Organocatalysis Enabled by N-Heterocyclic Carbenes · Organocatalysis Enabled by N-Heterocyclic...

Post on 24-Aug-2020

20 views 1 download

Transcript of Organocatalysis Enabled by N-Heterocyclic Carbenes · Organocatalysis Enabled by N-Heterocyclic...

Organocatalysis Enabled by N-Heterocyclic Carbenes

Jiaming Li2018/04/27

Acyl AnionsY

X N

Homoenolates

AcylazoliumAzolium enolate Base Catalysis

Stability of N-heterocyclic Carbenes

Bertrand, Chem. Rev. 2000, 100, 39

a1

b22s

2px,y,z

C

N

a1

b2

σ

a1

b2

2s

2px,y,z

C

N

a1

b2

σ

σ-electron-withdrawing substitutents σ-electron-donating substitutents

• σ-electron withdrawing substitutents favor the singlet state over the triplet state• σ-electron withdrawing substitutents inductively stablize the σ non-bonding orbital by increasing its s character and leaving thepπ orbital unchanged• σ-electron donating substitutents induce a smaller σ-pπ gap, favoring a triplet state

N

N σ-electronwithdrawal

π-electrondonation..

..

..

Stability of N-heterocyclic Carbenes

Bertrand, Chem. Rev. 2000, 100, 39

σ

b1

a2

σ

π-electron donation

• The energy of pπ orbital is increased by the interaction with the symmetric combination of the substitutent lone pairs.• Combined effect is to increase the σ−pπ gap and stablize the singlet-state carbene over the more reactive triplet-state carbene.

N

N σ-electronwithdrawal

π-electrondonation..

....

2N pz

C

Overview

Acyl Anions

R

OH

N

NR

R

O

R

YX N

OH

N

NR

R

O

Homoenolates

RR

• Benzoin condensation• Stetter reaction• Hydroacylation

• Annulation• Cyclopentene synthesis

O

N

NR

R

AcylazoliumAzolium enolate

• Claisen rearrangement• Cycloaddition

Base Catalysis• Transesterification• Michael addition

R2

O

N

NR1

RN

NR

R

HR

Benzoin condensation

Ph

O

H

Ph

O

H

Ph

OPh

OH

Ph

O

H

NaCN

• First reported benzoin condensation (Wohler, Liebig, 1832)

Ph

OPh

OH

CN–

Ph

HO H

N

OH

PhN

OH

H2O

Ph

HO CNHOPh

OH

• Ugai discovered thiazolium salts could catalyze benzoin condensation (1943)

Ph H

O

S N

HOMe

N

N Me

NH2Cl

NaOH, MeOHPh

PhO

OH

• Co-enzyme thiamine diphosphate is responsible for the generation of acyl anion

S N

OMe

N

N Me

NH2

PO

O

PHO

O

OO

thiamine diphosphate (TDP)RO

O

OR

O+ CO2

• Pyruvate decarboxylase• Pyruvate oxidase• Pyruvate dehydrogenase• Transketolase

Ugai, T.; Tanaka, R.; Dokawa, T. J. Pharm. Soc. Jpn. 1943, 63, 296.

Benzoin condensation

Proposed Mechanism by Breslow

Breslow, R. J. Am. Chem. Soc.. 1958, 80, 3719

N

S

R1R2

R3 H

– H+N

S

R1R2

R3

N

S

R1R2

R3

N

S

R1R2

R3

N

S

R1R2

R3

Ph

O

H

Ph

O

N

S

R1R2

R3

Ph

OH

Breslowintermediate

Ph

O

H

N

S

R1R2

R3

OH

PhO Ph

Ph

OPh

OH

Enantioselective Benzoin Condensation

• First asymmetric benzoin condensation catalyzed by chiral thiazolium salts (Sheehan, 1966)

Ph H

O

S N

Me

Br

Et3N (10 mol%)MeOH

PhPh

O

OH

Sheehan, J. C.; Hunneman, D. H. J. Am. Chem. Soc. 1966, 88, 3666

O

Ph O

(10 mol%)

