Problem for Problems for Discrete Transistor...

Post on 26-Sep-2020

1 views 0 download

Transcript of Problem for Problems for Discrete Transistor...

Problem for Problems for Discrete Transistor Amplifiers

ECE 65, Winter2013, F. Najmabadi

F. Najmabadi, ECE65, Winter 2013, Problems for Discrete Amplifiers (2/42)

Exercise 1: Find the amplifier parameters of the circuit below. (Si BJT with β = 200, VA = 150 V, ignore Early effect in bias calculations).

This is a common collector amplifier (emitter follower) . o Input at the base, output at the emitter.

It has a emitter-degeneration bias with a voltage divider.

When Rsig & vsig are not given, it implies that vsig = vi and Rsig = 0

F. Najmabadi, ECE65, Winter 2013, Problems for Discrete Amplifiers (3/42)

Bias circuit Thevenin form of the Voltage divider

V 95.49k 18k 22

k 22

k 90.9k 18||k 22

=×+

=

==

BB

B

V

R

Real circuit

Exercise 1 (cont’d): β = 200, VA = 150 V.

F. Najmabadi, ECE65, Winter 2013, Problems for Discrete Amplifiers (4/42)

Bias Calculations

A 3.20/ mA 05.4

107.0)1/(109.9 4.95

4.95 :KVLBE33

µβ

β

==≈=

+++×=

++=−

CB

CE

EE

EEBEBB

IIII

IIRIVRI

V 7.0 and 0 V, 7.0: Activein is BJT Assume

≥>= CECBE VIV

V 0.7 V 5 10104 9

9 :KVLCE

0

33

=>=××+=

+=−−

DCE

CE

EECE

VVV

RIV

V 95.4k 9.9 == BBB VR

k 28.1 r

k 0.3710x 4

150r

mA/V 156 1026104.05

3o

3

3

===

==≈

=××

==

mB

T

-C

A

-

-

T

Cm

gIVIVVIg

βπ

Thevenin form of the Voltage divider

Exercise 1 (cont’d): β = 200, VA = 150 V.

F. Najmabadi, ECE65, Winter 2013, Problems for Discrete Amplifiers (5/42)

11511

15115196510156)||||(

965k100||k1||k8.38)||||()||||(1

)||||(

3

≈+

=

=××=

Ω==+

=

i

o

LEom

LEo

LEom

LEom

i

o

vv

RRrgRRr

RRrgRRrg

vv

k 28.1 k, 8.38 mA/V, 156 === πom rrg

[ ][ ] k 9.9k194k3.1 ||k9.9

)||||( || ≈+=

+=

i

LEoBi

RRRrrRR βπ

Ω==+

= 4.6||||

||ββππ rR

RRrRR E

sigBEo

Exercise 1 (cont’d): β = 200, VA = 150 V.

Signal circuit (IVC = 0)

Amplifier Parameters Emitter Follower

1==×+

=i

o

i

o

sigi

i

sig

o

vv

vv

RRR

vv

F. Najmabadi, ECE65, Winter 2013, Problems for Discrete Amplifiers (6/42)

Ω==

4.6k9.9

o

i

RR

k 28.1k 8.38mA/V 156

===

π

o

m

rrg

Hz 39.31047.0)10100(6.4 2

1

)( 21

Hz 2.341047.0)0109.9( 2

1

)( 21

632

22

631

11

=×××+

=

+=

=××+×

=

+=

π

π

π

π

p

cLop

p

csigip

f

CRRf

f

CRRf

Hz 6.374.32.34 21 =+=+≈ ppp fff

Exercise 1 (cont’d): β = 200, VA = 150 V.

Amplifier Cut-off frequency 2 caps: 2 poles

F. Najmabadi, ECE65, Winter 2013, Problems for Discrete Amplifiers (7/42)

This is a common emitter amplifier with RE . o Input at the base, output at the collector.

It has a emitter-degeneration bias with a voltage divider.

Exercise 2: Find the amplifier parameters of the circuit below. (Si BJT with β = 200, VA = 150 V, ignore Early effect in bias calculations).

F. Najmabadi, ECE65, Winter 2013, Problems for Discrete Amplifiers (8/42)

Bias calculations Thevenin form of the Voltage divider

A 2.14/ mA 84.2

5107.0)1/(100.5 2.22

2.22 :KVLBE3

µβ

β

==≈=

+++×=

++=−

CB

CE

EE

EEBEBB

IIII

IIRIVRI

V 7.0 and 0 V, 7.0: Activein is BJT Assume

≥>= CECBE VIV

V 0.7 V 5.10 )51010(1084.215

15 :KVLCE

0

33

=>=+××+=

++=−−

DCE

CE

EECECC

VVV

RIVRI

k 83.1 r

k 8.5210 84.2

150r

mA/V 10.9 1026102.84

3o

3

3

===

=≈

=××

==

mB

T

-C

A

-

-

T

Cm

gIVIVVIg

βπ

Exercise 2 (cont’d): β = 200, VA = 150 V

Bias circuit Caps open

V 22.215k 9.5k 34

k 9.5

k 0.5k 9.5||k 34

=×+

=

==

BB

B

V

R

F. Najmabadi, ECE65, Winter 2013, Problems for Discrete Amplifiers (9/42)

k 83.1 k, 8.52 mA/V, 10.9

===

πo

m

rrg

Amplifier Parameters CE amplifier with RE

k 8.4104k ||k 0.5)/1](/)||[(1

||

==

++

+=

i

EoLC

EBi

RrRrRR

RrRRπ

πβ

64.1

0.990kk 100||k 1||)/1](/)||[(1

)||(

−=

==+++

−=

i

o

LC

EoLCEm

LCm

i

o

vv

RRrRrRRRg

RRgvv

π

k 0.1

||1 ||

=≈

+++≈

Co

sigBE

EoCo

RR

RRRrRrRR

π

β

59.1)64.1(100800,4

800,4−=−×

+=×

+=

i

o

sigi

i

sig

o

vv

RRR

vv

Exercise 2 (cont’d): β = 200, VA = 150 V

Signal circuit (IVC = 0)

