The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event...

Post on 25-Aug-2021

2 views 0 download

Transcript of The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event...

1 / 28

The challenge of femtometer scale physics

Nobuo SatoODU/JLab

QCD Evolution 19Argonne National Laboratory

Outline

2 / 28

1. A new perspective for MC event generators

2. Understanding the large pT SIDIS spectrum

3. New developments to identify SIDIS regions

3 / 28

A new perspective for MC event generators

QCD physicists :W. Melnitchouk (JLab-theory)T. Liu (JLab-theory)NS (JLab/ODU-theory)R. E. McCleallan (JLab-theory)

Computer Scientists:Y. Li (ODU)M. Kuchera (Davidson College)

Supported by:JLab LDRD19-13

From detectors to partons

4 / 28

From detectors to partons

4 / 28

Detectorresponse

QEDeffects

QCDeffects

From detectors to partons

4 / 28

Detectorresponse

QEDeffects

QCDeffects

σEXP = wDR ⊗ wQED ⊗ σQCD

A new perspective for MC event generators

5 / 28

An empirical tool such that

σEXP = wDR ⊗ σMCEG

↓wQED ⊗ σQCD

A tool agnostic of theory (partons, factorization, hadronization, etc.)

Machine Learning based MCEG

A new perspective for MC event generators

5 / 28

An empirical tool such that

σEXP = wDR ⊗ σMCEG

↓wQED ⊗ σQCD

A tool agnostic of theory (partons, factorization, hadronization, etc.)

Machine Learning based MCEG

A new perspective for MC event generators

5 / 28

An empirical tool such that

σEXP = wDR ⊗ σMCEG

↓wQED ⊗ σQCD

A tool agnostic of theory (partons, factorization, hadronization, etc.)

Machine Learning based MCEG

Empirically Trained Hadronic Event Regenerator (ETHER)

6 / 28

Nature

Events:vertex level

0.0 0.2 0.4 0.6 0.8 1.00

50

100

150

200

250

Empirically Trained Hadronic Event Regenerator (ETHER)

6 / 28

Nature

Events:vertex level

0.0 0.2 0.4 0.6 0.8 1.00

50

100

150

200

250

Experimentaldetector

Events:detector level

0.0 0.2 0.4 0.6 0.8 1.00

100

200

300

400distortion

Empirically Trained Hadronic Event Regenerator (ETHER)

6 / 28

Nature

Events:vertex level

0.0 0.2 0.4 0.6 0.8 1.00

50

100

150

200

250

Experimentaldetector

Events:detector level

0.0 0.2 0.4 0.6 0.8 1.00

100

200

300

400distortion

Inverse problem → Model dependent

Empirically Trained Hadronic Event Regenerator (ETHER)

6 / 28

Nature

Events:vertex level

0.0 0.2 0.4 0.6 0.8 1.00

50

100

150

200

250

Experimentaldetector

Events:detector level

0.0 0.2 0.4 0.6 0.8 1.00

100

200

300

400distortion

ETHER

Events:vertex level

0.0 0.2 0.4 0.6 0.8 1.00

50

100

150

200

250

Empirically Trained Hadronic Event Regenerator (ETHER)

6 / 28

Nature

Events:vertex level

0.0 0.2 0.4 0.6 0.8 1.00

50

100

150

200

250

Experimentaldetector

Events:detector level

0.0 0.2 0.4 0.6 0.8 1.00

100

200

300

400distortion

ETHER

Events:vertex level

0.0 0.2 0.4 0.6 0.8 1.00

50

100

150

200

250

Detectorsimulator

neural netdetector

Empirically Trained Hadronic Event Regenerator (ETHER)

6 / 28

Nature

Events:vertex level

0.0 0.2 0.4 0.6 0.8 1.00

50

100

150

200

250

Experimentaldetector

Events:detector level

0.0 0.2 0.4 0.6 0.8 1.00

100

200

300

400distortion

ETHER

Events:vertex level

0.0 0.2 0.4 0.6 0.8 1.00

50

100

150

200

250

Detectorsimulator

neural netdetector

Events:detector level

0.0 0.2 0.4 0.6 0.8 1.00

100

200

300

400distortion

Empirically Trained Hadronic Event Regenerator (ETHER)

