Numerical Simulation of a 1200 MW Pulverised Fuel Oxy ...

35
OXYCOAL-AC 1 Numerical Simulation of a 1200 MW th Pulverised Fuel Oxy-firing Furnace Jens Erfurth Dobrin Toporov, Malte Förster, Reinhold Kneer Institute of Heat and Mass Transfer RWTH Aachen University CCT2009, Dresden, 18-21 May 2009

Transcript of Numerical Simulation of a 1200 MW Pulverised Fuel Oxy ...

Page 1: Numerical Simulation of a 1200 MW Pulverised Fuel Oxy ...

OXYCOAL-AC

1

Numerical Simulation of a 1200 MWth

Pulverised Fuel Oxy-firing Furnace

Jens Erfurth

Dobrin Toporov, Malte Förster, Reinhold Kneer

Institute of Heat

and Mass

Transfer

RWTH Aachen University

CCT2009, Dresden, 18-21 May 2009

Page 2: Numerical Simulation of a 1200 MW Pulverised Fuel Oxy ...

OXYCOAL-AC

2

0,6

0,7

0,8

0,9

1

1,1

1,2

19 21 23 25 27 29 31 33O2, %

Q/Q

_AIR AIR

OXY21wetOXY21dryOXY27wetOXY30dry

Overview

23.8

% 28.6

%

ConclusionsResults

ModellingMotivation

0 1000 2000 3000 4000 5000 6000 7000 80000

0.5

1a) Transmissivities of Bands m

Wavenumber ν [1/cm]

0 1000 2000 3000 4000 5000 6000 7000 80000

0.5

1b) Total Absorptivities

Wavenumber ν [1/cm]

0 1000 2000 3000 4000 5000 6000 7000 80000

0.5

1c) Normalised Planck Distribution

Wavenumber ν [1/cm]

I ν/I ν

,max

Tgas = 1810 KT = 1000 K

CO2

H2OCO

Page 3: Numerical Simulation of a 1200 MW Pulverised Fuel Oxy ...

OXYCOAL-AC

3

Motivation: the

Case

for

CCS Retrofit

300 GW of capacity will have to be installed in the EU-25 until 2020.

Coal plants built before CCS is available (ca. 2020) pose risk of „carbon lock-in“.

Plants built between now and then could be retrofitted for CCS

Sources: VGB Powertech, EU Energy and Transport Outlook

Page 4: Numerical Simulation of a 1200 MW Pulverised Fuel Oxy ...

OXYCOAL-AC

4

Oxyfuel Retrofit

Can a boiler originally designed for air operation be operated in oxy-firing at the same thermal load?

Criteria:•

Burnout

Heat transfer

Furnace exit temperature

Corrosion in the furnace

Parameters available to meet these requirements:•

Oxygen concentration

Water content of oxidiser (wet or dry recycling)

Page 5: Numerical Simulation of a 1200 MW Pulverised Fuel Oxy ...

OXYCOAL-AC

5

Previous Experimental Work in Aachen■

Oxycoal test facility with 120 kWth

Oxycoal

swirl burners

Able to operate within wide range of oxygen O2

content and in air

Measures for oxycoal swirl flame stabilisation derived

Design of industrial burners based on these measures

Experiments CFD Simulations

Page 6: Numerical Simulation of a 1200 MW Pulverised Fuel Oxy ...

OXYCOAL-AC

6

Heterogeneous and homogeneous reactions are modelled as User Defined Functions (UDFs)

Changes in the CFD model for oxy-firing:•

Modelling of heterogeneous reactions:

Cs

+ 0.5 O2

→ CO

Oxidation, exothermal

Cs

+ CO2

→ 2 CO

BoudouardGasification, endothermal

Cs

+ H2

O → CO + H2

Water Gas Reaction

Adjustment of radiation model

CFD Models

Page 7: Numerical Simulation of a 1200 MW Pulverised Fuel Oxy ...

