MC-ICP-MS: ±0.05‰ - tu-freiberg.de · Mineralen und Fe-haltigen Fluida • Verdampfungsprozesse...

Post on 01-Sep-2019

4 views 0 download

Transcript of MC-ICP-MS: ±0.05‰ - tu-freiberg.de · Mineralen und Fe-haltigen Fluida • Verdampfungsprozesse...

Isotopengeochemie und Geochronologie M. Tichomirowa

δ56Fe

δ56FePr = [(56Fe/54FePr)/(56Fe/54FeSt) – 1] x 1000

Internationaler Standard: IRMM 14 (elementares Fe)

MC-ICP-MS: ±0.05‰

Isotopengeochemie und Geochronologie M. Tichomirowa

δ56Fe

Isotopengeochemie und Geochronologie M. Tichomirowa

Hoefs (2015)

Isotopengeochemie und Geochronologie M. Tichomirowa

δ56Fe

Skulan et al. (2002)

Isotopengeochemie und Geochronologie M. Tichomirowa

δ56Fe

Anbar (2004)

M. Tichomirowa

δ56Fe

Dauphas, John & Rouxel (2017): Iron Isotope Systematics Theoretical fractionation factors versus experiments

M. Tichomirowa

δ56Fe

Dauphas, John & Rouxel (2017): Iron Isotope Systematics

M. Tichomirowa

δ56Fe

Dauphas, John & Rouxel (2017): Iron Isotope Systematics Island arc basalts

M. Tichomirowa

δ56Fe

Dauphas, John & Rouxel (2017): Iron Isotope Systematics BIF

Isotopengeochemie und Geochronologie M. Tichomirowa

δ56Fe

Dauphas, John & Rouxel (2017): Iron Isotope Systematics. In: Non-traditional Stable Isotopes (eds. Teng, Watkins & Dauphas), Reviews in Mineralogy and Geochemistry Vol 82, 415-510.

Isotopengeochemie und Geochronologie M. Tichomirowa

δ56Fe

Schoenberg & von Blanckenburg (2006): -Inner-solar system homogeneity (all chondritic meteorites) – planetary accretion itself did not significantly fractionate iron. Fe isotopes were homogenized in the solar nebula before the onset of chondrule formation and planetesimal accretion -´Magmatic iron meteorites = representative for the Earth´s inner metallic core rather than the entire core. -terrestrial basalts slightly heavier than mantle xenoliths: partial mantle melting leads to preferentially transfer of heavy iron into melt?

Isotopengeochemie und Geochronologie M. Tichomirowa

δ56Fe

Schoenberg & von Blanckenburg (2006): -Bergell igneous rock suite: correlation between Fe isotope composition and SiO2 contents and correlations with δ18O and radiogenic isotopes -Clastic sediments, loess, soil – representative for the upper continental crust: slightly heavier than basalts? -Bergell intrusion: AFC process or other processes responsible for increasing Fe isotope values?

δ56Fe

Beard & Johnson (2004)

• Redox-Prozesse fraktionieren Fe Isotope (biologische und chemische) • Magmatische Gesteine und klastische Sedimente mit geringem C-Gehalt haben homogene ähnliche δ56Fe-Verhältnisse (Homogenisierung durch magmatische Prozesse, keine Fraktionierung während Verwitterung unter oxidativen Bedingungen) • Sedimentäre Gesteine mit hohem C-Gehalt und chemisch gebildete Sedimente zeigen größere Variationen der δ56Fe-Werte aufgrund von Fraktionierungen zwischen den Mineralen und Fe-haltigen Fluida • Verdampfungsprozesse im frühen Sonnensystem führten möglicherweise zu Fraktionierungen in extraterrestrischen Materialien (z.B. Chondren) aber auch verschiedenen Planeten • In einigen Mantelgesteinen evt. Hinweise auf offenes System (Ol, oPy, cPy in Spinell- Peridotiten), während zwischen Gar und cPy wahrscheinlich Gleichgewichtsfraktionierung in Mantelgesteinen.

• Geobiochemical cycling of Fe in the oceans and sediments (oxidation and reduction) • Various sources of Fe in the ocean (atmospheric dust, hydrothermal vents, reducing sediment oxic seafloor sediments) • Differences in bloods: tracer for diets/ paleodiets? • Fe isotope fractionation during magmatic processes • Presolar grains: conditions of nucleosynthesis in stars

Dauphas, John & Rouxel (2017)

Isotopengeochemie und Geochronologie M. Tichomirowa

δ56Fe

δ60Ni

Elliott & Steele (2017): The isotope geochemistry of Ni. In : Non-traditional Stable Isotopes (eds. Teng, Watkins & Dauphas), Reviews in Mineralogy and Geochemistry Vol 82, 511-542. - Mass dependent fractionation - 60Ni daughter of 60Fe (t1/2 = 2.6 Ma) = Early solar system

Isotopengeochemie und Geochronologie M. Tichomirowa

δ65Cu

Hoefs (2015)

- Fractionation during: redox processes, sorption, organic complexation, biological uptake; - Large variations for different groups of chondrites - Understanding ore formation - Environment: influence of ore smelters

Isotopengeochemie und Geochronologie M. Tichomirowa

Hoefs (2015)

δ66Zn

- Fractionation during: sorption, organic complexation, biological uptake; - Large variations for different groups of chondrites - Understanding ore formation - Environment: influence of ore smelters

δ66Zn

Moynier, Vance, Fujii & Savage (2017): The Isotope Geochemistry of Zinc and Copper. In: Non-traditional Stable Isotopes (eds. Teng, Watkins & Dauphas), Reviews in Mineralogy and Geochemistry Vol 82, 543-600.

