The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event...

52
1 / 28 The challenge of femtometer scale physics Nobuo Sato ODU/JLab QCD Evolution 19 Argonne National Laboratory

Transcript of The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event...

Page 1: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

1 / 28

The challenge of femtometer scale physics

Nobuo SatoODU/JLab

QCD Evolution 19Argonne National Laboratory

Page 2: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

Outline

2 / 28

1. A new perspective for MC event generators

2. Understanding the large pT SIDIS spectrum

3. New developments to identify SIDIS regions

Page 3: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

3 / 28

A new perspective for MC event generators

QCD physicists :W. Melnitchouk (JLab-theory)T. Liu (JLab-theory)NS (JLab/ODU-theory)R. E. McCleallan (JLab-theory)

Computer Scientists:Y. Li (ODU)M. Kuchera (Davidson College)

Supported by:JLab LDRD19-13

Page 4: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

From detectors to partons

4 / 28

Page 5: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

From detectors to partons

4 / 28

Detectorresponse

QEDeffects

QCDeffects

Page 6: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

From detectors to partons

4 / 28

Detectorresponse

QEDeffects

QCDeffects

σEXP = wDR ⊗ wQED ⊗ σQCD

Page 7: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

A new perspective for MC event generators

5 / 28

An empirical tool such that

σEXP = wDR ⊗ σMCEG

↓wQED ⊗ σQCD

A tool agnostic of theory (partons, factorization, hadronization, etc.)

Machine Learning based MCEG

Page 8: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

A new perspective for MC event generators

5 / 28

An empirical tool such that

σEXP = wDR ⊗ σMCEG

↓wQED ⊗ σQCD

A tool agnostic of theory (partons, factorization, hadronization, etc.)

Machine Learning based MCEG

Page 9: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

A new perspective for MC event generators

5 / 28

An empirical tool such that

σEXP = wDR ⊗ σMCEG

↓wQED ⊗ σQCD

A tool agnostic of theory (partons, factorization, hadronization, etc.)

Machine Learning based MCEG

Page 10: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

Empirically Trained Hadronic Event Regenerator (ETHER)

6 / 28

Nature

Events:vertex level

0.0 0.2 0.4 0.6 0.8 1.00

50

100

150

200

250

Page 11: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

Empirically Trained Hadronic Event Regenerator (ETHER)

6 / 28

Nature

Events:vertex level

0.0 0.2 0.4 0.6 0.8 1.00

50

100

150

200

250

Experimentaldetector

Events:detector level

0.0 0.2 0.4 0.6 0.8 1.00

100

200

300

400distortion

Page 12: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

Empirically Trained Hadronic Event Regenerator (ETHER)

6 / 28

Nature

Events:vertex level

0.0 0.2 0.4 0.6 0.8 1.00

50

100

150

200

250

Experimentaldetector

Events:detector level

0.0 0.2 0.4 0.6 0.8 1.00

100

200

300

400distortion

Inverse problem → Model dependent

Page 13: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

Empirically Trained Hadronic Event Regenerator (ETHER)

6 / 28

Nature

Events:vertex level

0.0 0.2 0.4 0.6 0.8 1.00

50

100

150

200

250

Experimentaldetector

Events:detector level

0.0 0.2 0.4 0.6 0.8 1.00

100

200

300

400distortion

ETHER

Events:vertex level

0.0 0.2 0.4 0.6 0.8 1.00

50

100

150

200

250

Page 14: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

Empirically Trained Hadronic Event Regenerator (ETHER)

6 / 28

Nature

Events:vertex level

0.0 0.2 0.4 0.6 0.8 1.00

50

100

150

200

250

Experimentaldetector

Events:detector level

0.0 0.2 0.4 0.6 0.8 1.00

100

200

300

400distortion

ETHER

Events:vertex level

0.0 0.2 0.4 0.6 0.8 1.00

50

100

150

200

250

Detectorsimulator

neural netdetector

Page 15: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

Empirically Trained Hadronic Event Regenerator (ETHER)