F. Najmabadi, ECE65, Winter 2013, Problems for Discrete Amplifiers (10/42)

k 0.1 k 8.4 == oi RR

Amplifier Cut-off frequency (2 caps: 2 poles)

Hz 8.1510100)1010010( 2

1

)( 21

Hz 91.6107.4)100108.4( 2

1

)( 21

9332

22

631

11

=×××+

=

+=

=××+×

=

+=

π

π

π

π

p

cLop

p

csigip

f

CRRf

f

CRRf

Hz 7.228.159.6 21 =+=+≈ ppp fff

k 83.1r k 8.52rmA/V 10.9

o ===

π

mg

Exercise 2 (cont’d): β = 200, VA = 150 V

F. Najmabadi, ECE65, Winter 2013, Problems for Discrete Amplifiers (11/42)

Exercise 3: Find the amplifier parameters of the circuit below. (Si BJT with β = 200, VA = 150 V, ignore Early effect in bias calculations).

This is a PNP common emitter amplifier (no RE ). o Input at the base, output at the collector (RE is shorted

out for signal because of the by-pass capacitor)

It has a emitter-degeneration bias with two voltage sources (RB = ∞)

F. Najmabadi, ECE65, Winter 2013, Problems for Discrete Amplifiers (12/42)

Exercise 3 (cont’d). β = 200, VA = 150 V.

Bias circuit (Signal = 0, Caps open)

A 0.5/ mA 0.1

100103.2 3 :KVLBE 3

µβ ==≈=

++×=−

CB

CE

BEBE

IIII

IVI

V 7.0 and 0 V, 7.0: Activein is BJT Assume

≥>= ECCEB VIV

V 0.7 V 4.1 10106.46

3103.2103.23 :KVLCE

0

33

33

=>=××−=

−×++×=−−

DEC

EC

CECE

VVV

IVI

k 26.5 r

k 15010150r

mA/V 38.5 1026

10

3-o

3-

-3

===

==≈

==

mB

T

C

A

T

Cm

gIVIVVIg

βπ

F. Najmabadi, ECE65, Winter 2013, Problems for Discrete Amplifiers (13/42)

3.85)k 100||k 3.2||k 150(1038.5

)||||(

3 −=×−=

−=

i

o

LComi

o

vv

RRrgvv

k 26.5 k, 150 mA/V, 38.5 === πom rrg

Amplifier Parameters 1) CE amplifier with no RE 2) No voltage divider biasing: no RB

RB is open circuit, RB = ∞

k 27.2k 3.2||k 150 ||

===

o

oCo

RrRR

k 26.5 || === ππ rrRR Bi

Exercise 3 (cont’d). β = 200, VA = 150 V.

3.85−=≈×+

=i

o

i

o

sigi

i

sig

o

vv

vv

RRR

vv

isig RR <<

Signal circuit (IVC = 0)

F. Najmabadi, ECE65, Winter 2013, Problems for Discrete Amplifiers (14/42)

Signal circuit (IVC = 0)

k 26.5r k 150r

mA/V 38.5

o

===

π

mg

Hz 1451298.150321 =++=++≈ pppp ffff

Exercise 3 (cont’d). β = 200, VA = 150 V.

k 27.2 k 26.5

==

o

i

RR

Amplifier Cut-off frequency 1) 2 caps: 2 poles 2) no coupling capacitors at the input

0)( 2

1

11 =

+=

csigip CRR

Hz 1291047)5.26||10(2.3 2

1

]/)||(/1[|| 21

633

3

=×××

=

+=

−π

βπ

p

EsigBmEp

f

CRRgRf

Hz 8.1510100)1010(2.3 2

1)( 2

1

9532

22

=××+×

=

+=

−π

π

p

cLop

f

CRRf

F. Najmabadi, ECE65, Winter 2013, Problems for Discrete Amplifiers (15/42)

This is a MOS common source amplifier (no RS ). o Input at the gate, output at the drain (RS is shorted

out for the signal because of the by-pass capacitor)

It has a source-degeneration bias with a voltage divider.