OXYCOAL-AC

7

Exponential Wide

Band Model (EWBM)*

EWBM

COp2H Op

2COpL tp0,mλBand locations T

mτ mλΔ

lk for

10 spectral

regions

l

Algorithm

11 single

Bands m (CO2

, H2

O, CO)

*Edwards D. K., Advances in Heat Transfer, vol.12, 1976

Page 8: Numerical Simulation of a 1200 MW Pulverised Fuel Oxy ...

OXYCOAL-AC

8

Results

of EWBM

Example:

L = 0.1 m

T = 1800 K

Spectral

absorptivities of flue

gas

0 1000 2000 3000 4000 5000 6000 7000 80000

0.5

1

Wavenumber [1/cm]

0 1000 2000 3000 4000 5000 6000 7000 80000

0.5

1

Wavenumber [1/cm]

Air combustion:

Oxyfuel combustion, wet

recycling:

α

α

Page 9: Numerical Simulation of a 1200 MW Pulverised Fuel Oxy ...

OXYCOAL-AC

9

Furnace designed for Air firing■

Thermal power: 1210 MW (RPP NRW)

18 burners → 70 MW each (λ

= 0.95)

Burner geometry designed based on criteria developed by the authors*

12 OFA nozzles (λtot

= 1.15)

Fired by South African hard coal

5 Cases:

AIR

Same oxygen: OXY21dry, OXY21wet

Same temperature:

OXY30dry,

OXY27wet

* Toporov et al, CCT 2007

Page 10: Numerical Simulation of a 1200 MW Pulverised Fuel Oxy ...

OXYCOAL-AC

10

Temperature

Fields, dry

Recycling

T [K]

2300

300AIR OXY21dry OXY30dry

Page 11: Numerical Simulation of a 1200 MW Pulverised Fuel Oxy ...

OXYCOAL-AC

11

Temperature

Fields, wet

Recycling

T [K]

2300

300AIR OXY21wet OXY27wet

Page 12: Numerical Simulation of a 1200 MW Pulverised Fuel Oxy ...

OXYCOAL-AC

12

CO Source

from

Particle

Oxidation, dry

Recycling

log SCO[kg/m3s]

3

1e-4AIR OXY21dry OXY30dry

Cs

+ 0.5 O2

→ CO

Page 13: Numerical Simulation of a 1200 MW Pulverised Fuel Oxy ...

OXYCOAL-AC

13

CO Source

from

Particle

Oxidation, wet

Recycling

AIR OXY21wet OXY27wet

Cs

+ 0.5 O2

→ CO

log SCO[kg/m3s]

3

1e-4

Page 14: Numerical Simulation of a 1200 MW Pulverised Fuel Oxy ...

OXYCOAL-AC

14

CO Source

from

Particle

Gasification, dry

Recycling

AIR OXY21dry OXY30dry

Cs

+ CO2

→ 2 CO

and Cs

+ H2

O → CO + H2

log SCO[kg/m3s]

0.5

1e-4

Page 15: Numerical Simulation of a 1200 MW Pulverised Fuel Oxy ...

OXYCOAL-AC

15

CO Source

from

Particle

Gasification, wet

Recycling

AIR OXY21wet OXY27wet

log SCO[kg/m3s]

0.5

1e-4

Cs

+ CO2

→ 2 CO

and Cs

+ H2

O → CO + H2

Page 16: Numerical Simulation of a 1200 MW Pulverised Fuel Oxy ...

OXYCOAL-AC

16

Surface

Incident

Radiation, dry

Recycling

Q´´[kW/m2]

500

0AIR OXY21dry OXY30dry

Locally

increased

wall temperature

Page 17: Numerical Simulation of a 1200 MW Pulverised Fuel Oxy ...

OXYCOAL-AC

17

Surface

Incident

Radiation, wet

Recycling

500

0AIR OXY21wet OXY27wet

Q´´[kW/m2]

Page 18: Numerical Simulation of a 1200 MW Pulverised Fuel Oxy ...