6 / 28

Nature

Events:vertex level

0.0 0.2 0.4 0.6 0.8 1.00

50

100

150

200

250

Experimentaldetector

Events:detector level

0.0 0.2 0.4 0.6 0.8 1.00

100

200

300

400distortion

ETHER

Events:vertex level

0.0 0.2 0.4 0.6 0.8 1.00

50

100

150

200

250

Detectorsimulator

neural netdetector

Events:detector level

0.0 0.2 0.4 0.6 0.8 1.00

100

200

300

400distortion

Page 16: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

Empirically Trained Hadronic Event Regenerator (ETHER)

6 / 28

Nature

Events:vertex level

0.0 0.2 0.4 0.6 0.8 1.00

50

100

150

200

250

Experimentaldetector

Events:detector level

0.0 0.2 0.4 0.6 0.8 1.00

100

200

300

400distortion

ETHER

Events:vertex level

0.0 0.2 0.4 0.6 0.8 1.00

50

100

150

200

250

Detectorsimulator

neural netdetector

Events:detector level

0.0 0.2 0.4 0.6 0.8 1.00

100

200

300

400distortion

Likelihoodanalysis

Page 17: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

Empirically Trained Hadronic Event Regenerator (ETHER)

6 / 28

Nature

Events:vertex level

0.0 0.2 0.4 0.6 0.8 1.00

50

100

150

200

250

Experimentaldetector

Events:detector level

0.0 0.2 0.4 0.6 0.8 1.00

100

200

300

400distortion

ETHER

Events:vertex level

0.0 0.2 0.4 0.6 0.8 1.00

50

100

150

200

250

Detectorsimulator

neural netdetector

Events:detector level

0.0 0.2 0.4 0.6 0.8 1.00

100

200

300

400distortion

Likelihoodanalysis

datacom

pression

Page 18: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

Empirically Trained Hadronic Event Regenerator (ETHER)

7 / 28

Pythia

Events:vertex level

0.0 0.2 0.4 0.6 0.8 1.00

50

100

150

200

250

ETHER

Events:vertex level

0.0 0.2 0.4 0.6 0.8 1.00

50

100

150

200

250

Likelihoodanalysis

datacom

pression

Page 19: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

Empirically Trained Hadronic Event Regenerator (ETHER)

7 / 28

Pythia

Events:vertex level

0.0 0.2 0.4 0.6 0.8 1.00

50

100

150

200

250

ETHER

Events:vertex level

0.0 0.2 0.4 0.6 0.8 1.00

50

100

150

200

250

Likelihoodanalysis

datacom

pression

+ ML setup: Generativeadversarial network (GAN’s)

+ Milestones:

! A setup for exclusive l + preaction

! particles multiplicities

' xbj, Q2,...

Page 20: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

8 / 28

Understanding the large pT SIDIS spectrum

Work based on

o Gonzalez-Hernandez, Rogers, NS, Wang ( PRD98 2018 )o Wang, Gonzalez-Hernandez, Rogers, NS ( arXiv:1903.01529 2019 )

Page 21: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

SIDIS FO O(α2S) calculation completed! Wang, Gonzalez, Rogers, NS (’19)

9 / 28

Wµν(P, q, PH) =∫ 1+

x−

ξ

∫ 1+

z−

ζ2 Wµνij (q, x/ξ, z/ζ)fi/P (ξ)dH/j(ζ)

Pµνg W (N)µν ; PµνPP W

(N)µν ≡

1(2π)4

∫|M2→N

g |2; |M2→Npp |2 dΠ(N) − Subtractions

Born/Virtual

Real

X Generate all 2→ 2 and 2→ 3 squaredamplitudes

X Evaluate 2→ 2 virtual graphs(Passarino-Veltman)

X Integrate 3-body PS analytically

X Check cancellation of IR poles

X Agreement within 20% with Daleo’s etal(’05)

Page 22: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

Why is this calculation relevant?

10 / 28

0.0 0.5 1.0 1.5 2.0 2.5 3.0

qT (GeV)

10−4

10−3

10−2

10−1

100

Γ(1

)(qT,Q

)

Q = 2.0 (GeV)

FO

|AY|Y

|W|W + Y

0 1 2 3 4 5

qT (GeV)

10−4

10−3

10−2

10−1

100

Γ(1

)(qT,Q

)

Q = 5.0 (GeV)

FO

|ASY|Y

|W|W + Y

dσdxdQdzdqT

Page 23: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

Why is this calculation relevant?