Exercise 4: Find the amplifier parameters of this circuit. (µnCox = 100 µA/V2, (W/L) = 6/0.1, Vt = 0.5 V, λ = 0.1 V-1. Assume capacitors are large and ignore channel width modulation in biasing. )

F. Najmabadi, ECE65, Winter 2013, Problems for Discrete Amplifiers (16/42)

V 353.18.110033

100V 0 G =+

=⇒=kk

kIG

Assume Saturation

232 10x3 5.0 OVOVoxnD VVL

WCI −== µ

V 803.0=+= tOVGS VVV

Saturation ⇒> OVDS VV

mA 275.010x3 23 == −OVD VI

V 550.0=−= GSGS VVV

V 249.18.1 =−= DDD IRV

V 699.0=−= SDDS VVV

V 303.0=OVV

DStOVDSGSG IRVVIRVV ++=+=

233 103 102 5.0353.1 OVOV VV −×××++=

0853.06 2 =−+ OVOV VV

GS-KVL:

Exercise 4 (cont’d): µnCox = 100 µA/V2, (W/L) = 6/0.1, Vt = 0.5 V, λ = 0.1 V-1.

Bias circuit (Signal = 0, Caps open)

k 3.3610 752.01.0

11r

mA/V 1.82 0.303

10 0.275 2 2

3o

3

=××

==

=××

==

-D

-

OV

Dm

I

VIg

λ

F. Najmabadi, ECE65, Winter 2013, Problems for Discrete Amplifiers (17/42)

32.3)k 50||k 2||k 3.36(101.82

)||||(

3 −=×−=

−=

i

o

LDomi

o

vv

RRrgvv

Amplifier Parameters This is a CS amplifier with no RS

k 90.1k 2||k 3.36 ||

===

o

Doo

RRrR

k 8.24== Gi RR

k 8.24k33||k100 ==GR

Exercise 4 (cont’d): µnCox = 100 µA/V2, (W/L) = 6/0.1, Vt = 0.5 V, λ = 0.1 V-1.

Signal circuit (IVC = 0)

19.3k 1k 8.24

k 8.24−=×

+=×

+=

i

o

i

o

sigi

i

sig

o

vv

vv

RRR

vv

Exercise 4 (cont’d):

F. Najmabadi, ECE65, Winter 2013, Problems for Discrete Amplifiers (18/42)

Hz 1684.757.307.61321 =++=++≈ pppp ffff

k 9.1 k 8.24

==

o

i

RR

Amplifier Cut-off frequency 1) 3 caps: 3 poles

Hz 7.6110100)1010(24.8 2

1

0)( 2

1

9331

11

=××+×

=

=+

=

−π

π

p

csigip

f

CRRf

Hz 4.75107.4]579||10[2 2

1)]/()||[(|| 2

1

633

3

=×××

=

+=

−π

π

p

SomLDoSp

f

CrgRRrRf

Hz 7.3010100)105010(1.9 2

1

)( 21

9432

22

=×××+×

=

+=

−π

π

p

cLop

f

CRRf

k 3.36mA/V 1.82

==

o

m

rg

F. Najmabadi, ECE65, Winter 2013, Problems for Discrete Amplifiers (19/42)

Exercise 5: Find the amplifier parameters of the circuit below. (Si BJT with β = 200, VA = 150 V, ignore Early effect in bias calculations).

This is a common collector amplifier (emitter follower). o Input at the base, output at the emitter.

It is biased with a current source! o No emitter degeneration: no RE (RE = ∞) and no RB (RB = ∞)

F. Najmabadi, ECE65, Winter 2013, Problems for Discrete Amplifiers (20/42)

Exercise 5 (cont’d): β = 200, VA = 150 V.

V 72.0100 3

−=++=

E

EBEB

VVVI

V 7.0 and 0 V, 7.0: Activein is BJT Assume

≥>= CECBE VIV

k 21.1 r

k 9.34104.3

150r

mA/V 165 1026104.3

3o

3

3

===

=≈

=××

==

mB

T

-C

A

-

-

T

Cm

gIVIVVIg

βπ

A 5.21/mA 3.4

µβ ==≈=

CB

CE

IIII

V 0.7 V 72.44 0 =>=−= DECE VVV

Bias circuit (Signal = 0, Caps open)

EV

F. Najmabadi, ECE65, Winter 2013, Problems for Discrete Amplifiers (21/42)

k 21.1 k, 9.34 mA/V, 165 === πom rrg

1104.281

104.28

104.28)||||(

k9.25k100||||k9.34||||)||||(1

)||||(

3

3

3

≈×+

×=

×=

=∞=+

=

i

o

LEom

LEo

LEom

LEom

i

o

vv

RRrgRRr

RRrgRRrg

vv

Ω=+

≈ 111||

||β

π sigBEo

RRrRR

[ ]M 2.5k9.25201k2.1

)||||)(1( || =×+=

++=

i

LEoBi

RRRrrRR βπ

Exercise 5 (cont’d): β = 200, VA = 150 V.

Signal circuit (IVC short, ICS open))

Amplifier Parameters 1) Emitter Follower 2) Biased with an ICS (RE = ∞ ) 3) No voltage divider biasing:

RB is open circuit, RB = ∞

1=≈×+

=i

o

i

o

sigi

i

sig

o

vv

vv

RRR

vv

F. Najmabadi, ECE65, Winter 2013, Problems for Discrete Amplifiers (22/42)

Signal circuit

k 21.1rk 9.34rmA/V 165

o

===

π

mg

Hz 34.31047.0)11110100( 2

1][ 2

1

632

22

=××+×

=

+=

−π

π

p

coLp

f

CRRf

Ω==

111 M 2.5

o

i

RR

Exercise 5 (cont’d): β = 200, VA = 150 V.