6 / 28

Nature

Events:vertex level

0.0 0.2 0.4 0.6 0.8 1.00

50

100

150

200

250

Experimentaldetector

Events:detector level

0.0 0.2 0.4 0.6 0.8 1.00

100

200

300

400distortion

ETHER

Events:vertex level

0.0 0.2 0.4 0.6 0.8 1.00

50

100

150

200

250

Detectorsimulator

neural netdetector

Events:detector level

0.0 0.2 0.4 0.6 0.8 1.00

100

200

300

400distortion

Likelihoodanalysis

Empirically Trained Hadronic Event Regenerator (ETHER)

6 / 28

Nature

Events:vertex level

0.0 0.2 0.4 0.6 0.8 1.00

50

100

150

200

250

Experimentaldetector

Events:detector level

0.0 0.2 0.4 0.6 0.8 1.00

100

200

300

400distortion

ETHER

Events:vertex level

0.0 0.2 0.4 0.6 0.8 1.00

50

100

150

200

250

Detectorsimulator

neural netdetector

Events:detector level

0.0 0.2 0.4 0.6 0.8 1.00

100

200

300

400distortion

Likelihoodanalysis

datacom

pression

Empirically Trained Hadronic Event Regenerator (ETHER)

7 / 28

Pythia

Events:vertex level

0.0 0.2 0.4 0.6 0.8 1.00

50

100

150

200

250

ETHER

Events:vertex level

0.0 0.2 0.4 0.6 0.8 1.00

50

100

150

200

250

Likelihoodanalysis

datacom

pression

Empirically Trained Hadronic Event Regenerator (ETHER)

7 / 28

Pythia

Events:vertex level

0.0 0.2 0.4 0.6 0.8 1.00

50

100

150

200

250

ETHER

Events:vertex level

0.0 0.2 0.4 0.6 0.8 1.00

50

100

150

200

250

Likelihoodanalysis

datacom

pression

+ ML setup: Generativeadversarial network (GAN’s)

+ Milestones:

! A setup for exclusive l + preaction

! particles multiplicities

' xbj, Q2,...

8 / 28

Understanding the large pT SIDIS spectrum

Work based on

o Gonzalez-Hernandez, Rogers, NS, Wang ( PRD98 2018 )o Wang, Gonzalez-Hernandez, Rogers, NS ( arXiv:1903.01529 2019 )

SIDIS FO O(α2S) calculation completed! Wang, Gonzalez, Rogers, NS (’19)

9 / 28

Wµν(P, q, PH) =∫ 1+

x−

ξ

∫ 1+

z−

ζ2 Wµνij (q, x/ξ, z/ζ)fi/P (ξ)dH/j(ζ)

Pµνg W (N)µν ; PµνPP W

(N)µν ≡

1(2π)4

∫|M2→N

g |2; |M2→Npp |2 dΠ(N) − Subtractions

Born/Virtual

Real

X Generate all 2→ 2 and 2→ 3 squaredamplitudes

X Evaluate 2→ 2 virtual graphs(Passarino-Veltman)

X Integrate 3-body PS analytically

X Check cancellation of IR poles

X Agreement within 20% with Daleo’s etal(’05)

Why is this calculation relevant?

10 / 28

0.0 0.5 1.0 1.5 2.0 2.5 3.0

qT (GeV)

10−4

10−3

10−2

10−1

100

Γ(1

)(qT,Q

)

Q = 2.0 (GeV)

FO

|AY|Y

|W|W + Y

0 1 2 3 4 5

qT (GeV)

10−4

10−3

10−2

10−1

100

Γ(1

)(qT,Q

)

Q = 5.0 (GeV)

FO

|ASY|Y

|W|W + Y

dσdxdQdzdqT

Why is this calculation relevant?