10 / 28

0.0 0.5 1.0 1.5 2.0 2.5 3.0

qT (GeV)

10−4

10−3

10−2

10−1

100

Γ(1

)(qT,Q

)

Q = 2.0 (GeV)

FO

|AY|Y

|W|W + Y

0 1 2 3 4 5

qT (GeV)

10−4

10−3

10−2

10−1

100

Γ(1

)(qT,Q

)

Q = 5.0 (GeV)

FO

|ASY|Y

|W|W + Y

dσdxdQdzdqT

FO =∑q

e2q

∫ 1

ξmin

ξ − x H(ξ) fq(ξ, µ) dq(ζ(ξ), µ)

+O(α2S) +O(m2/q2)

Page 24: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

Why is this calculation relevant?

10 / 28

0.0 0.5 1.0 1.5 2.0 2.5 3.0

qT (GeV)

10−4

10−3

10−2

10−1

100

Γ(1

)(qT,Q

)

Q = 2.0 (GeV)

FO

|AY|Y

|W|W + Y

0 1 2 3 4 5

qT (GeV)

10−4

10−3

10−2

10−1

100

Γ(1

)(qT,Q

)

Q = 5.0 (GeV)

FO

|ASY|Y

|W|W + Y

dσdxdQdzdqT

FO =∑q

e2q

∫ 1

ξmin

ξ − x H(ξ) fq(ξ, µ) dq(ζ(ξ), µ)

+O(α2S) +O(m2/q2)

ξmin = q2TQ2

xz

1− z + x

Page 25: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

Why is this calculation relevant?

10 / 28

0.0 0.5 1.0 1.5 2.0 2.5 3.0

qT (GeV)

10−4

10−3

10−2

10−1

100

Γ(1

)(qT,Q

)

Q = 2.0 (GeV)

FO

|AY|Y

|W|W + Y

0 1 2 3 4 5

qT (GeV)

10−4

10−3

10−2

10−1

100

Γ(1

)(qT,Q

)

Q = 5.0 (GeV)

FO

|ASY|Y

|W|W + Y

dσdxdQdzdqT

FO =∑q

e2q

∫ 1

ξmin

ξ − x H(ξ) fq(ξ, µ) dq(ζ(ξ), µ)

+O(α2S) +O(m2/q2)

ξmin = q2TQ2

xz

1− z + x

Does it work?

Page 26: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

11 / 28

FO =∑q

e2q

∫ 1q2

TQ2

xz1−z

+x

ξ − x H(ξ) fq(ξ, µ) dq(ζ(ξ), µ) +O(α2S) +O(m2/q2)

data/FO vs qT

Page 27: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

11 / 28

FO =∑q

e2q

∫ 1q2

TQ2

xz1−z

+x

ξ − x H(ξ) fq(ξ, µ) dq(ζ(ξ), µ) +O(α2S) +O(m2/q2)

data/FO vs qT

FO =∑q

e2q

∫ 1q2

TQ2

xz1−z

+x

ξ − x H(ξ) fq(ξ, µ) dq(ζ(ξ), µ) +O(α2S) +O(m2/q2)

data/FO vs qT

Page 28: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

What to do?

12 / 28

FO =∑q

e2q

∫ 1q2

TQ2

xz1−z

+x

ξ − x H(ξ) fq(ξ, µ) dq(ζ(ξ), µ) +O(α2S) +O(m2/q2)

1) Update FFs: use qT integrated data

2) Add O(α2S)

Page 29: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

What to do?

12 / 28

FO =∑q

e2q

∫ 1q2

TQ2

xz1−z

+x

ξ − x H(ξ) fq(ξ, µ) dq(ζ(ξ), µ) +O(α2S) +O(m2/q2)

1) Update FFs: use qT integrated data

2) Add O(α2S)

Page 30: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

What to do?

