0.00000 1.661 1.296 1.047 0.8680.01087 1.663 1.296 1.047 0.8720.04829 1.669 1.300 1.047 0.8770.10 580 1.675 1.308 1.048 0.8790.19845 1.715 1.335 1.058 0.8800.29836 1.74 3 1.360 1.071 0.9120.41666 1.782 1.390 1.098 0.9290.49305 1.793 1.398 1.128 0.9560.60292 1.840 1.434 1.156 0.9590.71664 1.872 1.461 1.178 0.9780.79774 1.882 1.483 1.205 0.990

Glycine + 0.6 mol·kg−1 TSC0.00000 2.072 1.592 1.277 1.0490.01403 2.117 1.627 1.300 1.0650.05256 2.127 1.633 1.309 1.0780.09928 2.144 1.655 1.324 1.0890.20412 2.155 1.662 1.331 1.0920.30230 2.175 1.671 1.336 1.0990.39812 2.220 1.711 1.367 1.1230.49961 2.255 1.739 1.389 1.1420.58908 2.308 1.787 1.424 1.1640.69413 2.339 1.803 1.442 1.1840.78825 2.366 1.836 1.463 1.1980.86392 2.399 1.861 1.482 1.213

Glycine + 0.8 mol·kg−1 TSC0.00000 2.633 2.002 1.581 1.2870.01133 2.660 2.023 1.597 1.2940.05094 2.667 2.027 1.603 1.3050.10 775 2.689 2.048 1.621 1.3230.20440 2.735 2.080 1.643 1.3380.30559 2.78 8 2.121 1.675 1.3630.40682 2.869 2.177 1.714 1.389

Table 2. continued

η/mPa·s

m/mol·kg T = 288.15 K T = 298.15 K T = 308.15 K T = 318.15 K

Glycine + 0.8 mol·kg−1 TSC0.46139 2.898 2.199 1.734 1.4090.59657 2.956 2.242 1.764 1.4290.69469 3.007 2.279 1.794 1.4510.79205 3.067 2.322 1.826 1.478

Alanine + Water0.00000 1.119 0.883 0.722 0.6110.00939 1.189 0.949 0.757 0.6350.04689 1.198 0.957 0.768 0.6450.09896 1.218 0.968 0.776 0.6590.20034 1.242 0.976 0.799 0.6730.29792 1.255 0.987 0.804 0.6750.39972 1.264 1.000 0.813 0.6770.49412 1.288 1.001 0.820 0.6990.60987 1.324 1.039 0.837 0.7010.69727 1.342 1.046 0.843 0.7150.79784 1.351 1.055 0.861 0.735

Alanine + 0.2 mol·kg−1 TSC0.00000 1.343 1.056 0.858 0.7190.01095 1.391 1.105 0.880 0.7350.04907 1.409 1.120 0.888 0.7390.10 134 1.426 1.135 0.906 0.7460.20243 1.465 1.154 0.937 0.7500.29922 1.48 5 1.176 0.958 0.7810.39624 1.512 1.190 0.971 0.7980.48854 1.561 1.219 0.984 0.8160.59241 1.602 1.250 1.020 0.8220.70653 1.661 1.292 1.041 0.8380.79536 1.693 1.319 1.068 0.870

Alanine + 0.4 mol·kg−1 TSC0.00000 1.661 1.296 1.047 0.8680.01027 1.670 1.297 1. 047 0.8790.05007 1.700 1.327 1.068 0.8960.10029 1.714 1.340 1.080 0.90 30.20084 1.772 1.376 1.106 0.9180.30259 1.820 1.412 1.137 0.9400.39825 1.893 1.469 1.176 0.9660.51024 1.941 1.501 1.204 1.0050.59764 1.992 1.555 1.229 1.0190.70069 2.054 1.585 1.267 1.0440.80668 2.123 1.631 1.298 1.062

Alanine + 0.6 mol·kg−1 TSC0.00000 2.072 1.592 1.277 1.0490.01000 2.080 1.620 1.281 1.0550.05102 2.096 1.635 1.308 1.0600.09 796 2.142 1.649 1.316 1.0790.20125 2.204 1.693 1.349 1.1070.29538 2.28 3 1.751 1.394 1.1410.40326 2.362 1.804 1.430 1.1670.48309 2.419 1.848 1.463 1.1920.59335 2.504 1.918 1.531 1.2280.70955 2.546 1.966 1.549 1.2470.79773 2.575 1.999 1.596 1.296