*

9% yield, 22% ee

Enantioselective Benzoin Condensation

• Improvement in the enantioselectivity of benzoin condensation

Ph H

OPh

PhO

OH

S N

Me

Br

cat. NHC

Me6% yield, 52% eeSheehan, 1974

NN N Ph

ClO4

66% yield, 75% eeEnders, 1996

O

O

Ph

MeMe

S N

TfO50% yield, 21% eeLeeper, 1997

OTBS

NN N

Cl

45% yield, 80% eeLeeper, 1998

O

PhPh

Enantioselective Benzoin Condensation

• Improvement in the enantioselectivity of benzoin condensation

Ph H

OPh

PhO

OH

S N

Me

Br

cat. NHC

Me6% yield, 52% eeSheehan, 1974

NN N Ph

ClO4

66% yield, 75% eeEnders, 1996

O

O

Ph

MeMe

S N

TfO50% yield, 21% eeLeeper, 1997

OTBS

NN N

Cl

45% yield, 80% eeLeeper, 1998

O

PhPh

NN N

X

R1

R2n

Tunable sterics

Tunable electronics• N-aryl-bicyclic triazolium structure

NN N

BF4

Ph

O

MeMeMe

83% yield, 90% eeEnders, 2002

Model

Enders, Chem. Rev. 2007, 107, 5606-5655

Enantioselective Benzoin Condensation

• Highly efficient system for the enantioselective benzoin reaction (Connon, 2009)

Ar H

OAr

ArO

OH

NN N

BF4

C6F5PhOHPh

4-8 mol% NHC4-8 mol% Rb2CO3THF, 20 h

17 - 100%

PhPh

O

OH

O

OHMeO

OMeO

OHCl

Cl

O

OH

O

OHOO

Cl

Cl

90% yield,>99% ee

91% yield,92% ee

92% yield,90% ee

17% yield,43% ee

26% yield,97% ee

Connon, S. J. J. Org. Chem. 2009, 74, 9214

Aldehyde-Ketone Cross-Benzoin Reaction

• Synthesis of Bicyclic Tertiary AlcoholsN

N N

ClMes

30 mol% cat.4-8 mol% Cs2CO3CH2Cl2, 40 ºC, 24 h

25 - 90%

67% yield,>99% ee

37% yield,94% ee

43% yield,95% ee

50% yield,78% ee

47% yield,86% ee

Sakai, Org. Lett. 2009, 11, 4866-4869

OO

O

RH

O O R

OOH

O

O

MeO

O O

Me

OHOH OH

O

O

Me

OH

O

32% yield,26% ee

OMe

OH O

O Me

OOH

Aldehyde-Imine Cross-Benzoin Reaction

• Cross Aza-Benzoin Reaction with N-Boc IminesN

N N

BF4

20 mol% cat.CsOAc (1 equiv)CH2Cl2, 4 Å MS, -20 ºC

33 - 93%

83% yield,96% ee

89% yield,96% ee

86% yield,84% ee

71% yield,92% ee

84% yield,96% ee

Rovis, Angew. Chem., Int. Ed. 2012, 51, 5904-5906

O

R H

O

33% yield,98% ee

+N

Ar H

Boc

RNHBoc

O

ArCl

Cl

Et NHBoc

Cl

O

Et NHBocO

Et NHBocO

OMe

MeNHBoc

Ph

O

NHBoc

Ph

O

Ph NHBoc

Ph

O

Me

Me

Acyl Anion Equivalent

Breslowintermediate

Ph H

O

Ph H

NS

R2R3

R1

Ph H

O

Ph

OPh

OH

benzoin condensation

Ph

O

Acyl Anion Equivalent

EWGR

Breslowintermediate

Ph H

O

Ph H

NS

R2R3

R1

Ph H

O

Ph

OPh

OH

Ph

O

EWG

EWG = COR, CO2R, CN SO2R, PO(OR)2

benzoin condensation

Stetter reaction

R

Ph

O

Seminal Works of Stetter Reaction

• First general intramolecular Stetter reaction catalyzed by NHC (Ciganek, 1995)

• First asymmetric intramolecular Stetter reaction (Enders, 1995)

Ciganek, Synthesis 1995, 1311-1314Enders, Angew. Chem., Int. Ed. 1995, 34, 1021-1023

H

O

O CO2Me

20 mol% cat.Et3N (1 equiv)

DMF, rt

88%

O

O

CO2Me

H

O

O CO2Me

20 mol% cat.K2CO3 (1 equiv)

THF, rt

73%, 60% ee

O

O

CO2Me

S N

HOMe

Bn

Cl

NN N Bn

ClO4O

O Ph

MeMe

Improved Asymmetric Intramolecular Stetter Reaction

• Highly enantioselective Stetter reaction (Rovis, 2002)