12 / 28

FO =∑q

e2q

∫ 1q2

TQ2

xz1−z

+x

ξ − x H(ξ) fq(ξ, µ) dq(ζ(ξ), µ) +O(α2S) +O(m2/q2)

1) Update FFs: use qT integrated data

2) Add O(α2S)

Page 31: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

13 / 28

FO =∑q

e2q

∫ 1q2

TQ2

xz1−z

+x

ξ − x H(ξ) fq(ξ, µ) dq(ζ(ξ), µ) +O(α2S) +O(m2/q2)

data/FO vs qT

FO =∑q

e2q

∫ 1q2

TQ2

xz1−z

+x

ξ − x H(ξ) fq(ξ, µ) dq(ζ(ξ), µ) +O(α2S) +O(m2/q2)

data/FO vs qT

Page 32: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

13 / 28

FO =∑q

e2q

∫ 1q2

TQ2

xz1−z

+x

ξ − x H(ξ) fq(ξ, µ) dq(ζ(ξ), µ) +O(α2S) +O(m2/q2)

data/FO vs qT

FO =∑q

e2q

∫ 1q2

TQ2

xz1−z

+x

ξ − x H(ξ) fq(ξ, µ) dq(ζ(ξ), µ) +O(α2S) +O(m2/q2)

data/FO vs qT

Page 33: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

13 / 28

FO =∑q

e2q

∫ 1q2

TQ2

xz1−z

+x

ξ − x H(ξ) fq(ξ, µ) dq(ζ(ξ), µ) +O(α2S) +O(m2/q2)

data/FO vs qT

FO =∑q

e2q

∫ 1q2

TQ2

xz1−z

+x

ξ − x H(ξ) fq(ξ, µ) dq(ζ(ξ), µ) +O(α2S) +O(m2/q2)

data/FO vs qT

Page 34: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

13 / 28

FO =∑q

e2q

∫ 1q2

TQ2

xz1−z

+x

ξ − x H(ξ) fq(ξ, µ) dq(ζ(ξ), µ) +O(α2S) +O(m2/q2)

data/FO vs qT

Issue at large x remains

Page 35: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

14 / 28

2

4

6F

NL

O1

/FL

O1

z = 0.2 qT = Q z = 0.8 qT = Q

0.01 0.1

2

4

6

z = 0.2 qT = 2Q

0.01 0.1 xz = 0.8 qT = 2Q

Q = 2 GeV

Q = 20 GeV

Large threshold corrections

The x at the minimum canindicate where to expect largethreshold corrections

Page 36: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

14 / 28

2

4

6F

NL

O1

/FL

O1

z = 0.2 qT = Q z = 0.8 qT = Q

0.01 0.1

2

4

6

z = 0.2 qT = 2Q

0.01 0.1 xz = 0.8 qT = 2Q

Q = 2 GeV

Q = 20 GeV

COMPASS kinematics

0.01 0.1 x1

2

3

4

5

6

7

q T/Q

< z >= 0.24

0.01 0.1 x1

2

3

4

5

6

7

< z >= 0.48

0.01 0.1 x1

2

3

4

5

6

7

< z >= 0.69

x > x0

x ≤ x0

Large threshold corrections

The x at the minimum canindicate where to expect largethreshold corrections

Page 37: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

15 / 28

New developments to identify SIDIS regions

Work based on

o Boglione, Collins, Gamberg, Gonzalez-Hernandez, Rogers, NS( PLB 766 2017 )

o Boglione, Gamberg, Gordon, Gonzalez-Hernandez, Prokudin, Rogers, NS( arXiv:1904.12882 )

Page 38: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

SIDIS regions (Breit frame kinematics)

16 / 28

p⊥h

yh

Current fragmentationTMD factorization

Current fragmentationCollinear factorization

Soft region????

Target regionFracture functions

Page 39: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

SIDIS current region

17 / 28

P

PB

q

ki

kf

kX

ki =(

Q

xN√

2,xN (k2

i + k2i,T)√

2Q,ki,T

)(1)

kf =(k2f + k2

f,T√2xNQ

,zNQ√

2,ki,T

)