10 / 28

0.0 0.5 1.0 1.5 2.0 2.5 3.0

qT (GeV)

10−4

10−3

10−2

10−1

100

Γ(1

)(qT,Q

)

Q = 2.0 (GeV)

FO

|AY|Y

|W|W + Y

0 1 2 3 4 5

qT (GeV)

10−4

10−3

10−2

10−1

100

Γ(1

)(qT,Q

)

Q = 5.0 (GeV)

FO

|ASY|Y

|W|W + Y

dσdxdQdzdqT

FO =∑q

e2q

∫ 1

ξmin

ξ − x H(ξ) fq(ξ, µ) dq(ζ(ξ), µ)

+O(α2S) +O(m2/q2)

Why is this calculation relevant?

10 / 28

0.0 0.5 1.0 1.5 2.0 2.5 3.0

qT (GeV)

10−4

10−3

10−2

10−1

100

Γ(1

)(qT,Q

)

Q = 2.0 (GeV)

FO

|AY|Y

|W|W + Y

0 1 2 3 4 5

qT (GeV)

10−4

10−3

10−2

10−1

100

Γ(1

)(qT,Q

)

Q = 5.0 (GeV)

FO

|ASY|Y

|W|W + Y

dσdxdQdzdqT

FO =∑q

e2q

∫ 1

ξmin

ξ − x H(ξ) fq(ξ, µ) dq(ζ(ξ), µ)

+O(α2S) +O(m2/q2)

ξmin = q2TQ2

xz

1− z + x

Why is this calculation relevant?

10 / 28

0.0 0.5 1.0 1.5 2.0 2.5 3.0

qT (GeV)

10−4

10−3

10−2

10−1

100

Γ(1

)(qT,Q

)

Q = 2.0 (GeV)

FO

|AY|Y

|W|W + Y

0 1 2 3 4 5

qT (GeV)

10−4

10−3

10−2

10−1

100

Γ(1

)(qT,Q

)

Q = 5.0 (GeV)

FO

|ASY|Y

|W|W + Y

dσdxdQdzdqT

FO =∑q

e2q

∫ 1

ξmin

ξ − x H(ξ) fq(ξ, µ) dq(ζ(ξ), µ)

+O(α2S) +O(m2/q2)

ξmin = q2TQ2

xz

1− z + x

Does it work?

11 / 28

FO =∑q

e2q

∫ 1q2

TQ2

xz1−z

+x

ξ − x H(ξ) fq(ξ, µ) dq(ζ(ξ), µ) +O(α2S) +O(m2/q2)

data/FO vs qT

11 / 28

FO =∑q

e2q

∫ 1q2

TQ2

xz1−z

+x

ξ − x H(ξ) fq(ξ, µ) dq(ζ(ξ), µ) +O(α2S) +O(m2/q2)

data/FO vs qT

FO =∑q

e2q

∫ 1q2

TQ2

xz1−z

+x

ξ − x H(ξ) fq(ξ, µ) dq(ζ(ξ), µ) +O(α2S) +O(m2/q2)

data/FO vs qT

What to do?

12 / 28

FO =∑q

e2q

∫ 1q2

TQ2

xz1−z

+x

ξ − x H(ξ) fq(ξ, µ) dq(ζ(ξ), µ) +O(α2S) +O(m2/q2)

1) Update FFs: use qT integrated data

2) Add O(α2S)

What to do?

12 / 28

FO =∑q

e2q

∫ 1q2

TQ2

xz1−z

+x

ξ − x H(ξ) fq(ξ, µ) dq(ζ(ξ), µ) +O(α2S) +O(m2/q2)

1) Update FFs: use qT integrated data

2) Add O(α2S)

What to do?