Hz 34.32 == pp ff

Amplifier Cut-off frequency 1) 1 cap: 1 pole 2) no coupling capacitors at the input

0)( 2

1

11 =

+=

csigip CRR

F. Najmabadi, ECE65, Winter 2013, Problems for Discrete Amplifiers (23/42)

Exercise 6: Find the bias point and the amplifier parameters of the circuit below. (µpCox (W/L) = 400 µA/V2, Vtp = − 4 V, λ = 0.01 V-1. Ignore channel width modulation in biasing).

This is a PMOS common drain amplifier. o Input at the gate, output at the source.

It has a source-degeneration bias with two voltage sources.

F. Najmabadi, ECE65, Winter 2013, Problems for Discrete Amplifiers (24/42)

Exercise 6 (Cont’d): µpCox (W/L) = 400 µA/V2, Vtp = − 4 V,λ = 0.01 V-1

Assume Saturation:

092

09104005.010

||101013

2

264

44

=−+

=−+×××

++×=+×=−

OVOV

OVOV

tpOVDSGD

VVVV

VVIVISG-KVL:

5.0 2OVoxpD V

LWCI µ=

V 9.5=+= tOVSG VVV

Saturation ⇒> OVDS VV

mA 71.0104005.0 26 =××= −OVD VI

V 9.5 0 =→−= SSSG VVV

V 9.10)5( =−−= SSD VV

V 9.1=OVV

k 141100.7101.0

11

mA/V 0.747 0.303

100.71 2 2

3

3

=××

==

=××

==

Do

OV

Dm

Ir

VIg

λ

SV

Bias circuit (Signal = 0, Caps open)

F. Najmabadi, ECE65, Winter 2013, Problems for Discrete Amplifiers (25/42)

Signal circuit

87.038.61

38.66.38)||||(

k54.8k100||k10||k 141||||

88.0)||||(1

)||||(

=+

=

===

=+

=

i

o

LSom

LSo

LSom

LSom

i

o

vv

RRrgRRr

RRrgRRrg

vv

Amplifier Parameters Common collector Amp.

Exercise 6 (Cont’d): µpCox (W/L) = 400 µA/V2, Vtp = − 4 V,λ = 0.01 V-1

k 2.1k 34.1||k 101 ||

===

∞==

mSo

Gi

gRR

RR

87.0==×+

=i

o

i

o

sigi

i

sig

o

vv

vv

RRR

vv

k 141 mA/V, 0.747 == om rg

Amplifier Cut-off frequency 1) 1 cap: 1 pole 2) no coupling capacitors at the input

F. Najmabadi, ECE65, Winter 2013, Problems for Discrete Amplifiers (26/42)

Signal circuit

Exercise 6 (Cont’d): µpCox (W/L) = 400 µA/V2, Vtp = − 4 V,λ = 0.01 V-1

k 141mA/V 0.747

==

o

m

rg

k 2.1

=∞=

o

i

RR

Hz 39.31047.0)102.110( 2

1

][ 21

635

2

=×××+

=

+=

−π

π

p

coLp

f

CRRf

F. Najmabadi, ECE65, Winter 2013, Problems for Discrete Amplifiers (27/42)

Exercise 7: Find the bias point and the amplifier parameters of the circuit below. (µnCox (W/L) = 800 µA/V2, Vt = 1 V, λ = 0.01 V-1. Ignore channel width modulation in biasing).

This is a NMOS common gate amplifier. o Input at the source, output at the drain.

It has a source-degeneration bias with a voltage divider.

F. Najmabadi, ECE65, Winter 2013, Problems for Discrete Amplifiers (28/42)

Bias circuit

054

05108005.010

10106

2

264

44

=−+

=−+×××

×++=×+==−

OVOV

OVOV

DtOVDGSG

VVVV

IVVIVVGS-KVL:

Assume Saturation: 5.0 2OVoxnD V

LWCI µ=

V 0.2=+= tOVGS VVV

Saturation ⇒> OVDS VV

mA 40.0108005.0 26 =××= −OVD VI

V 74415101015 44

=−−=×++×=

DS

DDSD

VIVI

V 0.1=OVV

Exercise 7 (Cont’d): µnCox (W/L) = 800 µA/V2, Vt = 1 V, λ = 0.01 V-1.

GV

V 615M8.1M2.1

M2.1=×

+=GV

DS-KVL:

k 250100.401.0

11r

mA/V 0.800 1

100.4 2 2

3o

3

=××

==

=××

==

D

OV

Dm

I

VIg

λ

F. Najmabadi, ECE65, Winter 2013, Problems for Discrete Amplifiers (29/42)

69.7)||k 10||k 250(108.0

)||||(

3 =∞×=

=

i

o

LSomi

o

vv

RRrgvv

Exercise 7 (Cont’d): µnCox (W/L) = 800 µA/V2, Vt = 1 V, λ = 0.01 V-1.

Signal circuit (IVC short)

Amplifier Parameters 1) CG amplifier 2) Biased with two voltage sources (RG = 0)

11.469.7k 1k 15.1

k 15.1=×

+=×

+=

i

o

sigi

i

sig

o

vv

RRR

vv

k 250mA/V 0.800

==

o

m

rg

k 15.1k 1.30||k 10

/)||(1 ||

==

+=

i

m

oLDSi

Rg

rRRRR

k 77.9k 432||k 10

)]||(1([ ||

==

+=

o

sigSmoDo

RRRgrRR

F. Najmabadi, ECE65, Winter 2013, Problems for Discrete Amplifiers (30/42)

Hz 74021 =+≈ ppp fffk 250mA/V 0.80

==

o

m

rg

Exercise 7 (Cont’d): µnCox (W/L) = 800 µA/V2, Vt = 1 V, λ = 0.01 V-1.