Page 40: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

SIDIS in the current region

18 / 28

For “current region” we must have

R1 ≡PB · kfPB · ki

→ small

Deviation from 2→ 1 kinematics

R2 ≡|(kf − q)2|

Q2 ' (1− zN) + zNq2

TQ2

Deviation from 2→ 2 kinematics

R3 ≡|k2X |Q2

q

ki

kf

Page 41: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

SIDIS in the current region

18 / 28

For “current region” we must have

R1 ≡PB · kfPB · ki

→ small

Deviation from 2→ 1 kinematics

R2 ≡|(kf − q)2|

Q2 ' (1− zN) + zNq2

TQ2

Deviation from 2→ 2 kinematics

R3 ≡|k2X |Q2

q

ki

kf

q

ki

kf

k2

Page 42: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

SIDIS in the current region

18 / 28

For “current region” we must have

R1 ≡PB · kfPB · ki

→ small

Deviation from 2→ 1 kinematics

R2 ≡|(kf − q)2|

Q2 ' (1− zN) + zNq2

TQ2

Deviation from 2→ 2 kinematics

R3 ≡|k2X |Q2

q

ki

kf

q

ki

kf

k2

q

p

N

k1

Page 43: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

SIDIS regions web app

19 / 28

o https://sidis.herokuapp.com/

o feedback/questions arewelcomed

o it might take few seconds toload be patient

Page 44: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

example for pions

20 / 28

p⊥h

yh

Current fragmentationTMD factorization

Current fragmentationCollinear factorization

Soft region????

Target regionFracture functions

R1 ≡ PB·kfPB·ki

qTQ

y

R1

Page 45: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

example for pions

21 / 28

p⊥h

yh

Current fragmentationTMD factorization

Current fragmentationCollinear factorization

Soft region????

Target regionFracture functions

R2 ≡ |(kf−q)2|

Q2

qTQ

y

R2

Page 46: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

example for pions

22 / 28

p⊥h

yh

Current fragmentationTMD factorization

Current fragmentationCollinear factorization

Soft region????

Target regionFracture functions

R3 ≡ |k2X |Q2

qTQ

y

R3

Page 47: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

example for kaons

23 / 28

p⊥h

yh

Current fragmentationTMD factorization

Current fragmentationCollinear factorization

Soft region????

Target regionFracture functions

R1 ≡ PB·kfPB·ki

qTQ

y

R1

Page 48: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

example for kaons

24 / 28

p⊥h

yh

Current fragmentationTMD factorization

Current fragmentationCollinear factorization

Soft region????

Target regionFracture functions

R2 ≡ |(kf−q)2|

Q2

qTQ

y

R2

Page 49: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

example for kaons

25 / 28

p⊥h

yh

Current fragmentationTMD factorization

Current fragmentationCollinear factorization

Soft region????

Target regionFracture functions

R3 ≡ |k2X |Q2

qTQ

y

R3

Page 50: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

Using the ratios in phenomenology

26 / 28

Recall the Bayesian regression paradigm

P(a|data) = L(a, data)π(a)

The likelihood

L(a,data) = exp(−1

2∑i

(datai − theoryi(a)δdatai

)2)

The priors

π(a) ∝ Πiθ(amini < ai < amax

i )

E[O] =∫dna P(a|data)O(a) ,

V[O] =∫dna P(a|data) (O(a)− E[O])2

Page 51: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

Using the ratios in phenomenology

27 / 28

IDEA: use Ri as priors

π(Rk) ∝ exp (−|Rk|p)

The full prior becomes

π(a) ∝ Πiθ(amini < ai < amax

i )×Πj exp

− ∑k=1,2,3

|Rk(a,b,Ωj)|p× π(b)

→ parameters a enter directly in TMD factorization

→ parameters b are other parameters that characterize additionalpartonic d.o.f. (i.e. virtualities)

Page 52: The challenge of femtometer scale physics Nobuo SatoEmpirically Trained Hadronic Event Regenerator(ETHER) 6/28 Nature Events: vertex level 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

Summary and outlook

28 / 28

A new perspective for MC event generatorso New ML based MCEG are getting builto ETHER at theory agnostic MCEGo Gaps between theory, experiment and computing are getting narrower

Understanding the large pT SIDIS spectrumo O(α2

S) corrections are important to describe SIDIS at COMPASSo The large x region receives large threshold corrections which can

explain the difficulty to describe the datao Inclusion of SIDIS large pT data in PDFs/FFs analysis is required

New developments to identify SIDIS regionso New tools to map SIDIS regions (web-app)o The indicators can be used as Bayesian priors for the regression in

TMD phenomenology