Rovis, J. Am. Chem. Soc. 2002, 124, 10298

H

O

O CO2Et

20 mol% cat.KHMDS (20 mol%)

xylene

94%, 94% ee

O

O

CO2Et NN N

BF4O

OMe

NN N

BF4

Bn

H

O

CO2Et

20 mol% cat.KHMDS (20 mol%)

xylene

81%, 95% ee

O CO2Et

Asymmetric Intermolecular Stetter Reaction

• Intermolecular Stetter reaction with Chalcones (Enders, 2008)

Rovis, T. J. Am. Chem. Soc. 2008, 130, 14066

Ar1 H

O

10 mol% cat.Cs2CO3 (10 mol%)

THF

49-98%, 58-78% ee

NN N Bn

BF4

NN N C6F5

BF4

Bn

20 mol% cat.iPr2NEt (1 equiv)

MgSO4

CCl4

+ Ar3

O

Ar2

Ar1

OAr3

OAr2 OTBDPS

ON

OH

O

• Intermolecular Stetter reaction with highly activated alkylidene dicarbonyls (Rovis, 2008)

CO2t-Bu

CO2t-Bu

Et

Et

O Me

O

NMe2

NCO2t-Bu

O

O O

Et

CO2t-Bu

N

O

O O

Et

O Me

O

NMe2

84%, 90% ee

90%, 92% ee, 5:1 dr

Asymmetric Intermolecular Stetter Reaction

• Intermolecular Stetter reaction with nitroalkenes

H

O 10 mol% cat.iPr2NEt (1 equiv)

CCl4, -10 ºC, 12 h

NN N C6F5

BF4

NN N Mes

Cl

O

NO2

Cy

• Stetter reaction of Methyl 2-Acetamidoacrylate

NNO2

Cy

N

MeMe

90% yield, 88% ee

NN N C6F5

BF4

MeMe

95% yield, 95% ee

F+

R H

O 20 mol% cat.16 mol% KO-tBu

PhMe, rt, 24 h38-98%

93-99% ee

R

O

CO2Me+

NHAc

CO2MeO

Bn

NHAc

Selected Examples:

O

CO2Me

NHAc

Br

O

CO2Me

NHAc

Fe

O

CO2Me

NHAcMe

8

98%, 96% ee 56%, 99% ee

52%, 97% ee

Rovis, J. Am. Chem. Soc. 2011, 133, 10402-10405.Glorius, Angew. Chem., Int. Ed. 2011, 50, 1410-1414

One-Pot Synthesis of Pyrrols and Furans

R1 SiMe3

O+

R2 Ph

O OOR1

PhR2 R2

OR1 Ph

R2Br +Ph

OH

R2

NR1 Ph

20 mol% 2DBU, iPrOH

1. Pd(PPh3)2Cl2, CuI, Et3N2. R1CHO, 20 mol% 1

HOAc

R3NH2TsOH

N

S

Me Me

HOI N

S

Me Et

HOBr

1 2

R3

Muller et al.

Scheidt et al.

Müller, T. J. J. Org. Lett. 2001, 3, 3297Scheidt, K. A. Org. Lett. 2004, 6, 2465

Acyl Anion Equivalent

EWGR

Breslowintermediate

Ph H

O

Ph H

NS

R2R3

R1

Ph H

O

Ph

OPh

OH

Ph

O

EWG

EWG = COR, CO2R, CN SO2R, PO(OR)2

benzoin condensation

Stetter reaction

R

Ph

O

Hydroacylation

EWGR

Breslowintermediate

Ph H

O

Ph H

NS

R2R3

R1

Ph H

O

Ph

OPh

OH

Ph

O

EWG

EWG = COR, CO2R, CN SO2R, PO(OR)2

benzoin condensation

Stetter reaction

R

Ph

O

unactivatedalkenes

R

Ph

O

RHydroacylation

Hydroacylation

• First hydroacylation precedent (She, 2008)

H

O

O

ROTs

25 mol% cat.70 mol% DBUxylene, 4 h

O

O

O

O

MePh

R = H

R = Ph

72%

82%

S N Me

HOMe

I

Hydroacylation

• First hydroacylation precedent (She, 2008)

H

O

O

ROTs

25 mol% cat.70 mol% DBUxylene, 4 h

O

O

O

O

MePh

R = H

R = Ph

72%

82%

S N Me

HOMe

I

H

O

O

Ph

hydroacylation

Hydroacylation

• First hydroacylation precedent (She, 2008)

H

O

O

ROTs

25 mol% cat.70 mol% DBUxylene, 4 h

O

O

O

O

MePh

R = H

R = Ph

72%

82%

S N Me

HOMe

I

• Asymmetric intramolecular hydroacylation (Glorius, 2011)

