Numerical Simulation of a 1200 MW Pulverised Fuel Oxy ...

Post on 27-Jan-2022

3 views 0 download

Transcript of Numerical Simulation of a 1200 MW Pulverised Fuel Oxy ...

OXYCOAL-AC

1

Numerical Simulation of a 1200 MWth

Pulverised Fuel Oxy-firing Furnace

Jens Erfurth

Dobrin Toporov, Malte Förster, Reinhold Kneer

Institute of Heat

and Mass

Transfer

RWTH Aachen University

CCT2009, Dresden, 18-21 May 2009

OXYCOAL-AC

2

0,6

0,7

0,8

0,9

1

1,1

1,2

19 21 23 25 27 29 31 33O2, %

Q/Q

_AIR AIR

OXY21wetOXY21dryOXY27wetOXY30dry

Overview

23.8

% 28.6

%

ConclusionsResults

ModellingMotivation

0 1000 2000 3000 4000 5000 6000 7000 80000

0.5

1a) Transmissivities of Bands m

Wavenumber ν [1/cm]

0 1000 2000 3000 4000 5000 6000 7000 80000

0.5

1b) Total Absorptivities

Wavenumber ν [1/cm]

0 1000 2000 3000 4000 5000 6000 7000 80000

0.5

1c) Normalised Planck Distribution

Wavenumber ν [1/cm]

I ν/I ν

,max

Tgas = 1810 KT = 1000 K

CO2

H2OCO

OXYCOAL-AC

3

Motivation: the

Case

for

CCS Retrofit

300 GW of capacity will have to be installed in the EU-25 until 2020.

Coal plants built before CCS is available (ca. 2020) pose risk of „carbon lock-in“.

Plants built between now and then could be retrofitted for CCS

Sources: VGB Powertech, EU Energy and Transport Outlook

OXYCOAL-AC

4

Oxyfuel Retrofit

Can a boiler originally designed for air operation be operated in oxy-firing at the same thermal load?

Criteria:•

Burnout

Heat transfer

Furnace exit temperature

Corrosion in the furnace

Parameters available to meet these requirements:•

Oxygen concentration

Water content of oxidiser (wet or dry recycling)

OXYCOAL-AC

5

Previous Experimental Work in Aachen■

Oxycoal test facility with 120 kWth

Oxycoal

swirl burners

Able to operate within wide range of oxygen O2

content and in air

Measures for oxycoal swirl flame stabilisation derived

Design of industrial burners based on these measures

Experiments CFD Simulations

OXYCOAL-AC

6

Heterogeneous and homogeneous reactions are modelled as User Defined Functions (UDFs)

Changes in the CFD model for oxy-firing:•

Modelling of heterogeneous reactions:

Cs

+ 0.5 O2

→ CO

Oxidation, exothermal

Cs

+ CO2

→ 2 CO

BoudouardGasification, endothermal

Cs

+ H2

O → CO + H2

Water Gas Reaction

Adjustment of radiation model

CFD Models

OXYCOAL-AC

7

Exponential Wide

Band Model (EWBM)*

EWBM

COp2H Op

2COpL tp0,mλBand locations T

mτ mλΔ

lk for

10 spectral

regions

l

Algorithm

11 single

Bands m (CO2

, H2

O, CO)

*Edwards D. K., Advances in Heat Transfer, vol.12, 1976

OXYCOAL-AC

8

Results

of EWBM

Example:

L = 0.1 m

T = 1800 K

Spectral

absorptivities of flue

gas

0 1000 2000 3000 4000 5000 6000 7000 80000

0.5

1

Wavenumber [1/cm]

0 1000 2000 3000 4000 5000 6000 7000 80000

0.5

1

Wavenumber [1/cm]

Air combustion:

Oxyfuel combustion, wet

recycling:

α

α

OXYCOAL-AC

9

Furnace designed for Air firing■

Thermal power: 1210 MW (RPP NRW)

18 burners → 70 MW each (λ

= 0.95)

Burner geometry designed based on criteria developed by the authors*

12 OFA nozzles (λtot

= 1.15)

Fired by South African hard coal

5 Cases:

AIR

Same oxygen: OXY21dry, OXY21wet

Same temperature:

OXY30dry,

OXY27wet

* Toporov et al, CCT 2007

OXYCOAL-AC

10

Temperature

Fields, dry

Recycling

T [K]

2300

300AIR OXY21dry OXY30dry

OXYCOAL-AC

11

Temperature

Fields, wet

Recycling

T [K]

2300

300AIR OXY21wet OXY27wet

OXYCOAL-AC

12

CO Source

from

Particle

Oxidation, dry

Recycling

log SCO[kg/m3s]

3

1e-4AIR OXY21dry OXY30dry

Cs

+ 0.5 O2

→ CO

OXYCOAL-AC

13

CO Source

from

Particle

Oxidation, wet

Recycling

AIR OXY21wet OXY27wet

Cs

+ 0.5 O2

→ CO

log SCO[kg/m3s]

3

1e-4

OXYCOAL-AC

14

CO Source

from

Particle

Gasification, dry

Recycling

AIR OXY21dry OXY30dry

Cs

+ CO2

→ 2 CO

and Cs

+ H2

O → CO + H2

log SCO[kg/m3s]

0.5

1e-4

OXYCOAL-AC

15

CO Source

from

Particle

Gasification, wet

Recycling

AIR OXY21wet OXY27wet

log SCO[kg/m3s]

0.5

1e-4

Cs

+ CO2

→ 2 CO

and Cs

+ H2

O → CO + H2

OXYCOAL-AC

16

Surface

Incident

Radiation, dry

Recycling

Q´´[kW/m2]

500

0AIR OXY21dry OXY30dry

Locally

increased

wall temperature

OXYCOAL-AC

17

Surface

Incident

Radiation, wet

Recycling

500

0AIR OXY21wet OXY27wet

Q´´[kW/m2]

OXYCOAL-AC

18

Comparison: radiative

Heat

Transfer in Furnace

0,6

0,7

0,8

0,9

1

1,1

1,2

19 21 23 25 27 29 31 33O2, %

Q/Q

_AIR AIR

OXY21wetOXY21dryOXY27wetOXY30dry

1.2

1.1

0.9

0.8

0.7

0.628.6 %23.8 %

integrated

over

furnace

walls

OXYCOAL-AC

19

0,85

0,9

0,95

1

1,05

0,9 0,95 1 1,05 1,1 1,15 1,2 1,25

H/H_AIR,exit

T/T_

AIR

,exi

tAIROXY21wetOXY21dryOXY27wetOXY30dry

1.0

5

0.9

5

0.

9

0.8

5

Comparison: Temperature* and Enthalpy

Flow

* averaged

at furnace

exit

OXYCOAL-AC

20

Heat

Transfer in the

convective

Section

Theoretical

considerations:

TubeAsh

Layer

Incident

Radiation

Emitted

Radiation

Tsurface

Tsteam Tsurface

Tgas

EWBM (Gas Radiation

only)

h

d

Leff

, αsurface

, εgas

εash

htotal

OXYCOAL-AC

21

Heat

Transfer: Differences

Air -

Oxy-firing

Energy balance

at pipe

surface:

800steamT K=

30 , 30

,

( )( )

OXY dry surface OXY dry steam

surface AIR steamAIR

Q T TT TQ

−Δ = =

261AIRWh

m K=

For OXY30dry

Leff

= 0.1 m Leff

= 1 m

Tgas

= 1000 K Δ

= 1.25 Δ

= 1.21

Tgas

= 1600 K Δ

= 1.25 Δ

= 1.23

30 266OXY dryWh

m K=

OXYCOAL-AC

22

Conclusions

CFD simulations

of a state

of the

art furnace

in air

and oxy-firing

of coal

were

conducted

using

a non-grey

implementation

of the

EWBM

Surface

incident

radiation

increases

relative to air…

…by

6 % for

dry

recycling

…by

14 % for

wet

recycling

In oxy-firing

gasification

gains

importance

Reason: abundance

of CO2

and water

vapour

OXYCOAL-AC

23

Conclusions: Retrofit

Criteria:

Burnout

can

be

achieved

Furnace

exit

temperature

below

ash

melting

point

Overall heat

transfer:

Similar

in furnace

for

OXY30dry

In convective

section: increase

by

20-25 % for

OXY30dry, but

particles

will dampen

this

effect.