Alanine + 0.8 mol·kg−1 TSC0.00000 2.633 2.002 1.581 1.2870.01206 2.661 2.029 1.599 1.2980.05011 2.681 2.038 1.610 1.3110.10 740 2.735 2.075 1.633 1.3240.20719 2.822 2.135 1.680 1.363

Journal of Chemical & Engineering Data Article

dx.doi.org/10.1021/je400894j | J. Chem. Eng. Data 2014, 59, 419−425420

with a steel ball as supplied by manufacturer with AMVn wasfilled with the sample to measure the ball falling time. The ballfalling time and densities were used to estimate kinematic aswell as dynamic viscosities. The calibration of capillary wasperformed by the manufacturer using viscosity standard fluids.The experimental uncertainty in viscosity measurement wasestimated to be less than ± 1.5·10−2 mPa·s and the combinedexpanded uncertainties (k = 2) for viscosity is ± 3·10−2 mPa·s.The densities used in the calculations were taken from ourearlier reported results.21

3. RESULTS AND DISCUSSIONThe values of dynamic viscosities η for glycine, L-alanine, andL-valine in (0.2, 0.4, 0.6, and 0.8) mol·kg−1 aqueous trisodiumcitrate solutions at temperatures T = (288.15, 298.15, 308.15,and 318.15) K are given in Table 2. The plots of viscositiesagainst molalities of amino acids are given in Figures 1 and 2.Figure 1 shows the experimental viscosities for glycine andL-alanine in different TSC solutions at T = 288.15 K andT = 298.15 K, respectively. Figure 2 shows the experimentalviscosities for L-valine in (0.2 and 0.4) mol·kg−1 solution ofTSC at different temperatures. The viscosity values show anincrease with increase in amino acids concentration. This maybe due to an increase in the number of cations and anions likeNH3+, COO−, Na+, Cit3− of amino acids and TSC in solutionswhich may in turn lead to an increase in the interactionsbetween them and therefore increase in frictional resistance inthe solutions for their flow. The elevated temperatures of thesolutions decrease the viscosities of the solutions.The viscosity A and B coefficients which describes ion−ion

and ion−solvent interactions were determined using Jones-Dole equation.22 The special behavior at low concentrationsmade Jones and Dole to conclude that there must be someeffect which is of relatively greater importance and which isresponsible for the curvature found in dilute end of η vs C plots.Furthermore, this effect always tends to increase whether theoverall effect of the addition of the salt is to increase or decreasethe viscosity. The increase in viscosity was attributed to theinterionic forces. Inspired by the results of Debye and Huckel,who had earlier shown that the effect of interionic forces inopposing the motion of ions is proportional to the square rootof concentration in very dilute solutions, Jones and Dole gavethe equation

η − = +C A BC( 1)/r1/2 1/2

(1)

Table 2. continued

η/mPa·s

m/mol·kg T = 288.15 K T = 298.15 K T = 308.15 K T = 318.15 K

Alanine + 0.8 mol·kg−1 TSC0.29908 2.90 7 2.194 1.723 1.3970.40011 3.009 2.268 1.779 1.4400.50861 3.167 2.378 1.856 1.4940.59248 3.222 2.416 1.883 1.5150.69231 3.338 2.496 1.951 1.5730.83880 3.502 2.613 2.030 1.634

Valine + Water0.00000 1.119 0.883 0.722 0.6110.00555 1.172 0.919 0.789 0.6820.02398 1.188 0.922 0.798 0.6990.03504 1.194 0.934 0.805 0.7010.05824 1.204 0.949 0.815 0.7130.07873 1.214 0.960 0.825 0.7310.09938 1.231 0.969 0.839 0.7420.20678 1.290 0.99 7 0.875 0.7740.29923 1.335 1.027 0.900 0.8000.40172 1.362 1.050 0.921 0.811

Valine + 0.2 mol·kg−1 TSC0.00000 1.343 1.056 0.858 0.7190.00219 1.347 1.059 0.861 0.7280.00492 1.357 1.068 0.874 0.7300.00982 1.369 1.075 0.878 0.7310.03003 1.374 1.079 0.881 0.7340.05839 1.395 1.094 0.888 0.7410.07898 1.406 1.103 0.896 0.7500.09797 1.427 1.118 0.906 0.7620.19960 1.489 1.162 0.939 0.7810.29588 1.563 1.215 0.977 0.8180.39873 1.640 1.270 1.035 0.842