H

O

OAr

10 mol% cat.10 mol% DBUdioxane, 80 ºC

28-99%, 96-99% ee

O

O

MeAr

NN N Mes

ClO

Bn

Glorius, F. Angew. Chem. Int. Ed. 2011, 50, 4983She, X. Tetrahedron 2008, 64, 8797

Hydroacylation Mechanism

Glorius, F. J. Am. Chem. Soc. 2009, 131, 14190.Glorius, F. Angew. Chem. Int. Ed. 2011, 50, 4983

•Concerted but highly asynchronous transition state (Glorius, Grimme)

O

O

H

NN

NR Mes

OH

NN

NR Mes

O

O

NN

NR

Mes

MeO

H

O

O

NN

NR Mes

O

MeO

OH

or

δ+

δ−O

NR2

H≠δ+

Conia-ene Reverse-Copeelimination

vs.

O

NN

N

Mes

R

H

R

1st2nd

concerted butasynchronous mechanism

(Computation)

concerted mechanisms

Intermolecular Hydroacylation

Glorius, Angew. Chem., Int. Ed. 2010, 49, 9761-9764. Glorius, Angew. Chem., Int. Ed. 2011, 50, 12626-12630.Glorius, Angew. Chem., Int. Ed. 2013, 52, 2585-2589.

• Intermolecular hydroacylation of cyclopropenes

Ar1 H

O5 mol% cat.K2CO3 (1 equiv)THF, 40 ºC, 24 h

44 - 97%1.6:1 to 20:1 dr

NN N Mes

Cl

• Asymmetric intramolecular hydroacylation

NN N

BF4O

Bn

+R Ar2 R Ar2

Ar1

O

H

O20 mol% cat.K3PO4 (1.5 equiv)THF, 40 ºC, 24 h

91%, 92% ee+

Me PhMe Ph

O

ClCl

(R,R)

Ar H

O5 mol% cat.K2CO3 (1.5 equiv)DMSO, 40 ºC, 16 h

16 - 78%+

• Intermolecular hydroacylation of styrenes

R RAr

O

MeR

OAr

Linear

Branched

Ar

O

CN49% yieldL:B = > 20:1

39% yieldL:B = < 1:20

O

F3CMe

tBu

+

MeMe

MeO

MeO

NN N

Cl

MeO

MeO

Increased reactivity with OMe

Umpolung of Michael Acceptor

Fu, J. Am. Chem. Soc., 2006, 128,1472–1473

• Heck-type cyclization (Fu, 2006):

EWG

Br

n

10 mol% cat.K3PO4 (2.5 equiv)glyme, 80 ºC

48-94%

EWG

n

NN N

Ph

MeO OMe

EWG = CO2Et, CO2allyl, CO2N(Me)OMe, CNn = 1,2

ClO4

Br

O

OEt

O

EtO

BrN N

NPh

Ph

Ph

O

EtO

N N

NPh

Ph

Ph

CO2EtN

NN

Ph

Ph Ph

O

EtO

BrN N

NPh

Ph

Ph

tautomerization

Overview

Acyl Anions

R

OH

N

NR

R

O

R

YX N

OH

N

NR

R

O

Homoenolates

RR

• Benzoin condensation• Stetter reaction• Hydroacylation

• Annulation• Cyclopentene synthesis

O

N

NR

R

AcylazoliumAzolium enolate

• Claisen rearrangement• Cycloaddition

Base Catalysis• Transesterification• Michael addition

R2

O

N

NR1

RN

NR

R

HR

Generation of Homoenolate

R1 H

OR1

O

N

NMes

Mes

R1

OH

N

NMes

Mes

R1

OH

N

NMes

Meshomoenolate

NNMes Mes

R

O

Annulation Reactions

R1

OH

N

NMes

Mes

R1

O

Ar H

O

O

O

R1 Ar

R3

O

R2O

O

R3R2

R1

R3

N

R2N

O

R3R2

R1

SO2Ar

SO2Ar

Ph

O

R2

Ph

N

R2

SO2Ar

R2

OH

Me Me

O

OO

HMe

OHMe

R2

R1

NO

H Ph

R2

R1

SO2Ar

R2

R1

Ph

Cyclopentene Synthesis

Nair, J. Am. Chem. Soc. 2006, 128, 8736-8737.

