Supersonic Airfoil Analysis - Virginia Techdevenpor/aoe3114/16 - Airfoil Analysis.pdf · Shapes...

Post on 27-Apr-2018

231 views 3 download

Transcript of Supersonic Airfoil Analysis - Virginia Techdevenpor/aoe3114/16 - Airfoil Analysis.pdf · Shapes...

Supersonic Airfoil AnalysisSupersonic Airfoil Analysis

ShapesShapes

NACA‐0012Mach Number Contours

http://www ae gatech edu/people/shttp://www.ae.gatech.edu/people/sruffin/nascart/Home%20Page.htm

DOUBLE WEDGE

BICONVEXBICONVEX

F‐35 Joint Strike FighterF 35 Joint Strike Fighter

TerminologyTerminology

pM∞, ρ∞, p∞, u∞

Angle of attack αo

p

g o

Span b

CoefficientsM∞,ρ∞,

p L

DCoefficients ρ∞,p∞,U∞

αoc

D

Pressure 221

∞∞

∞−≡

UppCp ρ

Lift 221

/

∞∞

≡UbcLCL ρ

Drag 221

/

∞∞

≡UbcDCD ρ

Shock‐Expansion TheoryShock Expansion TheoryM∞, p1

For geometric airfoil  p2ρ∞,p∞,U∞

gsections in supersonic flow p3 p4

• Assume: (1) Each turn the supersonic flow makes can be computed separately from every other e g no wavecomputed separately from every other, e.g. no wave reflections back onto surface. (2) All waves are attached

• Method: (1) Break airfoil section into a sequence of implied l dd i bli h k t (2) Uor real sudden expansion or oblique shock turns. (2) Use 

Prandtl Meyer or oblique shock theory to get pressures on flat airfoil sections. (3) Formulate results in terms of CL and CD

Example: M∞,ρ∞, p∞

Flat Plate Airfoilρ∞, p∞

αoo

/ bL2

21

/

/

∞∞

=

bcDMpbcLCL γ

221

/

∞∞

=MpbcDCD γ

Example M∞,ρ∞, p∞

Double Wedge Airfoilρ∞, p∞

α =0αo=0

/ bL2

21

/

/

∞∞

=

bcDMpbcLCL γ

221

/

∞∞

=MpbcDCD γ

Supersonic Thin Airfoil TheorySupersonic Thin Airfoil TheoryFor arbitrary airfoil sections in supersonic 

M∞,ρ∞, p∞

flowρ∞ ∞

• Assumption: (1) Attached waves (2) Flow angles produced by airfoil are all smallangles produced by airfoil are all small.

• Allows all turns to be treated as isentropic. All i lifi d (li i d) i bAllows simplified (linearized) expression to be used to compute pressure changes. 

Methods for computing a small angle turn at Mach 2Computing a Small Angle Turn at Mach 2

0.3

0.4Oblique-shock theoryPrandtl-Meyer theoryLinear theory

0.2

12

2

−=

MdM

pdp θγ

0

0.1

(p2-p

1)/(p 1)

-0.1

(

p1

0 3

-0.2θ

p2

-5 -4 -3 -2 -1 0 1 2 3 4 5-0.3

Turn angle degrees (positive convex)

Pressure CoefficientPressure CoefficientM∞,ρ∞, p∞

2− dMdp θγ ρ∞ ∞

12 −=

Mpp γ

Pressure CoefficientPressure CoefficientM∞,ρ∞, p∞

2− dMdp θγ ρ∞ ∞

12 −=

Mpp γ

Pressure CoefficientPressure Coefficient

M∞,2

=Cpα

ρ∞, p∞12 −MCp

α positive for netconcave turn from M∞

Decomposing y

dxyyd lu

c)(

21 +

=αdxyyd lu

t)(

21 −

=αp g

The Airfoilαo

x

dx

M∞

αo

Lift)(2)(2 00 +−

=++−

= CC tcpl

tcpu

ααααααLift 11 22 −− ∞∞ MM

plpu

Drag )(2)(2 00 +−=

++−= CC tc

pltc

puααααααDrag11 22 −− ∞∞ MM

plpu

Summaryy

dxyyd lu

c)(

21 +

=αdxyyd lu

t)(

21 −

Summaryαo

x

dx

• Lift varies linearly with angle of 1

)(22

0 ++−=

MC tc

puααα

M∞

αo

y gattack 

• The lift curve slope decreases 1

)(21

20

2

+−=

−∞

MC

M

tcpl

αααp

with Mach number• Camber and thickness have no 

41

20

2

=

−∞

C

M

effect on lift, and only add drag• Drag goes as the square of )(4

1222

0

2

++=

−∞

C

M

tcD

ααα g g qangle of attack12 −∞M

D

Example y

⎟⎠⎞

⎜⎝⎛ −−=⎟

⎠⎞

⎜⎝⎛ −=

cx

cx

cy

cx

cx

cy lu 11.011.0p

Biconvex Airfoil

αox

⎠⎝⎠⎝ cccccc

Find CL and CD as f ti f

M∞

αofunctions of αoFind Cpu and Cpl as functions of x and αo

dxyyd lu

t)(

21 −

dxyyd lu

c)(

21 +

Example y

⎟⎠⎞

⎜⎝⎛ −−=⎟

⎠⎞

⎜⎝⎛ −=

cx

cx

cy

cx

cx

cy lu 11.011.0

Biconvex Airfoil

αox

⎠⎝⎠⎝ cccccc

Find CL and CD as f ti f

M∞

αo

0/2.01.0 =−= ct cx ααfunctions of αoFind Cpu and Cpl as functions of x and αo

1

420

−=

∞MCL

α

1

)(42

2220

++=

∞MC tc

Dααα

Variationsy

c/2 c/2Double Wedge Airfoil

αox

t

c/2 c/2

M∞

αo

Variations – Airfoil DesignVariations  Airfoil Design