12 / 28

FO =∑q

e2q

∫ 1q2

TQ2

xz1−z

+x

ξ − x H(ξ) fq(ξ, µ) dq(ζ(ξ), µ) +O(α2S) +O(m2/q2)

1) Update FFs: use qT integrated data

2) Add O(α2S)

13 / 28

FO =∑q

e2q

∫ 1q2

TQ2

xz1−z

+x

ξ − x H(ξ) fq(ξ, µ) dq(ζ(ξ), µ) +O(α2S) +O(m2/q2)

data/FO vs qT

FO =∑q

e2q

∫ 1q2

TQ2

xz1−z

+x

ξ − x H(ξ) fq(ξ, µ) dq(ζ(ξ), µ) +O(α2S) +O(m2/q2)

data/FO vs qT

13 / 28

FO =∑q

e2q

∫ 1q2

TQ2

xz1−z

+x

ξ − x H(ξ) fq(ξ, µ) dq(ζ(ξ), µ) +O(α2S) +O(m2/q2)

data/FO vs qT

FO =∑q

e2q

∫ 1q2

TQ2

xz1−z

+x

ξ − x H(ξ) fq(ξ, µ) dq(ζ(ξ), µ) +O(α2S) +O(m2/q2)

data/FO vs qT

13 / 28

FO =∑q

e2q

∫ 1q2

TQ2

xz1−z

+x

ξ − x H(ξ) fq(ξ, µ) dq(ζ(ξ), µ) +O(α2S) +O(m2/q2)

data/FO vs qT

FO =∑q

e2q

∫ 1q2

TQ2

xz1−z

+x

ξ − x H(ξ) fq(ξ, µ) dq(ζ(ξ), µ) +O(α2S) +O(m2/q2)

data/FO vs qT

13 / 28

FO =∑q

e2q

∫ 1q2

TQ2

xz1−z

+x

ξ − x H(ξ) fq(ξ, µ) dq(ζ(ξ), µ) +O(α2S) +O(m2/q2)

data/FO vs qT

Issue at large x remains

14 / 28

2

4

6F

NL

O1

/FL

O1

z = 0.2 qT = Q z = 0.8 qT = Q

0.01 0.1

2

4

6

z = 0.2 qT = 2Q

0.01 0.1 xz = 0.8 qT = 2Q

Q = 2 GeV

Q = 20 GeV

Large threshold corrections

The x at the minimum canindicate where to expect largethreshold corrections

14 / 28

2

4

6F

NL

O1

/FL

O1

z = 0.2 qT = Q z = 0.8 qT = Q

0.01 0.1

2

4

6

z = 0.2 qT = 2Q

0.01 0.1 xz = 0.8 qT = 2Q

Q = 2 GeV

Q = 20 GeV

COMPASS kinematics

0.01 0.1 x1

2

3

4

5

6

7

q T/Q

< z >= 0.24

0.01 0.1 x1

2

3

4

5

6

7

< z >= 0.48

0.01 0.1 x1

2

3

4

5

6

7

< z >= 0.69

x > x0

x ≤ x0

Large threshold corrections

The x at the minimum canindicate where to expect largethreshold corrections

15 / 28

New developments to identify SIDIS regions

Work based on

o Boglione, Collins, Gamberg, Gonzalez-Hernandez, Rogers, NS( PLB 766 2017 )

o Boglione, Gamberg, Gordon, Gonzalez-Hernandez, Prokudin, Rogers, NS( arXiv:1904.12882 )

SIDIS regions (Breit frame kinematics)

16 / 28

p⊥h

yh

Current fragmentationTMD factorization

Current fragmentationCollinear factorization

Soft region????