Valine + 0.4 mol·kg−1 TSC0.00000 1.661 1.296 1.047 0.8680.00310 1.663 1.297 1.052 0.8690.00676 1.670 1.301 1.058 0.8700.00 993 1.672 1.303 1.061 0.8790.03119 1.685 1.312 1.077 0.8850.06018 1.71 7 1.335 1.084 0.8880.07509 1.724 1.342 1.098 0.8950.09961 1.751 1.360 1.109 0.9020.20333 1.839 1.422 1.149 0.9390.28514 1.930 1.487 1.185 0.9710.31777 1.957 1.506 1.203 0.9900.35139 2.009 1.547 1.237 1.017

Valine + 0.6 mol·kg−1 TSC

0.00000 2.072 1.592 1.277 1.049

0.00236 2.076 1.600 1.290 1.050

0.00543 2.077 1.603 1.293 1.053

0.01 005 2.081 1.610 1.299 1.060

0.03017 2.098 1.625 1.317 1.064

0.05981 2.13 2 1.636 1.344 1.0650.07695 2.165 1.664 1.359 1.0850.10096 2.189 1.690 1.397 1.0960.20016 2.304 1.760 1.437 1.1410.25160 2.379 1.813 1.468 1.1730.30713 2.451 1.863 1.495 1.192

Valine + 0.8 mol·kg−1 TSC0.00000 2.633 2.002 1.581 1.2870.00285 2.650 2.015 1. 589 1.2890.00523 2.654 2.017 1.590 1.291

Table 2. continued

η/mPa·s

m/mol·kg T = 288.15 K T = 298.15 K T = 308.15 K T = 318.15 K

Valine + 0.8 mol·kg−1 TSC0.01375 2.669 2.029 1.600 1.30 00.02871 2.684 2.037 1.605 1.3030.06205 2.764 2.094 1.648 1.3330.07723 2.789 2.112 1.656 1.3390.09908 2.817 2.132 1.672 1.3510.14972 2.870 2.170 1.703 1.3790.19869 2.977 2.239 1.755 1.4190.23400 3.062 2.298 1.792 1.441am is the molality of amino acid in aqueous TSC solution. Standarduncertainty: in molality u(m) = ± 2·10−5 mol·kg−1, in temperatureu(T) = ± 0.01 K, in viscosity u(η) = ± 1.5·10−2 mPa·s. The combinedexpanded uncertainty (k = 2) for viscosity Uc(η) = ± 3.0·10−2 mPa·s.

Journal of Chemical & Engineering Data Article

dx.doi.org/10.1021/je400894j | J. Chem. Eng. Data 2014, 59, 419−425421

where ηr (= η/η0) is the relative viscosity, η is the viscosity of(amino acid + TSC + water) solution, and η0 is the viscosity ofsolvent (TSC + water). A and B are the constants which arecharacteristics of ion−ion and ion−solvent interactions,respectively. C (mol·m−3) is the concentration in moles perunit volume (molarity). The conversion of molality “m” tomolarity “C” was done by using our density values.21 Theexperimental viscosity data were fitted to Jones−Dole usingleast-squares method to obtain A and B coefficients. The Acoefficient is characteristic of amino acid−amino acid interactions,that is, solute−solute interactions associated with the size andshape of solute, whereas the B coefficient is a measure of structuralmodification of solutions induced by solute−solvent interactions,that is, it is characteristic of amino acid−TSC−water interactions.The values of A and B coefficients as obtained are reported inTable 3. The values of A coefficients as reported in Table 3 arepositive for glycine in all concentrations of TSC at alltemperatures except at higher temperature in 0.2 mol·kg−1 andat all temperatures in 0.4 mol·kg−1 TSC. The values are positivefor L-alanine in all concentrations except at lower temperatures in0.4 mol·kg−1 TSC, at higher temperatures in 0.6 mol·kg−1 TSC,and at all temperatures in 0.8 mol·kg−1 TSC. Also, the values arepositive for L-valine at all concentrations except at lower andhigher temperatures in 0.4 mol·kg−1 and 0.6 mol·kg−1 TSCsolutions. The small negative or positive values of A coefficient inaqueous TSC solutions indicate the weak amino acid−amino acidinteractions. The B coefficient is a valuable tool and providesinformation concerning the solvation of solutes and their effectson the structure of solvent in the vicinity of the solute molecules.It reflects the net structural effects of the charged end groups,