• 1,3,4-trisubstituted Cyclopropene Synthesis by NHC (Nair, 2006)

N N Mes

ClR1 H

O

R2 R3

O+

6 mol% cat.12 mol% DBUTHF, RT, 8 h

R3

R1 R2

Mes

S

Cl

MeOMe S

Cl

Me

ClMeO

88% yield> 20:1 dr

73% yield> 20:1 dr

55% yield> 20:1 dr

Mechanism

N N MesMesR1 H

O

O

R1

NN MesMes

OH

R1

NN MesMes

R3 R2

OH

R1

NN MesMes

R3

OR2

OH

R1

NN MesMes

R3

OR2

O

NN MesMes

R1R2

OR3

OO

R3

R1 R2 R1 R2

R3

- CO2

O

Cyclopentene Synthesis

• Enantioselective Synthesis Cyclopropene by NHC (Bode, 2007)

NN N Mes

BF4R1 H

O

MeO2C R2

O+

6 mol% cat.12 mol% DBUTHF, RT, 8 h

R2

R1

Ph

Ph Ph

78% yield11:1 dr99% ee

O

CO2Me

O

CO2Me Ph

Br

CO2Me

Ph

nPr CO2Me

93% yield>20:1 dr98% ee

50% yield11:1 dr99% ee

25% yield14:1 dr96% ee

Bode, J. Am. Chem. Soc. 2007, 129, 3520-3521

CO2Me

Mechanism

NN N Mes

R1 H

OO

NN N Mes

R

R

OR1

NN N Mes

R

R

OHR1

MeO2C R2

O

NN N Mes

O

R1CO2Me

HOO

R2

NN N Mes

O

R1CO2Me

HOO

R2

NN N Mes

R

R

O

R1MeO2C

HOR2

R1MeO2C

R2O O

-CO2

R1MeO2C

R2

Mechanism

• Origin of cis/trans stereoselectivity

N NN

O

Me

Me

Me

O

Ph

OMe

O

Ph

OH

s-cis

N NN

O

Me

Me

Me

O

Ph

H

s-trans

O Ph

Ph

PhCO2Me

Cat.Ph

OOH

Boat oxy-Cope TS

Ph PhPh

OHO

Cat.

H

Ph

Ph CO2Me

Ph

Ph Ph

Chair oxy-Cope TS

O

PhPh +H Ph

O10 mol% cat.15 mol% DBU

ClCH2CH2Cl0-23 ºC, 40 h45% yield

Ph

Ph

PhH

> 20:1 dr (72% ee)

s-cis

β-lactam Formation

Bode, J. Am. Chem. Soc. 2008, 130, 418-419

• Scope of β-lactam formation

R H

O+

Ar1 Ar2

NSO2Ar

10 mol% cat.15 mol% DBU

EtOAc, 23 ºC, 1 h

45-94%N

O SO2Ar

Ar2H

Ar1

R

NN N Mes

Cl

94% yield>20:1 dr99% ee

O

45% yield>20:1 dr98% ee

76% yield5:1 dr99% ee

72% yield>20:1 dr88% ee

NO SO2Ar

PhH

Ph

Me

NO SO2Ar

PhH

Ph

NO SO2Ar

PhH

Ph

NO SO2Ar

PhH

Ph

Me

F3C

Aza-Benzoin-Oxy-Cope Rearrangement Mechanism

NN N Mes

Me H

OO

NN N Mes

R

R

OMe

NN N Mes

R

R

OHR1N

N N Mes

O

MePh

OPh

NN N Mes

O

MePh

OPh

SO2ArON

ent-1

ArO2SN Ph

PhHNSO2Ar

HNSO2Ar

NN N Mes

O

MePh

OPh

NSO2Ar

tautomerization/Mannich

PhH

Me

Ph

Overview

Acyl Anions

R

OH

N

NR

R

O

R

YX N

OH

N

NR

R

O

Homoenolates

RR

• Benzoin condensation• Stetter reaction• Hydroacylation

• Annulation• Cyclopentene synthesis

O

N

NR

R

AcylazoliumAzolium enolate

• Claisen rearrangement• Cycloaddition

Base Catalysis• Transesterification• Michael addition

R2

O

N

NR1

RN

NR

R

HR

Biomimetic Origin of Acylazolium Reactivity

• Clavulanic acid biosynthesis through acylazolium intermediate

H

OOH

OPO3

PP-O

H2N

N

N

N

STDP

R2

R1N

S

OH

OPO3H OHG3P R2

R1N

SOPO3

HH

O

R2

R1N

S O

L-Arg

R2

R1N

SO

acylazolium

HNNH

NH2

NH

COOHN

O

COOH

OH

O

H

Clavulanic acid

Townsend, J. Am. Chem. Soc. 1999, 121, 9223-9224

Generation of Acylazolium • Genertion of acylazolium intermediate by MnO2 oxidation (Scheidt, 2007)