Signal circuit (IVC short) Amplifier Cut-off frequency

2 caps: 2 poles

Hz 74010100)1010(1.15 2

1

0)( 2

1

9331

11

=××+×

=

=+

=

−π

π

p

csigip

f

CRRf

010100)10(9.77 2

1

)( 21

932

22

=××∞+×

=

+=

−π

π

p

cLop

f

CRRf

k 77.9 k 15.1

==

o

i

RR

F. Najmabadi, ECE65, Winter 2013, Problems for Discrete Amplifiers (31/42)

Exercise 8: Design a common emitter amplifier with RE with vo / vi = 5 when driving a 100 kΩ load and a bias point of IC = 4 mA and VCE = 6 V. The circuit should have a cut-off frequency of 50~Hz for Rsig = 100 Ω. A 16 V power supply is available. Use a Si BJT with β = 200, β min = 100, VA = 150 V, ignore Early effect in bias calculations.

Prototype of the circuit is shown.

Problem specification gives

We should find RC , RE , RB1 , RB2 , Cc1 , and Cc2

k 100 , 100 V, 16 =Ω== LsigCC RRV

* See Exercise 4 of BJT lecture slides for bias design

mA, 4 V, 6 k, 100 , 100 V, 16 ===Ω== CCELsigCC IVRRV

F. Najmabadi, ECE65, Winter 2013, Problems for Discrete Amplifiers (32/42)

Exercise 8 (Cont’d):

k 30.1

k 5.37104

150

mA/V 154 1026104

3

3

3

===

=≈

=××

==

mB

-C

Ao

-

-

T

Cm

gIVr

IVr

VIg

β

1. Bias point (IC = 4 mA & VCE = 6 V) gives the SSM parameters as well as a relationship between RC and RE through CE-KVL:

k 5.2104

616)(

3 =×

−=+

+≈−++=

−EC

ECCCECC

EECECCCC

RR

RRIVVIRVIRV

2. Amp gain of vo / vi = 5 also gives another relationship between RC and RE:

CE-KVL:

5)/1](/)||[(1

)||( =+++

=πrRrRRRg

RRgvv

EoLCEm

LCm

i

o

Solution can be simplified by noting RC + RE = 2.5k and thus RC < 2.5k: 1) Since RC << RL = 100 k, then RC || RL ≈ RC 2) Since RC << ro = 37.5 k, we can drop the 3rd term in the denominator of the gain formula:

5.32555

51

+=+=

=+

Em

EC

Em

Cm

i

o

Rg

RR

RgRg

vv

k 09.2 411

k 5.25.325

=Ω=

=++

C

E

EE

RR

RR

A 0.20/ µβ == CB II

Exercise 8 (Cont’d):

F. Najmabadi, ECE65, Winter 2013, Problems for Discrete Amplifiers (33/42)

3102.73.631316

)/1](/)||[(1)||( −×++

=+++

=πrRrRRRg

RRgvv

EoLCEm

LCm

i

o

In fact, because gm terms are large:

Note that the (open-loop gain) is independent of BJT parameters!

E

C

Em

Cm

Em

Cm

i

o

RR

RgRg

RgRg

vv

=≈+

≈1

For discrete BJT amplifiers (RC << ro ), dropping the third term is a very good approximation because gm terms are actually large:

k 09.2 , 411 =Ω= CE RR

k 30.1 k, 5.37 mA/V, 154 === πom rrg

A. 20 mA, 4 V, 6 k, 100 , 100 V, 16 µ====Ω== BCCELsigCC IIVRRV

F. Najmabadi, ECE65, Winter 2013, Problems for Discrete Amplifiers (34/42)

Exercise 8 (Cont’d): A. 20 mA, 4 V, 6 k, 100 , 100 V, 16 µ====Ω== BCCELsigCC IIVRRV

1. Bias point (IC = 4 mA & VCE = 6 V) and requirements of good bias give RB1 and RB2 through BE-KVL. However, it is easier to find RB and VBB (Thevenin equivalent) first.

2. Resistors RB1 and RB2 are found from:

BE-KVL:

Dividing the above equations gives RB1 :

k 89.4k 4.27

2

1

==

B

B

RR

k 09.2 , 411 =Ω= CE RR

k 4.154111011.04111011.0)1( 0.1

)1(

min

min

=××=××=+≤

+<<

B

EB

EB

RRR

RRβ

β

V 43.2114 10 4 0.710 4.15 1020 336

=××++×××=

++=

BB

--BB

EEBEBBBB

VV

RIVRIV

152.016

2.43

k 15.4||

21

2

21

2121

==+

=

=+

==

BB

B

CC

BB

BB

BBBBB

RRR

VV

RRRRRRR

The 2nd condition for stable bias is RE IE ≥ 1 V:

V 1 64.1114 10 4 3 >=××= -EE RI

F. Najmabadi, ECE65, Winter 2013, Problems for Discrete Amplifiers (35/42)

Exercise 8 (Cont’d):

Coupling capacitors Cc1 and Cc2 are found from specification of cut-off frequency (50 Hz). We need to compute Ri and Ro first.