Wall temperatures: care

must

be

taken

to ensure

corrosion

does

not

unduly

increase

?

?

••

?

OXYCOAL-AC

24

Acknowledgements

This work was conducted in the framework of the project OXYCOAL-AC and was funded by:

German Federal Ministry of Economics and

Technology

Ministry for Innovation, Science, Research and Technology of the State

of North Rhine-Westphalia

RWE Power

WS Wärmeprozesstechnik

Linde

MAN Turbo Hitachi Power Europe

E.ON Energie

OXYCOAL-AC

25

Thank

you

for

your

attention

OXYCOAL-AC

26

OXYCOAL-AC

28

CFD Radiation

Modelling

in Coal Combustion

Radiation

Transport Equation

for

a given

wavelength

λ:

4

,4

''' 1( ) ( ) ( )4

PP s P i P

qdI Tk I k I I I dds π

σ σπ π π

⋅⎡ ⎤

= − + − − − Ω Φ Ω Ω⎢ ⎥⎣ ⎦

Gas emission

and absorption

Particle

emission

and absorption

Particle

outscattering

and inscattering(Gas scattering

is

neglected)

OXYCOAL-AC

29

CFD Radiation

Modelling

in Coal Combustion

Radiation

Transport Equation

for

a given

wavelength:

Particle

emission

in a given

control

volume:

Particle

absorption

in a given

control

volume

:

Particle

Scattering: (homogeneous, isotropic)

4

,4

''' 1( ) ( ) ( )4

PP s P i P

qdI Tk I k I I I dds π

σ σπ π π

⋅⎡ ⎤

= − + − − − Ω Φ Ω Ω⎢ ⎥⎣ ⎦

, 4, ,

1'''

NP n

P P n P nn

Aq T

Vε σ

=

=∑

,,

1

NP n

P P nn

Ak

=

=∑

, 0,6s Pσ = ( ) 1PΦ Ω =

(Sum

over

particles)

(Sum

over

particles)

OXYCOAL-AC

30

CFD Radiation

Modelling

in Coal Combustion

Radiation

Transport Equation

for

a given

wavelength:

Particle

emission:

Particle

absorption:

Particle

Scattering: (homogeneous, isotropic)

4

,4

''' 1( ) ( ) ( )4

PP s P i P

qdI Tk I k I I I dds π

σ σπ π π

⋅⎡ ⎤

= − + − − − Ω Φ Ω Ω⎢ ⎥⎣ ⎦

, 4, ,

1'''

NP n

P P n P nn

Aq T

Vε σ

=

=∑

,,

1

NP n

P P nn

Ak

=

=∑

2 2( , , , , , ) ?CO H O CO tk k T p p p pλ= =

Absorption coefficient

k:

, 0,6s Pσ = ( ) 1PΦ Ω =

OXYCOAL-AC

31

OXYCOAL-AC

32

CO Source

from

Particle

Oxidation, dry Recycling

SCO[kg/m3s]

0.05

0AIR OXY21dry OXY30dry

Cs

+ 0.5 O2

→ CO

Same thermal load

OXYCOAL-AC

33

CO Source

from

Particle

Oxidation, wet Recycling

AIR OXY21wet OXY27wet

0.05

0

Cs

+ 0.5 O2

→ CO

Same thermal load

SCO[kg/m3s]

OXYCOAL-AC

34

CO Source

from

Particle

Gasification, dry

Recycling

0.05

0AIR OXY21dry OXY30dry

Cs

+ CO2

→ 2 CO

and Cs

+ H2

O → CO + H2

Same thermal load

SCO[kg/m3s]

OXYCOAL-AC

35

CO Source

from

Particle

Gasification, wet

Recycling

AIR OXY21wet OXY27wet

0.05

0

Same thermal load

Cs

+ CO2

→ 2 CO

and Cs

+ H2

O → CO + H2

SCO[kg/m3s]

OXYCOAL-AC

36

0,6

0,7

0,8

0,9

1

1,1

1,2

19 21 23 25 27 29 31 33O2, %

Q/Q

_AIR AIR

OXY21wetOXY21dryOXY27wetOXY30dryOXY238wetOXY286dry

Comparison: radiative

Heat

Transfer in Furnace

1.2

1.1

0.9

0.8

0.7

0.6