Ph OHNHC cat., DBU

MnO2, MeOH Ph OMe

O

Scheidt, Org. Lett., 2007, 9, 371-374

Generation of Acylazolium

R1 H

OR1

O

N

NMes

Mes

R1

OH

N

NMes

Mes

R1

OH

N

NMes

Meshomoenolate

NNMes Mes

• Genertion of acylazolium intermediate by MnO2 oxidation (Scheidt, 2007)

Ph OHNHC cat., DBU

MnO2, MeOH Ph OMe

O

slow

fast

R1

O

N

NMes

Mes

MnO2

MeOH

acylazolium

MnO2

Scheidt, Org. Lett., 2007, 9, 371-374

Generation of Acylazolium

Ar1

O

N

NAr2

Racylazolium

Ar1

O

H

O

H

Ar1

O

HBr

Ar1

O

RR = F, OR

Ar1or

[O]

• comparison of homoenolate/acylazolium reactivity

R

OH

N

NAr

Ar

R

O

N

NAr

Ar

YR1 O

Y = O, NR

electrondonor

MichaelAcceptor

Y

R

R1

O O

OR

R1 R1

Dihydropyranone Synthesis Through Acylazolium

• Intramolecular Rearrangement

R4 R3

10 mol% cat.20 mol% KOtButoluene, Δ, 16 h N N Mes

O

O

R2

R1

O

R2

R1

R3 R4O

MesCl

• Intermolecular Reaction

Ar

OTMS

R2

R1

O

F+

20 mol% cat.40 mol% KOtButoluene, Δ, 16 h O

R2

R1

Ar O

N N DIPPDIPPCl

Lupton, J. Am. Chem. Soc. 2009, 131, 14176-14177

Mechanism

R4 R3

O

O

R2R1

O

R2R1

R3 R4O

N

N

R

R

O

R2R1

O

R3

R4

N

N

R

R

+

O

R3

N

N

R

R

R2

OR1R4

O

R3

N

N

R

R

R2

OR1R4

addition

Conjugate additionproton transfer

acylation

Enantioselective Coates-Claisen Rearrangement

• Catalytic, Enantioselective Couplings with Kojic Acids (Bode, 2010)

H

O+

1. 10 mol% cat.PhMe, 40 ºC

2. MeOH, 23 ºC

78-98%92-99% ee

NN N Mes

Cl

80% yield97% ee

O

R1O

O

R2

HO

O

O

R2

HO

MeO2CR1

O

OHO

MeO2CPh

OTBS

95% yield95% ee

O

OHO

MeO2COTBS

Me87% yield99% ee

O

OHO

MeO2COTBS

90% yield99% ee

O

O

Me

HO

MeO2CPh

98% yield97% ee

O

OHO

MeO2COTBS

78% yield99% ee

O

OHO

MeO2COTBS

Me

Cl

Bode, J. Am. Chem. Soc. 2010, 132, 8810-8812

Mechanism

NN N MesR

H

O

O

NN

N MesR

R1

R1

R

R

Breslowintermediate

O

NN

N MesR

R

R1

protonation

O

HOO

R2

NNN

Mes

R

R

R1

O

HOOH

NN

N MesR

R

O

OO

R2

R1

O

NN

N MesR

R

O

OHO

R2

R1

O

O

R2

1,2-addition

MeOHO

HOO

R2MeO2CR1

ClaisenRearrangement

Mechanistic Dichotomy

Mayr, Angew. Chem., Int. Ed. 2012, 51, 5234-5238 Schoenebeck, Chem. Sci. 2012, 3, 2346-2350.