OXYCOAL-AC

18

Comparison: radiative

Heat

Transfer in Furnace

0,6

0,7

0,8

0,9

1

1,1

1,2

19 21 23 25 27 29 31 33O2, %

Q/Q

_AIR AIR

OXY21wetOXY21dryOXY27wetOXY30dry

1.2

1.1

0.9

0.8

0.7

0.628.6 %23.8 %

integrated

over

furnace

walls

Page 19: Numerical Simulation of a 1200 MW Pulverised Fuel Oxy ...

OXYCOAL-AC

19

0,85

0,9

0,95

1

1,05

0,9 0,95 1 1,05 1,1 1,15 1,2 1,25

H/H_AIR,exit

T/T_

AIR

,exi

tAIROXY21wetOXY21dryOXY27wetOXY30dry

1.0

5

0.9

5

0.

9

0.8

5

Comparison: Temperature* and Enthalpy

Flow

* averaged

at furnace

exit

Page 20: Numerical Simulation of a 1200 MW Pulverised Fuel Oxy ...

OXYCOAL-AC

20

Heat

Transfer in the

convective

Section

Theoretical

considerations:

TubeAsh

Layer

Incident

Radiation

Emitted

Radiation

Tsurface

Tsteam Tsurface

Tgas

EWBM (Gas Radiation

only)

h

d

Leff

, αsurface

, εgas

εash

htotal

Page 21: Numerical Simulation of a 1200 MW Pulverised Fuel Oxy ...

OXYCOAL-AC

21

Heat

Transfer: Differences

Air -

Oxy-firing

Energy balance

at pipe

surface:

800steamT K=

30 , 30

,

( )( )

OXY dry surface OXY dry steam

surface AIR steamAIR

Q T TT TQ

−Δ = =

261AIRWh

m K=

For OXY30dry

Leff

= 0.1 m Leff

= 1 m

Tgas

= 1000 K Δ

= 1.25 Δ

= 1.21

Tgas

= 1600 K Δ

= 1.25 Δ

= 1.23

30 266OXY dryWh

m K=

Page 22: Numerical Simulation of a 1200 MW Pulverised Fuel Oxy ...

OXYCOAL-AC

22

Conclusions

CFD simulations

of a state

of the

art furnace

in air

and oxy-firing

of coal

were

conducted

using

a non-grey

implementation

of the

EWBM

Surface

incident

radiation

increases

relative to air…

…by

6 % for

dry

recycling

…by

14 % for

wet

recycling

In oxy-firing

gasification

gains

importance

Reason: abundance

of CO2

and water

vapour

Page 23: Numerical Simulation of a 1200 MW Pulverised Fuel Oxy ...

OXYCOAL-AC

23

Conclusions: Retrofit

Criteria:

Burnout

can

be

achieved

Furnace

exit

temperature

below

ash

melting

point

Overall heat

transfer:

Similar

in furnace

for

OXY30dry

In convective

section: increase

by

20-25 % for

OXY30dry, but

particles

will dampen

this

effect.

Wall temperatures: care

must

be

taken

to ensure

corrosion

does

not

unduly

increase

?

?

••

?

Page 24: Numerical Simulation of a 1200 MW Pulverised Fuel Oxy ...

OXYCOAL-AC

24

Acknowledgements

This work was conducted in the framework of the project OXYCOAL-AC and was funded by:

German Federal Ministry of Economics and

Technology

Ministry for Innovation, Science, Research and Technology of the State

of North Rhine-Westphalia

RWE Power

WS Wärmeprozesstechnik

Linde

MAN Turbo Hitachi Power Europe

E.ON Energie

Page 25: Numerical Simulation of a 1200 MW Pulverised Fuel Oxy ...

OXYCOAL-AC

25

Thank

you

for

your

attention

Page 26: Numerical Simulation of a 1200 MW Pulverised Fuel Oxy ...

OXYCOAL-AC

26

Page 27: Numerical Simulation of a 1200 MW Pulverised Fuel Oxy ...

OXYCOAL-AC

28

CFD Radiation

Modelling

in Coal Combustion

Radiation

Transport Equation

for

a given

wavelength

λ:

4

,4

''' 1( ) ( ) ( )4

PP s P i P

qdI Tk I k I I I dds π

σ σπ π π

⋅⎡ ⎤

= − + − − − Ω Φ Ω Ω⎢ ⎥⎣ ⎦

Gas emission

and absorption

Particle

emission

and absorption

Particle

outscattering

and inscattering(Gas scattering

is

neglected)

Page 28: Numerical Simulation of a 1200 MW Pulverised Fuel Oxy ...