hydrophilic and hydrophobic groups on the solvent. The observedvalues of B coefficient are positive for glycine, L-alanine, andL-valine in aqueous TSC solutions except for (L-alanine + water)at (298.15 and 308.15) K, for (L-valine + water) at highertemperatures and for L-valine in 0.4 mol·kg−1 TSC at 308.15 K.The positive and large values of B coefficient as compared to Acoefficient suggest the presence of strong solute−solventinteractions. This indicates that the amino acid−TSC−waterinteractions are dominant over amino acid−amino acid interac-tions23 and also the structure-making tendency of amino acidswith TSC. It is also observed from Table 3 that higher values of Bcoefficients are obtained for L-valine than L-alanine than glycinewhich means L-valine has greater kosmotropic effect than glycinein TSC solutions which reinforces that solute−solvent interactionsfollow the order: L-valine > L-alanine > glycine. This is because inL-valine, the ion-hydrophilic group interactions between the(COO−/NH3

+) zwitterionic centers of L-valine and ions of TSCare higher in comparison to L-alanine and glycine. The sign of thederivative of the B coefficient, that is, dB/dT predicts the ability ofsolute to act as structure maker or structure breaker in a particularsolvent.24,25 From Table 3, it is also observed that the magnitudeof B coefficient for amino acids decreases with an increase intemperature. The positive values of dB/dT for amino acidsindicate structure breaker characteristics while negative dB/dTvalues indicate structure-maker characteristics for amino acids.The dB/dT values for amino acids change signs from positive tonegative, but overall negative values of dB/dT predict amino acidsto be the structure-maker in TSC−water mixtures.The analysis of viscosity data of amino acids was done with

the help of transition state treatment by Feakins et al.26 forrelative viscosities. According to transition state theory,27,28

Figure 1. Experimental viscosities η for (a) glycine in aqueous TSCsolutions [○, 0.0 mol·kg−1; △, 0.2 mol·kg−1 ; □, 0.4 mol·kg−1 ; ◇,0.6 mol·kg−1; ×, 0.8 mol·kg−1] at T = 288.15 K and (b) L-alanine inaqueous TSC solutions [○, 0.0 mol·kg−1; △, 0.2 mol·kg−1 ; □,0.4 mol·kg−1 ; ◇, 0.6 mol·kg−1; ×, 0.8 mol·kg−1] at T = 298.15 K.

Figure 2. Experimental viscosities η for (a) L-valine in 0.2 mol·kg−1

TSC solutions and (b) L-valine in 0.4 mol·kg−1 TSC solutions atdifferent temperatures. [○, 288.15 K; △, 298.15 K; □, 308.15 K; ◇,318.15 K].

Journal of Chemical & Engineering Data Article

dx.doi.org/10.1021/je400894j | J. Chem. Eng. Data 2014, 59, 419−425422

every solvent molecule in one mole of solution must passthrough the transition state and interact more or less stronglywith solute molecules. Hence, the Gibbs free energy oftransfer of a solute from the ground state to the transitionstate solvents is the first contribution and Gibbs free energy ofsolute through its own viscous transition state is the secondcontribution to Δμ20* which is equal to Δμ10*. The B coefficientas per transition state treatment is given by followingrelationship

μ μ= ̅ − ̅ + ̅ Δ − Δ* *B V V V RT( )/1000 ( )/100010

20

10

20

10

(2)

where V̅10 and V̅2

0 are the mean volume of the solvent and partialmolar volume of the solute at infinite dilution. Δμ10* and Δμ20*are the free energy of activation per mole of the solvent and permole of the solute respectively.The free energy of activation per mole of the solvent and

solute can further be calculated as follows:29

μ ηΔ = ̅* RT V hNln( / )10

0 10

(3)

μ μΔ = Δ + − ̅ − ̅ ̅* * RT B V V V[1000 ( )]/20

10

10

20

10

(4)

where η0 is the viscosity of the solvent, R is the gas constant,h is Planck’s constant, and N is Avogadro’s number. Thecalculated values of V̅1