Target regionFracture functions

SIDIS current region

17 / 28

P

PB

q

ki

kf

kX

ki =(

Q

xN√

2,xN (k2

i + k2i,T)√

2Q,ki,T

)(1)

kf =(k2f + k2

f,T√2xNQ

,zNQ√

2,ki,T

)

SIDIS in the current region

18 / 28

For “current region” we must have

R1 ≡PB · kfPB · ki

→ small

Deviation from 2→ 1 kinematics

R2 ≡|(kf − q)2|

Q2 ' (1− zN) + zNq2

TQ2

Deviation from 2→ 2 kinematics

R3 ≡|k2X |Q2

q

ki

kf

SIDIS in the current region

18 / 28

For “current region” we must have

R1 ≡PB · kfPB · ki

→ small

Deviation from 2→ 1 kinematics

R2 ≡|(kf − q)2|

Q2 ' (1− zN) + zNq2

TQ2

Deviation from 2→ 2 kinematics

R3 ≡|k2X |Q2

q

ki

kf

q

ki

kf

k2

SIDIS in the current region

18 / 28

For “current region” we must have

R1 ≡PB · kfPB · ki

→ small

Deviation from 2→ 1 kinematics

R2 ≡|(kf − q)2|

Q2 ' (1− zN) + zNq2

TQ2

Deviation from 2→ 2 kinematics

R3 ≡|k2X |Q2

q

ki

kf

q

ki

kf

k2

q

p

N

k1

SIDIS regions web app

19 / 28

o https://sidis.herokuapp.com/

o feedback/questions arewelcomed

o it might take few seconds toload be patient

example for pions

20 / 28

p⊥h

yh

Current fragmentationTMD factorization

Current fragmentationCollinear factorization

Soft region????

Target regionFracture functions

R1 ≡ PB·kfPB·ki

qTQ

y

R1

example for pions

21 / 28

p⊥h

yh

Current fragmentationTMD factorization

Current fragmentationCollinear factorization

Soft region????

Target regionFracture functions

R2 ≡ |(kf−q)2|

Q2

qTQ

y

R2

example for pions

22 / 28

p⊥h

yh

Current fragmentationTMD factorization

Current fragmentationCollinear factorization

Soft region????

Target regionFracture functions

R3 ≡ |k2X |Q2

qTQ

y

R3

example for kaons

23 / 28

p⊥h

yh

Current fragmentationTMD factorization

Current fragmentationCollinear factorization

Soft region????

Target regionFracture functions

R1 ≡ PB·kfPB·ki

qTQ

y

R1

example for kaons

24 / 28

p⊥h

yh

Current fragmentationTMD factorization

Current fragmentationCollinear factorization

Soft region????

Target regionFracture functions

R2 ≡ |(kf−q)2|

Q2

qTQ

y

R2

example for kaons

25 / 28

p⊥h

yh

Current fragmentationTMD factorization

Current fragmentationCollinear factorization

Soft region????

Target regionFracture functions

R3 ≡ |k2X |Q2

qTQ

y

R3

Using the ratios in phenomenology

26 / 28

Recall the Bayesian regression paradigm

P(a|data) = L(a, data)π(a)

The likelihood

L(a,data) = exp(−1

2∑i

(datai − theoryi(a)δdatai

)2)

The priors

π(a) ∝ Πiθ(amini < ai < amax

i )

E[O] =∫dna P(a|data)O(a) ,

V[O] =∫dna P(a|data) (O(a)− E[O])2

Using the ratios in phenomenology

27 / 28

IDEA: use Ri as priors

π(Rk) ∝ exp (−|Rk|p)

The full prior becomes

π(a) ∝ Πiθ(amini < ai < amax

i )×Πj exp

− ∑k=1,2,3

|Rk(a,b,Ωj)|p× π(b)

→ parameters a enter directly in TMD factorization

→ parameters b are other parameters that characterize additionalpartonic d.o.f. (i.e. virtualities)

Summary and outlook

28 / 28

A new perspective for MC event generatorso New ML based MCEG are getting builto ETHER at theory agnostic MCEGo Gaps between theory, experiment and computing are getting narrower

Understanding the large pT SIDIS spectrumo O(α2

S) corrections are important to describe SIDIS at COMPASSo The large x region receives large threshold corrections which can

explain the difficulty to describe the datao Inclusion of SIDIS large pT data in PDFs/FFs analysis is required

New developments to identify SIDIS regionso New tools to map SIDIS regions (web-app)o The indicators can be used as Bayesian priors for the regression in

TMD phenomenology