pyöriminen ja gravitaatio

Post on 20-Mar-2016

76 views 2 download

description

pyöriminen ja gravitaatio. m @ hyl.fi 2005 - 13. kulma ja kaaren pituus. Radiaaneissa täysi kierros on 2π. Kulman yksikkö on fysiikassa yleensä radiaani. esimerkkejä kulmista. täysi kierros = 2 π ≈ 6,28 puoliympyrä = π ≈ 3,14 suorakulma = π /2 ≈1,57. - PowerPoint PPT Presentation

Transcript of pyöriminen ja gravitaatio

pyöriminen ja gravitaatio

m @ hyl.fi 2005-13

kulma ja kaaren pituus

Radiaaneissa täysi kierros on 2π.

Kulman yksikkö on fysiikassa yleensä radiaani.

esimerkkejä kulmista

• täysi kierros = 2π ≈ 6,28• puoliympyrä = π ≈ 3,14• suorakulma = π/2 ≈1,57

kulmanopeus

• pyörimisliikkeessä kulmanopeus ω kuvaa kuinka vikkelästi kulma φ muuttuu

• kulmanopeuden yksikkö on rad/s

• etenemisliikkeessä nopeus v kuvaa kuinka vikkelästi paikka s vaihtuu

• nopeuden yksikkö on m/s

esimerkki kulmanopeudesta• sekuntiviisarin kulmanopeus

• Maapallon kulmanopeus

• Pesulinko 1200 kierrosta minuutissa = 1200 RPM

rata- ja kulmanopeus

• ratanopeuden ja kulmanopeuden yhdistää

ratanopeus• jos sekuntiviisarin pituus on 0,025 m, niin sen

ratanopeus

• ratanopeus päiväntasaajalla

• Lingon kehäpisteen ratanopeus

kulmakiihtyvyys

• pyörimisliikkeessä kulmakiihtyvyys α kertoo kulmanopeuden ω muutosnopeuden

• kulmanopeuden yksikkö on rad/s2

• etenemisliikkeessä kiihtyvyys a on nopeuden v muutosnopeus

• kiihtyvyyden yksikkö on m/s2

rata- ja normaalikiihtyvyys

• Kun kappaleen rata ei ole suora, niin radan suuntainen kiihtyvyys; ratakiihtyvyys eli tangentiaalikiihtyvyys on

• Radan kaareutumissäteen keskipistettä kohden on normaalikiihtyvyys

at

an

tasaisesti muuttuva pyörimisliike

• Jos α on vakio, niin

Linkoesimerkki

• Pesulingon rumpu kiihdyttää tasaisesti 0,25 s:ssa kulmanopeuteen 31 rad/s. Rummun säde on 0,23 m. Kuinka suuri on rummulla pyörivän sukan a) kiihtyvyys ja mihin suuntaan ajan hetkellä 0,25 s.

• b) Kuinka monta kierrosta rumpu pyöri 0,25 s:ssa.

linkoratkaisu

• a) Kiihtyvyyttä varten tarvitaan an ja at.

• b) kierrokset:

at

an

Momentti

• kun voima F, joka on etäisyydellä d tukipisteestä niin sen pyörimiseen liittyvää vaikutusta kutsutaan momentiksi

d F

hitausmomentti• kappaleen ”kykyä

vastustaa pyörimistilansa muutoksia” kutsutaan hitausmomentiksi

• mitä suurempi hitausmomentti on, sitä suurempi momentti tarvitaan kappaleen kulmanopeuden muuttamiseeen

• vastaa etenemisliikeessä massan hitautta

• kappaleen ”kykyä vastustaa etenemisliikkeensä muutoksia” kutsutaan hitaudeksi

• mitä suurempi kappaleen hitaus on niin sitä suurempi voima tarvitaan sen kiihdyttämiseen

Liikeyhtälö

• pyörimisliikkeessä• etenemisliikkeessä

Pyörimisen liikeyhtälöesimerkki

• Umpinaisen sylinterin ympäri on kierretty naru. Sylinterin massa on 2,0 kg ja sen säde on 0,12 m. Narua vedetään voimalla, jonka suuruus on 9,81 N. Alussa sylinteri on levossa.