0, V̅20, Δμ10*, and Δμ20* at all the

temperatures are given in Table 4.The data reported in Table 4 shows that values of Δμ10* and

Δμ20* are positive. Further, the values of Δμ20* are much largerthanΔμ10* values for amino acids in aqueous TSC solutionsexcept for L-valine in water at (308.15 and 318.15) K andL-valine in 0.4 mol kg−1 TSC at 308.15 K. The large values ofΔμ20* as compared to Δμ10* indicate that interionic interactionsbetween the solute (glycine, L-alanine, and L-valine) and solvent(TSC + water) molecules are stronger in the ground state thanin the transition state. Thus, the solvation of the solutes in thetransition state is less favored in terms of free energy. Thisfurther suggests that the formation of the transition state is lessfavored because of the breaking of intermolecular bonding insolvent molecules in the presence of solute molecules, such asamino acids. Feakins et al.26 in their transition state treatmentalso suggest that solute molecules having large values of Δμ20*will have more tendency to act as structure maker. The largevalues of Δμ20* obtained in the present study predicts the aminoacids as structure maker in the (amino acids + TSC + water)mixtures.

Table 3. Values of A and B Parameters of Jones−Dole Equation for Glycine, L-Alanine, and L-Valine in Aqueous TSC Solutionsat Different Temperatures

ma T A·103/2 B·103

mol·kg−1 K m3/2·mol−1/2 m3·mol−1

Glycine0 288.15 0.0296 0.1149

298.15 0.1216 0.0162308.15 0.0681 0.0900318.15 0.0685 0.0775

0.2 288.15 0.0320 0.1198298.15 0.0318 0.1304308.15 0.0616 0.0914318.15 −0.0026 0.2004

0.4 288.15 −0.0216 0.2150298.15 −0.0351 0.2369308.15 −0.1118 0.3295318.15 −0.0293 0.2286

0.6 288.15 0.0372 0.1567298.15 0.0349 0.1711308.15 0.0300 0.1666318.15 0.0373 0.1522

0.8 288.15 0.0022 0.2358298.15 0.0090 0.2200308.15 0.0179 0.2200318.15 0.0250 0.1801

L-Alanine0 288.15 0.2109 0.0274

298.15 0.2501 −0.0407308.15 0.2198 −0.0229318.15 0.1965 0.0192

0.2 288.15 0.1046 0.2107298.15 0.1638 0.1195308.15 0.1171 0.1744318.15 0.0485 0.2036

0.4 288.15 −0.0084 0.3786298.15 −0.0017 0.3501

ma T A·103/2 B·103

mol·kg−1 K m3/2·mol−1/2 m3·mol−1

L-Alanine308.15 −0.0011 0.3216318.15 0.0381 0.2571

0.6 288.15 0.0253 0.3307298.15 0.0246 0.3334308.15 −0.0046 0.3506318.15 −0.0048 0.3185

0.8 288.15 −0.0274 0.4435298.15 −0.0252 0.4119308.15 −0.0252 0.4119318.15 −0.0282 0.3925

L-Valine0 288.15 0.3305 0.0218

298.15 0.3206 −0.0417308.15 0.6449 −0.3540318.15 0.8984 −0.6220

0.2 288.15 0.0447 0.4947298.15 0.0535 0.4322308.15 0.0517 0.4223318.15 0.0823 0.3103

0.4 288.15 −0.0304 0.6723298.15 −0.0310 0.6210308.15 0.3548 −0.1784318.15 −0.0191 0.5134

0.6 288.15 −0.0581 0.7705298.15 0.0192 0.5650308.15 0.1779 0.2816318.15 −0.0155 0.5233

0.8 288.15 0.0385 0.6716298.15 0.0452 0.5858308.15 0.0296 0.5595318.15 0.0061 0.5571

am is the molality of aqueous TSC solution.