O

N N

N

Mes

R

RAr +

Y = O, NR

YR2R1

path Apath B

Y

N N

N

Mes

R

RArO

R1

R2[3,3]

Coates-Claisen

O

N N

N

Mes

R

R

Ar

R2

R1

Y

Schoenebeck, Bode(loose ion pair)

Mayr, Studer(contact ion pair)

Enantioselective Hetero-Diels-Alder Reaction

Bode, J. Am. Chem. Soc. 2006, 128, 8418-8420

H

N

10 mol% cat.DIPEA (1 equiv)PhMe/THF 10:1

52-90%

NN N Mes

BF4

O

H

O N

90% yield99% ee

R1

SO2ArR2

O

OSO2Ar

R1

O

R2

+

N OSO2Ar

Ph

O

OEt

71% yield99% ee

N OSO2Ar

O

OEt

58% yield99% ee

N OSO2Ar

n-Pr

O

OEt

71% yield99% ee

N OSO2Ar

n-Pr

O

OMeO

Enantioselective Hetero-Diels-Alder Reaction

HR2O

NNN

OAr

N RSO

O

MeO

H

N

NN N Mes

O

H

ON

R

SO2Ar

EtO

O

OSO2Ar

R

O

OEt

proton transfer

NN N Mes

R

R

HO

CO2Et

NN N Mes

R

R

O

CO2Etazolium enolate

N SO2Ar

R

O

EtO

O

NN N Mes

R

R

Transition State of Azadiene Diels-Alder Reaction:

NN N Mes

R

R

HO

CO2Et

Ketene Cycloaddition

NN N Ph

Ar1 R

NN N Ph

R

R

OAr1 azolium enolate

PhTBSO

Ph

•O

R

Ar2 H

NBoc

NN N Ph

R

R

O

NBoc

Ar1

Ar2

R

H

NO Boc

Ar2RAr1

Ar1 R

•O

Ar2 H

NBoc

NO Boc

Ar2RAr1

10 mol% cat.10 mol% Cs2CO3

THF+

53-98% yield91-99% ee2.5-99:1 dr

Ye, S.; Org. Lett. 2008, 10, 277.

Ketene Cycloaddition

NN N Ph

NN N Mes

R

R

OAr

azolium enolate

PhTBSO

Ph

R

Ar R

•O

[2+2]

[3+2]

[4+2]

N

O

O

O

R1

ArR

NN

O CO2Et

CO2Et

Ye, S. Synlett 2013, 1614

ArR

ON

O Ar1

RAr

ClNTs

O

NTs

O

O

ArR

Cl

BzNN

Bz NN

OO Ph

Bz

ArR

PhHN

OMeO

O

Ph Et

80% yield, 99% ee

1. K2CO3, MeOH/acetone

2. SmI2, HF-MeOH

KOH HO COOH

Ph Et

75% yield, 90% ee

Overview

Acyl Anions

R

OH

N

NR

R

O

R

YX N

OH

N

NR

R

O

Homoenolates

RR

• Benzoin condensation• Stetter reaction• Hydroacylation

• Annulation• Cyclopentene synthesis

O

N

NR

R

AcylazoliumAzolium enolate

• Claisen rearrangement• Cycloaddition

Base Catalysis• Transesterification• Michael addition

R2

O

N

NR1

RN

NR

R

HR

Transesterification

N N R

R1 OR2

5 mol% cat.THF, 23 ºC

+O R3OH

R

R = Mes or Cy

R1 OR3

+O R2OH

MeMe

Me

O

99% yield

Me

O

MeO

OMeOBn

O

95% yield

OBn

O

96% yieldO2N

OR

O

R = Et, 85% yield i-Pr, 72% yield t-Bu, < 1% yield

R1 OR2

O

R1

O

N

NMe

Me

O

R1OR2

OR3

H

N

NMe

Me

O

R1OR2

OR3

N

NMe

Me

H

favored disfavored

R1 OR3

+O R2OH

Nolan, Org. Lett. 2002, 4, 3583-3586Hedrick, Org. Lett. 2002, 4, 3587-3590

Kinetic Resolution of Secondary Alcohols

N N

3 mol% cat.3 mol% KOtBu

THF, 23 ºC+

R1 R2

+OAc

R3R3

Me Me R3 = Ph, 1-naphthyl

OAc

4-52% yield9-58% ee

R1 R2

OH

R1 R2

OH

36-85% yield1-23% ee

Suzuki (2004):

N N

3 mol% cat.3 mol% KOtBu

THF, 23 ºC+

R1 R2+O

R3R3

Me Me R3 = Ph, 1-naphthyl

O

27-39% yield84-96% ee

R1 R2

OH

R1 R2

OH

36-85% yield1-23% ee

OPh

Ph

O

CHPh2

Me

O

O

CHPh2

32% yield96% ees = 80

Me

O

O

CHPh2

29% yield94% ees = 47

Me

O

O

CHPh2

Ph

27% yield84% ees = 16

Maruoka (2005):

Suzuki, Chem. Commun. 2004, 2770-2771 Maruoka, Org. Lett. 2005, 7, 1347-1349

• NHC as non-covalent chiral templates (Huang, 2014)