δ74Ge

Rouxel & Luais (2017): Germanium Isotope Geochemistry. In: Non-traditional Stable Isotopes (eds. Teng, Watkins & Dauphas), Reviews in Mineralogy and Geochemistry Vol 82, 601-656. - Differences in iron meteorites: accretion-collision and differentiation of planets - Homogeneous δ74Ge for bulk silicate Earth - Ge in sulfides and ore-forming minerals - Biogeochemical cycles of Ge and Si

Isotopengeochemie und Geochronologie M. Tichomirowa

δ88Sr

Hoefs (2015) relative to NBS (SRM) 987

- lighter δ88Sr in rhyolites compared to basalts due to fractional crystallization of feldspars? - marine carbonates: Fractionation during carbonate precipitation; difference to terrestrial carbonates

Isotopengeochemie und Geochronologie M. Tichomirowa

δ238U

Hoefs (2015)

M. Tichomirowa

δ238U

Andersen, Stirling & Weyer (2017): Uranium Isotope Fractionation. In: Non-traditional Stable Isotopes (eds. Teng, Watkins & Dauphas), Reviews in Mineralogy and Geochemistry Vol 82, 799-850.

Isotopengeochemie und Geochronologie M. Tichomirowa

δ238U

Isotopengeochemie und Geochronologie M. Tichomirowa

δ238U

Isotopengeochemie und Geochronologie M. Tichomirowa

Isotopengeochemie und Geochronologie M. Tichomirowa

δ7Li, δ11B, δ15N, δ26Mg, δ30Si, δ37Cl, δ44Ca, δ56Fe

Quellen (1): -Anbar A.D. (2004): Iron stable isotopes: beyond biosignatures. EPSL 217, 223-236. -Beard B.L., Johnson C.M. (2004): Fe isotope variations in the modern and ancient Earth and other planetary bodies. In: Geochemistry of non-traditional stable isotopes (Johnson C.M., Beard B.L., Albarede F., eds.), Reviews in Mineralogy & Geochemistry 55, 197-230. -Bebout et al. (2013): Nitrogen: highly volatile yet surprisingly compatible. Elements 9, 333-338. -Cartigny and Marty (2013): Nitrogen isotopes and mantle geodynamics: the emrgence of life and the atmosphere-crust-mantle connection. Elements 9, 359-366. - Coplen et al. (2002): Compilation of minimum and maximum isotope ratios of selected elements in naturally occuring terrestrial materials and reagents. Water-Resources Investigation Report 01-4222 by US Dept. of the Interior/US. Geol. Survey, 98 pp. - DePaolo D.J. (2004): Calcium isotopic variations produced by biological, kinetic, radiogenic and nucleosynthetic processes. In: Geochemistry of non-traditional stable isotopes (Johnson C.M., Beard B.L., Albarede F., eds.), Reviews in Mineralogy & Geochemistry 55, 197-230. - Farkas J., Böhm F., Wallmann K., Blenkinsop J., Eisenhauer A., van Geldern R., Munnecke A., Voigt S., Veizer J. (2007): Calcium isotope record of Phanerozoic oceans: Implications for chemical evolution of seawater and ist causative mechanisms. GCA 71, 5117 – 5134. - Galy A., Bar-Matthews M., Halicz L., O´Nions R.K. (2002): Mg isotopic composition of carbonate: insight from speleothem formation. Earth Planet. Sci. Lett. 201, 105-115. - Hastings et al. (2013): Stable isotopes as tracers of anthropogenic nitrogen sources, ddeposition, and impacts. Elements 9, 339-344. - Hoefs (2009): „Stable Isotope Geochemistry“, Springer Verlag, Berlin-Heidelberg-New York, 6. Auflage, 285 pp. - Jiang S.-Y. & Palmer M.R. (1998): Boron isotope systematics of tourmaline from granites and pegmatites: a synthesis. Eur. J. Mineral. 10, 1253-1265.

Isotopengeochemie und Geochronologie M. Tichomirowa

δ7Li, δ11B, δ15N, δ26Mg, δ30Si, δ37Cl, δ44Ca, δ56Fe

Quellen (2): - Skulan J.L., Beard B.L., Johnson C.M. (2002): Kinetic and equilibrium Fe isotope fractionation between aqueous Fe (III) and hematite. Geochim. Cosmochim. Acta 66, 2995-3015. - Steuber T., Buhl D. (2006): Calcium-isotope fractionation in selected modern and ancient marine carbonates. GCA 70, 5507-5521. - Stosch H.-G. (1999): „Einführung in die Isotopengeochemie“, Vorlesungsscript, 226 S. im Internet zu finden: http://agk-gaussberg.agk.uni-karlsruhe.de/ftp/Isotopengeochemie/Isotop25.pdf - Tomascak P.B., Langmuir C.H., le Roux P.J., Shirey S.B. (2008): Lithium isotopes in global mid- ocean ridge basalts. Geochim. Cosmochim. Acta 72, 1626- 1637. - Wunder B., Meixner A., Romer R.L:, Heinrich W. (2006): Temperature-dependent isotopic fractionation of litium between clinopyroxene and high-pressure hydrous fluids. CMP 151, 112-120. - Young E.D., Galy A.(2004): The isotope geochemistry and cosmochemistry of magnesium. In: Geo- chemistry of non-traditional stable isotopes (Johnson C.M., Beard B.L., Albarede F., eds.), Reviews in Mineralogy & Geochemistry 55, 197-230.