Journal of Chemical & Engineering Data Article

dx.doi.org/10.1021/je400894j | J. Chem. Eng. Data 2014, 59, 419−425423

Table 4. Values of V̅10, V̅2

0, Δμ10*, and Δμ20* for Glycine, L-Alanine, and L-Valine in Aqueous TSC Solutions at DifferentTemperatures

m/(mol·kg−1)a T = 288.15 K T = 298.15 K T = 308.15 K T = 318.15 K

Glycine0.0 V̅1

0·106 (m3 mol−1) 18.02 18.05 18.11 18.18V̅20·106 (m3 mol−1) 41.92 42.62 43.56 44.38

Δμ10* (kJ mol−1) 25.95 26.27 26.64 27.07Δμ20* (kJ mol−1) 44.41 31.87 42.98 42.16

0.2 V̅10·106 (m3 mol−1) 18.35 18.40 18.46 18.53

V̅20·106 (m3 mol−1) 43.61 44.62 45.42 46.43

Δμ10* (kJ mol−1) 26.43 26.75 27.13 27.55Δμ20*/(kJ mol−1) 45.36 47.84 43.56 60.13

0.4 V̅10·106 (m3 mol−1) 18.64 18.70 18.77 18.85

V̅20·106 (m3 mol−1) 46.23 47.54 48.34 49.32

Δμ10* (kJ mol−1) 26.46 27.30 27.68 28.09Δμ20* (kJ mol−1) 57.63 62.52 76.69 64.43

0.6 V̅10·106 (m3 mol−1) 18.79 18.86 18.92 19.00

V̅20·106 (m3 mol−1) 49.12 50.45 51.21 52.12

Δμ10* (kJ mol−1) 26.48 27.83 28.21 28.62Δμ20*(kJ mol−1) 50.32 54.47 55.14 54.41

0.8 V̅10·106 (m3 mol−1) 21.62 19.32 19.40 19.49

V̅20·106 (m3 mol−1) 52.11 53.23 54.11 55.02

Δμ10* (kJ mol−1) 26.82 28.46 28.82 29.22Δμ20* (kJ mol−1) 56.33 61.02 59.82 58.49

L-Alanine0.0 V̅1

0·106 (m3 mol−1) 18.02 18.052 18.11 18.18V̅20·106 (m3 mol−1) 56.96 59.98 61.27 62.39

Δμ10* (kJ mol−1) 25.95 26.27 26.64 27.07Δμ20* (kJ mol−1) 34.78 26.43 29.51 36.30

0.2 V̅10·106 (m3 mol−1) 18.35 18.40 18.46 18.53

V̅20·106 (m3 mol−1) 59.05 59.34 61.32 62.42

Δμ10* (kJ mol−1) 26.43 26.75 27.13 27.55Δμ20* (kJ mol−1) 59.24 48.36 57.28 62.86

0.4 V̅10·106 (m3 mol−1) 18.64 18.70 18.77 18.85

V̅20·106 (m3 mol−1) 62.03 62.74 64.44 65.62

Δμ10* (kJ mol−1) 26.97 27.30 27.68 28.09Δμ20* (kJ mol−1) 81.19 79.54 77.82 70.72

0.6 V̅10·106 (m3 mol−1) 18.79 18.86 18.92 19.00

V̅20·106 (m3 mol−1) 65.18 66.66 67.17 68.15

Δμ10* (kJ mol−1) 27.52 27.83 28.21 28.62Δμ20* (kJ mol−1) 75.59 77.93 82.20 79.79

0.8 V̅10·106 (m3 mol−1) 21.62 19.32 19.40 19.49

V̅20·106 (m3 mol−1) 68.11 70.35 70.3 71.22

Δμ10* (kJ mol−1) 28.43 28.46 28.82 29.22Δμ20* (kJ mol−1) 82.72 87.82 89.92 89.51

L-Valine0.0 V̅1

0·106 (m3 mol−1) 18.02 18.05 18.11 18.18V̅20·106 (m3 mol−1) 89.47 90.68 91.69 92.78

Δμ10* (kJ mol−1) 25.95 26.27 26.64 27.07Δμ20* (kJ mol−1) 38.35 30.51 −13.03 −52.57

0.2 V̅10·106 (m3 mol−1) 18.35 18.40 18.46 18.53

V̅20·106 (m3 mol−1) 90.55 91.66 90.63 93.91

Δμ10* (kJ mol−1) 26.43 26.75 27.13 27.55Δμ20* (kJ mol−1) 100.42 94.83 95.74 82.58

0.4 V̅10·106 (m3 mol−1) 18.64 18.70 18.77 18.85

V̅20·106 (m3 mol−1) 94.46 94.46 94.13 97.1

Δμ10* (kJ mol−1) 26.97 27.30 27.68 28.09Δμ20* (kJ mol−1) 123.09 119.64 13.62 111.09