• Laske sylinterin kulmakiihtyvyys.

ratkaisu• m = 2,0 kg; r = 0,12 m; F = 9,81 N; t = 0,5 s ja h = 0,25 m. • Umpinaisen sylinterin hitausmomentti .• Pyörimisen liikeyhtälö:

Toinen esimerkki pyörimisen liikeyhtälöstä

• Umpinaisen sylinterin ympäri on kierretty naru. Sylinterin massa on 2,0 kg ja sen säde on 0,12 m. Naruun on kiinnitetty punnus, jonka massa on 1,0 kg, Alussa sylinteri on levossa.

• Laske sylinterin kulmakiihtyvyys.

ratkaisu• ms = 2,0 kg; r = 0,12 m; mp=1 kg; N; t = 0,5 s; h = 0,25 m.• Punnuksen liikeyhtälö kun + -suunta on alaspäin: • Sylinterin liikeyhtälö:

• Newtonin III laki:

• Ratakiihtyvyys eli punnuksen kiihtyvyys

pyörimismäärä• pyörimisliike• pyörimismäärä L=Jω• pyörimismäärän säilymislaki

näkyy esim. pirueteissa, ponnahduslautahypyissä, volteissa voimistelussa, ...

• Maa säilyttää akselinsa suunnan kiertäessään Auringon ympäri

• harvemmin tarkastellaan toisiinsa törmääviä pyöriviä kappaleita (paitsi yo kevät 07)

• etenemisliike• liikemäärä p =

mv• etenemisliikkees

sä liikemäärän säilymislaki näkyy esim. törmäyksissä

momentin tekemä työ• voiman tekemä työ• momentin tekemä työ

pyörimisen liike-energia

• pyörimisliikkeen liike-energia

• etenemisliikkeen liike-energia

• vierivän kappaleen kokonaisliike-energia

ämpäri kaivoon

• Umpinaisen sylinterin ympäri on kierretty naru. Sylinterin massa on 2,0 kg ja sen säde on 0,12 m. Naruun on kiinnitetty punnus, jonka massa on 1,0 kg. Alussa sylinteri on levossa. Liikevastusvoimat aiheuttavat 0,15 Nm:n jarruttavan voiman.

• Kuinka suuri on punnuksen nopeus kun se on liikkunut 0,25 m?

ratkaisu• ms = 2,0 kg; r = 0,12 m; mp=1 kg; N; t = 0,5 s; h = 0,25 m, Mµ = 0,15 Nm.• Tämän voisi ratkaista pyörimisen ja etenemisen liikeyhtälöillä. Niiden avulla

saadaan kiihtyvyys, jonka avulla päästään matkan kautta aikaan ja sen jälkeen nopeuteen.

• Tämä on kuitenkin tyypillinen energian säilymislakilasku, käytetään sitä.• Energia säilyy, sovitaan potentiaalienergian

nollatasoksi punnuksen paikka alhaalla:• Lisäksi tarvitaan nopeuden ja kulmanopeuden sekä matkan ja kulman välinen

yhteys ja tietysti hitausmomentti:

Niinpä:

etsi vihreet,minä en jaksa

Gravitaatiolaki

• Newton• Voima ja vastavoima, molempiin

vaikuttaa yhtä suuri voima.• Kun G tunnetaan (Cavendish), niin lain

avulla voidaan punnita keskuskappale kiertoajan ja radan säteen avulla.

• Keplerin lait ovat seurausta gravitaatiolaista ja päinvastoin.

Newtonin hauta - Westminister Abbey

Newtonin patsas Leicester Squarella

http://xkcd.com/681