Huang, Nat. Commun. 2014, 5, 3437

Me

20 mol% cat.16 mol% LHMDS

20 mol% HFIP

4Å MS, MTBE- 40 ºC, 48 h

NN N Mes

BF4O

Me

O O+

PhNO2

PhNO2

MeMe

O O

92% yield, 99% ee

NNNMes

O

OH

O

Me Me

PhNO2

N NN

Mes

O

HO

Me O

Me

Ph

NO2

negative non-linear effects:

Asymmetric Conjugate Addition of 1,3-Dicarbonyls

Overview

Acyl Anions

R

OH

N

NR

R

O

R

YX N

OH

N

NR

R

O

Homoenolates

RR

• Benzoin condensation• Stetter reaction• Hydroacylation

• Annulation• Cyclopentene synthesis

O

N

NR

R

AcylazoliumAzolium enolate

• Claisen rearrangement• Cycloaddition

Base Catalysis• Transesterification• Michael addition

R2

O

N

NR1

RN

NR

R

HR

Application in Total Synthesis

•Synthesis of (+)-sappanone B

reaction type:N

N N

Cl

7.5 mol% cat.Et3N

toluene, 23 ºC, 12 h

92%, 99% ee

Suzuki, Org. Lett. 2007, 9, 2713-2716

O

CF3

CF3

CHO

O

OMeOMe

OMeO

OMeO

OOH

XX

(X = OMe)

(+)-sappanone B (X = OH)

Application in Total Synthesis

•Synthesis of atorvastatin (Lipitor)

reaction type:

S N

BrEt

Roth, Tetrahedron Lett. 1992, 33, 2283-2284

F

CHO+ NHPh

Me

MeO

Ph O

NHPhMe

MeO

Ph O

O

F

HO

Me

20 mol% cat.

Et3N, 70 ºC

80%

H2N OtBu

O O O

Me Me1.

2. HCl, MeOH, then NaOH3. Ca(OAc)2Ph

N

OPhHN

Me

Me

COO

F

HO

HO Ca2+

2

atorvastatin (Lipitor)

1:1 E/Z

Paal-Knorr Reaction

Application in Total Synthesis

•Synthesis of maremycin Breaction type:

NN N

BF4

Mes

Scheidt, Angew. Chem. Int. Ed. 2012, 51, 4963-4967

5 mol% cat.

DBU, THF, 23 ºC

76%, 5:1 dr78% ee

99% ee after 1 recrystalization

NMe

O

O

MeCHO

+

O

Ph

Ph

NMe

O

O

OMe

5 steps

NMe

O

NH

HNO

OHOMe

SMe

maremycin B

Application in Total Synthesis

•Synthesis of (–)-7-deoxyloganinreaction type:

N N

Candish, Lupton, Org. Lett. 2010, 12, 4836-4839.

20 mol% cat.

THF, -78ºC-23 ºC

63%, 3.4:1 dr, 97% ee

O

4 steps

Me O

CO2Me

Me Me

Me

Me

Me

Me

O

Me O

CO2Me

H

H

O

Me

CO2Me

H

H

O OHOOH

OHOH

(–)-7-deoxyloganin

Application in Total Synthesis

•Synthesis of (+)-Dactylolidereaction type:

NN N Me

Hong, Angew. Chem. Int. Ed. 2012, 51, 5735-5738.

Me

O

O

O Me

O

Me

H

O

(+)-dactylolide

H H

I O

O

O Me

CN

Me

TBDPSO

H H

S S

OTBSOH

O

O Me

CN

Me

TBDPSO

H H

S S

OTBS(30 mol%)

OO

tButBu

tBu tBuDBU, DMAP, 4Å MSCH2Cl2, 25 ºC, 20 h

65%11 steps

4 steps

S S

HO

Reviews

1. N-Heterocyclic Carbenes as Organocatalysts Nolan, Angew. Chem. Int. Ed. 2007, 46, 2988 – 3000

2. Organocatalysis by N-Heterocyclic Carbenes Enders, Chem. Rev. 2007, 107, 5606-5655

3. A Continuum of Progress: Applications of N-Hetereocyclic Carbene Catalysis in Total Synthesis Sheidt, Angew. Chem. Int. Ed. 2012, 51, 11686 – 11698

4. Organocatalytic Reactions Enabled by N‐Heterocyclic Carbenes Rovis, Chem. Rev. 2015, 115, 9307−9387