0.6 V̅10·106 (m3 mol−1) 18.79 18.86 18.92 19.00

V̅20·106 (m3 mol−1) 96.24 97.23 97.46 99.98

Δμ10* (kJ mol−1) 27.52 27.83 28.21 28.62Δμ20* (kJ mol−1) 135.59 112.38 76.97 112.72

0.8 V̅10·106 (m3 mol−1) 21.62 19.329 19.40 19.49

Journal of Chemical & Engineering Data Article

dx.doi.org/10.1021/je400894j | J. Chem. Eng. Data 2014, 59, 419−425424

■ AUTHOR INFORMATION

Corresponding Author*E-mail: h.786.man@gmail.com; manchandah@nitj.ac.in.

FundingM.S. is thankful to The Director and Head, Department ofChemistry, Dr B R Ambedkar National Institute of Technology,Jalandhar, for providing an MHRD fellowship.

NotesThe authors declare no competing financial interest.

■ REFERENCES(1) Von Hippel, P. H.; Schleich, T. In Structure and Stability ofBiological Macromolecules; Timasheff, S. N.; Fasman, G. D., Eds.;Marcel Dekker: New York, 1969; pp 417−574.(2) Hedwig, G. R.; Hoiland, H. Thermodynamic properties ofpeptide solutions 8. Isentropic pressure coefficients (∂V2,/∂p)s of theapparent molar volume V2, for each of the aqueous solutes: Diglycine,triglycine, and tetraglycine. J. Chem. Thermodyn. 1991, 23, 1029−1035.(3) Bouchard, E. F.; Meritt, E. G. In Kirk-Othmer Encyclopedia ofChemical Technology, 3rd ed.; Wiley-Interscience: New York, 1984;Vol. 6, pp 150−179.(4) Van Ness, J. H. In Kirk-Othmer Encyclopedia of ChemicalTechnology, 3rd ed.; Wiley-Interscience: New York, 1984; Vol. 13, pp80−103.(5) Kertes, A. S.; King, C. J. Extraction chemistry of fermentationproduct carboxylic acids. Biotechnol. Bioeng. 1986, 28, 269−281.(6) Wadi, R. K.; Ramaswami, P. Partial molal volumes and adiabaticcompressibilities of transfer of glycine and DL-alanine from water toaqueous sodium sulfate at 288.15, 298.15 and 308.15 K. J. Chem. Soc.Faraday Trans. 1997, 93, 243−247.(7) Belibagli, K. B.; Ayranci, E. Viscosities and apparent molarvolumes of some amino acids in water and in 6 M guanidinehydrochloride at 25 °C. J. Solution Chem. 1990, 19, 867−882.(8) Banipal, T. S.; Singh, G. Thermodynamic study of solvation ofsome amino acids, diglycine and lysozyme in aqueous and mixedaqueous solutions. Thermochim. Acta 2004, 412, 63−83.(9) Yan, Z.; Wang, J.; Lu, J. Viscosity behavior of some a-amino acidsand their groups in water−sodium acetate mixtures. Biophys. Chem.2002, 99, 199−207.(10) Tsangaris, J. M.; Martin, R. B. Viscosities of aqueous solutions ofdipolar ions. Arch. Biochem. Biophys. 1965, 112, 267−272.(11) Banipal, T. S.; Bhatia, A.; Banipal, P. K.; Singh, G.; Kaur, D.Partial molar volumes and viscosities of some amino acids in aqueouselectrolyte and non-electrolyte solutions. J. Indian Chem. Soc. 2004, 81,126−131.(12) Wang, J.; Yan, Z.; Lu, J. Effect of sodium caproate on thevolumetric and viscometric properties of glycine, DL-α-alanine, and DL-α-amino n-butyric acid in aqueous solutions. J. Chem. Thermodyn.2004, 36, 281−288.(13) Natarajan, M.; Wadi, R. K.; Gaur, H. C. Apparent molarvolumes and viscosities of some α- and α,ω-amino acids in aqueousammonium chloride solutions at 298.15 K. J. Chem. Eng. Data 1990,35, 87−93.(14) Badarayani, R.; Kumar, A. Viscometric study of glycine, L-alanine, glycylglycine in aqueous tetra-n-alkylammonium bromidesolutions at 298.15 K. J. Chem. Thermodyn. 2004, 36, 983−991.