OXYCOAL-AC

29

CFD Radiation

Modelling

in Coal Combustion

Radiation

Transport Equation

for

a given

wavelength:

Particle

emission

in a given

control

volume:

Particle

absorption

in a given

control

volume

:

Particle

Scattering: (homogeneous, isotropic)

4

,4

''' 1( ) ( ) ( )4

PP s P i P

qdI Tk I k I I I dds π

σ σπ π π

⋅⎡ ⎤

= − + − − − Ω Φ Ω Ω⎢ ⎥⎣ ⎦

, 4, ,

1'''

NP n

P P n P nn

Aq T

Vε σ

=

=∑

,,

1

NP n

P P nn

Ak

=

=∑

, 0,6s Pσ = ( ) 1PΦ Ω =

(Sum

over

particles)

(Sum

over

particles)

Page 29: Numerical Simulation of a 1200 MW Pulverised Fuel Oxy ...

OXYCOAL-AC

30

CFD Radiation

Modelling

in Coal Combustion

Radiation

Transport Equation

for

a given

wavelength:

Particle

emission:

Particle

absorption:

Particle

Scattering: (homogeneous, isotropic)

4

,4

''' 1( ) ( ) ( )4

PP s P i P

qdI Tk I k I I I dds π

σ σπ π π

⋅⎡ ⎤

= − + − − − Ω Φ Ω Ω⎢ ⎥⎣ ⎦

, 4, ,

1'''

NP n

P P n P nn

Aq T

Vε σ

=

=∑

,,

1

NP n

P P nn

Ak

=

=∑

2 2( , , , , , ) ?CO H O CO tk k T p p p pλ= =

Absorption coefficient

k:

, 0,6s Pσ = ( ) 1PΦ Ω =

Page 30: Numerical Simulation of a 1200 MW Pulverised Fuel Oxy ...

OXYCOAL-AC

31

Page 31: Numerical Simulation of a 1200 MW Pulverised Fuel Oxy ...

OXYCOAL-AC

32

CO Source

from

Particle

Oxidation, dry Recycling

SCO[kg/m3s]

0.05

0AIR OXY21dry OXY30dry

Cs

+ 0.5 O2

→ CO

Same thermal load

Page 32: Numerical Simulation of a 1200 MW Pulverised Fuel Oxy ...

OXYCOAL-AC

33

CO Source

from

Particle

Oxidation, wet Recycling

AIR OXY21wet OXY27wet

0.05

0

Cs

+ 0.5 O2

→ CO

Same thermal load

SCO[kg/m3s]

Page 33: Numerical Simulation of a 1200 MW Pulverised Fuel Oxy ...

OXYCOAL-AC

34

CO Source

from

Particle

Gasification, dry

Recycling

0.05

0AIR OXY21dry OXY30dry

Cs

+ CO2

→ 2 CO

and Cs

+ H2

O → CO + H2

Same thermal load

SCO[kg/m3s]

Page 34: Numerical Simulation of a 1200 MW Pulverised Fuel Oxy ...

OXYCOAL-AC

35

CO Source

from

Particle

Gasification, wet

Recycling

AIR OXY21wet OXY27wet

0.05

0

Same thermal load

Cs

+ CO2

→ 2 CO

and Cs

+ H2

O → CO + H2

SCO[kg/m3s]

Page 35: Numerical Simulation of a 1200 MW Pulverised Fuel Oxy ...

OXYCOAL-AC

36

0,6

0,7

0,8

0,9

1

1,1

1,2

19 21 23 25 27 29 31 33O2, %

Q/Q

_AIR AIR

OXY21wetOXY21dryOXY27wetOXY30dryOXY238wetOXY286dry

Comparison: radiative

Heat

Transfer in Furnace

1.2

1.1

0.9

0.8

0.7

0.6