Can choose either capacitor and compute the other one. A good design guideline is to keep capacitors small.

k 15.4 ,k 89.4 ,k 4.27 ,k 09.2 , 411 21 ====Ω= BBBCE RRRRR

k 95.3k 81.6 ||k 15.4)/1](/)||[(1

||

==

++

+=

i

EoLC

EBi

RrRrRR

RrRRπ

πβ

k 09.2M 1.74 ||

||1 ||

=≈=

+++=

CCo

sigBE

EoCo

RRR

RRRrRrRR

π

β

k 30.1 k, 5.37 mA/V, 154 === πom rrg

Amplifier Cut-off frequency (2 caps: 2 poles)

23

22

13

11

10102 21

)( 21

1005.4 21

)( 21

ccLop

ccsigip

CCRRf

CCRRf

××=

+=

××=

+=

ππ

ππ

5010102 2

11005.4 2

1

Hz 50

23

13

21

=××

+××

=+≈

cc

ppp

CC

fff

ππ

A. 20 mA, 4 V, 6 k, 100 , 100 V, 16 µ====Ω== BCCELsigCC IIVRRV

F. Najmabadi, ECE65, Winter 2013, Problems for Discrete Amplifiers (36/42)

Exercise 8 (Cont’d):

We can choose either capacitor and compute the other one. A good design guideline is to keep capacitors small. Since the coefficient of CC1 is 25 times smaller than that CC1, a reasonable choice is to assign 80% of fp to CC1 :

k 15.4 ,k 89.4 ,k 4.27 ,k 09.2 , 411 21 ====Ω= BBBCE RRRRRk 30.1 k, 5.37 mA/V, 154 === πom rrg

nF 156 502.010102 2

1

F 982.0 508.01005.4 2

1

Hz 50

12

3

11

3

21

=→×=××

=→×=××

=+≈

cc

cc

ppp

CC

CC

fff

π

µπ

Design Commercial Value Value (5%)

nF 156F 982.0

411k 09.2k 89.4k 4.27

2

1

2

1

==

Ω====

C

C

E

C

B

B

CCRRRR

µnF 160

F 1 390

k 2k 7.4

k 27

1

2

1

==

Ω====

Cw

C

E

C

B

B

CCRRRR

µ

A. 20 mA, 4 V, 6 k, 100 , 100 V, 16 µ====Ω== BCCELsigCC IIVRRV

F. Najmabadi, ECE65, Winter 2013, Problems for Discrete Amplifiers (37/42)

Exercise 9: Find the amplifier parameters of the circuit below. (Si BJT with β = 200, VA = 150 V, ignore Early effect in bias calculations).

This is a two-stage amplifier. o Stage 1 is a common emitter amplifier with RE o Stage 2 is a common collector amplifier (emitter follower).

Both stages have source-degeneration bias with a voltage divider. o Each stage is independently biased because of the 470 nF

coupling capacitor between stages.

F. Najmabadi, ECE65, Winter 2013, Problems for Discrete Amplifiers (38/42)

Stage 1 Bias Thevenin form of the Voltage divider

V 37.215k 2.6k 33

k 2.6

k 22.5k 2.6||k 33

1

1

=×+

=

==

BB

B

V

R

Exercise 9 (cont’d) : β = 200, VA = 150 V

Bias circuit Caps open

A 9.15/ mA 18.3

5007.0)1/(1022.5 2.37

:KVLBE

111

11

1113

111111

µβ

β

==≈=

+++×=

++=−

CB

CE

EE

EEBEBBBB

IIII

IIRIVRIV

V 7.0 and 0 V, 7.0: Activein is BJT Assume

111 ≥>= CECBE VIV

V 0.7 V 05.7 )500102(1018.315

15 :KVLCE

01

331

11111

=>=+×××+=

++=−−

DCE

CE

EECECC

VVV

RIVRI

k 64.1

k 2.4710 18.3

150

mA/V 122 1026103.18

1

1

11

31

11

3

31

1

===

==

=××

==

mB

-C

Ao

-

-

T

Cm

gIVr

IVr

VIg

β

F. Najmabadi, ECE65, Winter 2013, Problems for Discrete Amplifiers (39/42)

Stage 2 Bias Thevenin form of the Voltage divider

V 25.815k 18k 22

k 22

k 90.9k 22||k 18

2

2

=×+

=

==

BB

B

V

R

Exercise 9 (cont’d) : β = 200, VA = 150 V

Bias circuit Caps open

A 36/ mA 20.7

107.0)1/(109.9 8.25

8.25 :KVLBE

222

22

23

223

22222

µβ

β

==≈=

+++×=

++=−

CB

CE

EE

EEBEBB

IIII

IIRIVRI

V 7.0 and 0 V, 7.0: Activein is BJT Assume

222 ≥>= CECBE VIV

V 0.7 V 80.7 101020.715

15 :KVLCE

02

332

222

=>=××+=

+=−−

DCE

CE

EECE

VVV

RIV

k 722.0

k 8.2010 20.7

150

mA/V 277 1026107.20

2

2

22

32

22

3

32

2

===

==

=××

==

mB

-C

Ao

-

-

T

Cm

gIVr

IVr

VIg

β

F. Najmabadi, ECE65, Winter 2013, Problems for Discrete Amplifiers (40/42)

Exercise 9 (cont’d) : β = 200, VA = 150 V

12621

26226294510277)||||(

)||||(1)||||(

2

2

32222

2222

2222

2

2

≈+

=

=××=

+=

i

o

LEom

LEom

LEom

i

o

vv

RRrgRRrg

RRrgvv

[ ][ ] k 41.9k 189722 ||k 90.9

)||||( ||

2

2222222

=+=+=

i

LEoBi

RRRrrRR βπ

Stage 2: Emitter Follower For Gain & Ri , start from the load side because we need to know RL