(15) Yan, Z.; Wang, J.; Liu, D.; Lu, J. Viscosity B coefficients of someα-amino acids in aqueous guanidine hydrochloride solution from278.15 to 308.15 K. Z. Phys. Chem. 1999, 211, 121−131.(16) Sinha, B.; Dakua, V. K.; Roy, M. N. Apparent molar volumesand viscosity B coefficients of some amino acids in aqueousetramethylammonium iodide solutions at 298.15 K. J. Chem. Eng.Data 2007, 52, 1768−1772.(17) Sadeghi, R.; Goodarzi, B.; Karami, K. Effect of potassium citratesalts on the transport behavior of L-alanine in aqueous solutions at T =(293.15 to 308.15) K. J. Chem. Eng. Data 2009, 54, 791−794.(18) Sadeghi, R.; Goodarzi, B. Apparent molar volumes andisentropic compressibilities of transfer of L-alanine from water toaqueous potassium di-hydrogen citrate and tri-potassium citrate at T =(283.15 to 308.15) K. J. Mol. Liq. 2008, 141, 62−68.(19) Kumar, H.; Kaur, K.; Kumar, S. Apparent molar volumes andtransport behavior of glycine and L-valine in aqueous solutions oftripotassium citrate at T = (308.15 and 318.15) K. J. Mol. Liq. 2011,162, 89−94.(20) Kumar, H.; Kaur, K.; Kaur, S. P.; Singla, M. Studies ofvolumetric and acoustic properties of trisodium citrate andtripotassium citrate in aqueous solutions of N-acetyl glycine atdifferent temperatures. J. Chem. Thermodyn. 2013, 59, 173−181.(21) Kumar, H.; Singla, M.; Jindal, R. Interactions of glycine, L-alanine and L-valine with aqueous solutions of trisodium citrate atdifferent temperatures: A volumetric and acoustic approach. J. Chem.Thermodyn. 2013, 67, 170−180.(22) Jones, G.; Dole, M. The viscosity of aqueous solutions of strongelectrolytes with special reference to barium chloride. J. Am. Chem. Soc.1929, 51, 2950−2964.(23) Bai, T. C.; Yan, G. B. Viscosity B coefficients and activationparameters of viscous flow of a solution of heptane dioic acid inaqueous sucrose solution. Carbohydr. Res. 1999, 338, 2921−2927.(24) Kaminsky, M. Ion−solvent interaction and the viscosity ofstrong electrolyte solutions. Discuss. Faraday Soc. 1957, 24, 171−179.(25) Sharma, T. S.; Ahluwalia, J. C. Experimental studies on thestructures of aqueous solutions of hydrophobic solutes. Rev. Chem. Soc.1973, 2, 203−232.(26) Feakins, D.; Freemantle, D.; Lawrence, K. G. Transition statetreatment of the relative viscosity of electrolytic solutions, Applicationsto aqueous, non-aqueous and methanol+water systems. J. Chem. Soc.Faraday Trans. I. 1974, 70, 795−806.(27) Feakins, D.; Bates, F. M.; Waghorne, W. E.; Lawrence, K. G.Relative viscosities and quasi-thermodynamics of solutions of tert-butylalcohol in the methanol−water system: A different view of the alkyl−water interaction. J. Chem. Soc. Faraday Trans. 1993, 89, 3381−3388.(28) Feakins, D.; Waghorne, W. E.; Lawrence, K. G. The viscosityand structure of solutions. Part 1.A new theory of the Jones−Dole Bcoefficient and the related activation parameters: application toaqueous solutions. J. Chem. Soc. Faraday Trans. 1 1986, 82, 563−568.(29) Glasstone, S.; Laidler, K.; Eyring. H. Theory of Rate Processes;McGraw Hill: New York, 1941; p 477.

Table 4. continued

m/(mol·kg−1)a T = 288.15 K T = 298.15 K T = 308.15 K T = 318.15 K

L-ValineV̅20·106 (m3 mol−1) 99.01 100.03 100.84 102.79

Δμ10* (kJ mol−1) 28.43 28.46 28.82 29.22Δμ20* (kJ mol−1) 111.43 113.93 113.44 116.13

am is the molality of aqueous TSC solution.

Journal of Chemical & Engineering Data Article

dx.doi.org/10.1021/je400894j | J. Chem. Eng. Data 2014, 59, 419−425425