k 41.9 21 == iL RR

k 100 2 == LL RR

k 90.9k 722.0

k 8.20mA/V 277

2

2

2

2

====

B

π

o

m

Rrrg

F. Najmabadi, ECE65, Winter 2013, Problems for Discrete Amplifiers (41/42)

Exercise 9 (cont’d) : β = 200, VA = 150 V

k 95.497.2k ||k 22.5)/1](/)||[(1

||

1

11111

11111

==

++

+=

i

EoLC

EBi

RrRrRR

RrRRπ

πβ

25.30.62

201046.0500101221

1065.110122

046.0)/1](/)||[(k 1.65k 41.9||k 2||

)/1](/)||[(1)||(

3

33

1

1

11111

11

1111111

111

1

1

−=−=+××+×××

−=

=+==

+++−=

i

o

EoLC

LC

EoLCEm

LCm

i

o

vv

rRrRRRR

rRrRRRgRRg

vv

π

π

Stage 1: CE amplifier with RE k 41.9 21 == iL RR

k 22.5k 64.1k 2.47mA/V 122

1

1

1

1

====

B

π

o

m

Rrrg

F. Najmabadi, ECE65, Winter 2013, Problems for Discrete Amplifiers (42/42)

Exercise 9 (cont’d) : β = 200, VA = 150 V

Stage 2: Emitter Follower

For Ro , start from the source side because we need to know Rsig

k 0.2 12 == osig RR

100 1 Ω== sigsig RR

k 2

||1 ||

11

1111

11111

=≈

+++=

Co

sigBE

EoCo

RR

RRRrRrRR

π

β

Stage 1: CE amplifier with RE

Ω==+

= 8.119.11||k 1||

||2

22222 β

π sigBEo

RRrRR

k 22.5k 64.1k 2.47mA/V 122

1

1

1

1

====

B

π

o

m

Rrrg

k 90.9k 722.0

k 8.20mA/V 277

2

2

2

2

====

B

π

o

m

Rrrg

F. Najmabadi, ECE65, Winter 2013, Problems for Discrete Amplifiers (43/42)

Exercise 9 (cont’d) : β = 200, VA = 150 V

k 0.2 k 95.4

25.3/ k 41.9

100

1

1

11

21

1

==

−===

Ω==

o

i

io

iL

sigsig

RR

vvRRRR

k 22.5k 64.1k 2.47mA/V 122

1

1

1

1

====

B

π

o

m

Rrrg

k 90.9k 722.0

k 8.20mA/V 277

2

2

2

2

====

B

π

o

m

Rrrg

Ω==

===

==

8.11 k 41.9

1/ k 100

k 0.2

2

2

22

2

12

o

i

io

LL

osig

RR

vvRRRR

19.31)25.3(98.0

11.8 k, 4.95

2

2

1

1

21

−=×−×=××+

=

Ω====

i

o

i

o

sigi

i

sig

o

ooii

vv

vv

RRR

vv

RRRR

F. Najmabadi, ECE65, Winter 2013, Problems for Discrete Amplifiers (44/42)

Exercise 9 (cont’d) : β = 200, VA = 150 V

k 0.2 k 41.9 11.8

k 4.95

1

2

==

Ω==

o

i

o

i

RRRR

Hz 3.527.299.1571.6321 =++=++≈ pppp ffff

Amplifier Cut-off frequency 3 caps: 3 poles

Hz 71.6)( 2

1

11 =

+=

csigip CRR

Hz 9.15)( 2

1 2

2 =+

=cLo

p CRRf

π

Hz 7.2910470)(2

1

)(21

912

1,,

=××+

=

+=

oipj

cjjojipj

RRf

CRRf

π

π

Coupling cap at the input:

Coupling cap at the output:

Coupling cap between stages:

F. Najmabadi, ECE65, Winter 2013, Problems for Discrete Amplifiers (45/42)

Exercise 10: Find the amplifier parameters of the circuit below. (Si BJT with β = 200, VA = 150 V, ignore Early effect in bias calculations).

This is a two-stage amplifier. Both stages are common emitter amplifier with RE.

Both stages have source-degeneration bias with two power supplies (no voltage divider). o There are NO coupling capacitors and the second stage is

biased from VC1.

A 3.33/mA 65.6

510)1/(106.3 510106.351.3

3 5107.0106.31083.3106.3 15

3 510)(106.3 15

222

22

223

223

22333

22213

µβ

β

==≈=

++×=+×=

−++×+×××=

−+++×=−

CB

CE

EEEB

EB

EBEBC

IIII

IIIIII

IVII

F. Najmabadi, ECE65, Winter 2013, Problems for Discrete Amplifiers (46/42)

Exercise 10 (cont’d) : β = 200, VA = 150 V

A 2.19/mA 83.3

3 6007.0)1/( 100 03 600 100 0

111

11

111

111

µβ

β

==≈=

−+++=−++=

CB

CE

EE

EBEB

IIII

IIIVI

V 7.0 and 0 V, 7.0: Activein are sBJTboth Assume

111 ≥>= CECBE VIV

BE1-KVL:

BE2-KVL:

CE2-KVL:

0.7 V 63.43 510105.1 15

02

2223

=>=−++×=

DCE

ECEC

VVIVI

CE1-KVL:

0.7 V 79.13 600)(106.3 15

01

11213

=>=−+++×=

DCE

ECEBC

VVIVII

F. Najmabadi, ECE65, Winter 2013, Problems for Discrete Amplifiers (47/42)

Exercise 10 (cont’d) : β = 200, VA = 150 V

k 36.1

k 2.3910 83.3

150

mA/V 147 1026103.83

1

1

11

31

11

3

31

1

===

==

=××

==

mB

-C

Ao

-

-

T

Cm

gIVr

IVr

VIg

β

V 63.4A 2.19

mA 83.3

1

1

1

===

CE

B

C

VII

µV 79.1

A 3.33mA 65.6

2

2

2

===

CE

B

C

VII

µ

k 782.0

k 6.2210 65.6

150

mA/V 256 10261065.6

2

2

22

32

22

3

32

2

===

==

=××

==

mB

-C

Ao

-

-

T

Cm

gIVr

IVr

VIg

β

F. Najmabadi, ECE65, Winter 2013, Problems for Discrete Amplifiers (48/42)

Exercise 10 (cont’d) : β = 200, VA = 150 V

For Gain & Ri , start from the load side because we need to know RL

k 8.92 21 == iL RR

k 100 2 == LL RR

∞====

2

2

2

2

k 782.0k 6.22mA/V 256

B

π

o

m

Rrrg

k 8.9292.8k ||)/1](/)||[(1

||

2

22222

22222

=∞=

++

+=

i

EoLC

EBi

RrRrRR

RrRRπ

πβ

88.2132379

108.05101056211048.110562

108.0)/1](/)||[(k 1.48k 100||k 5.1||

)/1](/)||[(1)||(

3

33

1

1

22222

22

2222222

222

2

2

−=−=+××+×××

−=

=+==

+++−=

i

o

EoLC

LC

EoLCEm

LCm

i

o

vv

rRrRRRR

rRrRRRgRRg

vv

π

π

Stage 2: CE amplifier with RE

F. Najmabadi, ECE65, Winter 2013, Problems for Discrete Amplifiers (49/42)

Exercise 10 (cont’d) : β = 200, VA = 150 V

k 108k 108 ||)/1](/)||[(1

||

1

11111

11111

=∞=

++

+=

i

EoLC

EBi

RrRrRR

RrRRπ

πβ

71.53.89

510127.0600101471

1047.310147

127.0)/1](/)||[(k47.3k 8.92||k 6.3||

)/1](/)||[(1)||(

3

33

1

1

11111

11

1111111

111

1

1

−=−=+××+×××

−=

=+==

+++−=

i

o

EoLC

LC

EoLCEm

LCm

i

o

vv

rRrRRRR

rRrRRRgRRg

vv

π

π

Stage 1: CE amplifier with RE k 8.92 21 == iL RR

∞====

1

1

1

1

k 36.1k 2.39mA/V 147

B

π

o

m

Rrrg

∞====

2

2

2

2

k 782.0k 6.22mA/V 256

B

π

o

m

Rrrg

∞====

1

1

1

1

k 36.1k 2.39mA/V 147

B

π

o

m

Rrrg

F. Najmabadi, ECE65, Winter 2013, Problems for Discrete Amplifiers (50/42)

Exercise 10 (cont’d) : β = 200, VA = 150 V

For Ro , start from the source side because we need to know Rsig

k 6.3 12 == osig RR

100 1 Ω== sigsig RR

k 6.3

||1 ||

11

1111

11111

=≈

+++=

Co

sigBE

EoCo

RR

RRRrRrRR

π

β

Stage 1: CE amplifier with RE

k 5.1

||1 ||

21

2222

22222

=≈

+++=

Co

sigBE

EoCo

RR

RRRrRrRR

π

β

Stage 2: CE amplifier with RE

∞====

2

2

2

2

k 782.0k 6.22mA/V 256

B

π

o

m

Rrrg

∞====

1

1

1

1

k 36.1k 2.39mA/V 147

B

π

o

m

Rrrg

F. Najmabadi, ECE65, Winter 2013, Problems for Discrete Amplifiers (51/42)

Exercise 10 (cont’d) : β = 200, VA = 150 V

k 6.3 k 108

71.5/ k 8.92

100

1

1

11

21

1

==

−===

Ω==

o

i

io

iL

sigsig

RR

vvRRRR

k 5.1 k 8.92

88.2/ k 100

k 6.3

2

2

22

2

12

==

−===

==

o

i

io

LL

osig

RR

vvRRRR

4.16)88.2()71.5(1

k 5.1 k, 108

2

2

1

1

21

=−×−×=××+

=

====

i

o

i

o

sigi

i

sig

o

ooii

vv

vv

RRR

vv

RRRR

Amplifier Cut-off frequency: only Coupling cap at the output:

Hz 7.15)( 2

1 2

=+

=cLo

p CRRf

π