Lesson II Stability of Feedback Amplifiers - — OCW -...

Post on 05-Jul-2018

227 views 1 download

Transcript of Lesson II Stability of Feedback Amplifiers - — OCW -...

(Analog) Electronics II

Lesson II

Stability of Feedback Amplifiers

Guillermo Carpintero – Universidad Carlos III de Madrid

Ideal Configuration of a Feedback Amplifier

A++

-

si sε= si - sfb soerrorinput

With negative feedback

Guillermo Carpintero – Universidad Carlos III de Madrid

β

-

sfb = β· sofeedback

fa

aA

+=1

What happens with the frequency response?

)()(1

)()(

sfsa

sasA

+=

Guillermo Carpintero – Universidad Carlos III de Madrid

How can we explore the effect of feedback on the

frequency response of the amplifier?

Does feedback affect it anyway?

Why did we use feedback anyway?

At the cost of GAIN REDUCTION, we obtain

An amplifier closer to ideal characteristics:

• Insensitivity against active component parameter dispersion.

Guillermo Carpintero – Universidad Carlos III de Madrid

However, the circuit has tendency toward . . . . .

OSCILLATION.

parameter dispersion.

• Linear Gain

• Input/Output Inpedances

Oscillation ??????????

What frequency?

What amplitude?

Why?

Guillermo Carpintero – Universidad Carlos III de Madrid

Why?

σ

s plane

Impulseinput

outputv(t)

ωσ js ±=�

bass ++21

][)(tjtjt nn eeet

ωωσυ −+= � )cos(2 te n

t ωσ�=

Feedback, Poles and Stability

1. One pole system

2. Two pole system

Guillermo Carpintero – Universidad Carlos III de Madrid

2. Two pole system

3. More than two poles

Feedback, Poles and Stability

asi so

Open Loop Gain

Guillermo Carpintero – Universidad Carlos III de Madrid

Open loop amplifiers are always STABLE systems

Case 1. A(s) has one pole

Gray-Meyer Sedra-Smith

Asa

+=)( 0)(

Ksa

−=

Feedback, Poles and Stability

Frequency Domain

Guillermo Carpintero – Universidad Carlos III de Madrid

P

ssa

ω+=1

)(

11

)(ps

sa−

=

Time Domain

inout

out vAdt

dvv

P 01 =+ ω

Frequency Domain Time Domain

Guillermo Carpintero – Universidad Carlos III de Madrid

Feedback, Poles and Stability

1

1( )

11

(1 )

KA s

sKf

p Kf

=+ −

+

Guillermo Carpintero – Universidad Carlos III de Madrid

●□p1(1+Aβ)p1

unconditionally STABLE

Basic Feedback

GAIN K

BW p1

Feedback, Poles and Stability

Gain x Bandwidth Product

)1(

11

1

1)(

1 fKp

fK

KsA

+−+

=

)1(1 fKp +fK

K

+1

Guillermo Carpintero – Universidad Carlos III de Madrid

Feedback, Poles and Stability

Guillermo Carpintero – Universidad Carlos III de Madrid

Feedback, Poles and Stability

Hints on what happens with higher order systems

Case 2. a(s) has two poles

K□

pp

Guillermo Carpintero – Universidad Carlos III de Madrid

K

p1

unconditionally STABLE

p2

σ

Feedback, Poles and Stability

Case 3. a(s) more than two poles

Guillermo Carpintero – Universidad Carlos III de Madrid

System can become unstable,

depending on f strength.

σ

Origin of the instability

Guillermo Carpintero – Universidad Carlos III de Madrid

Origin of the instability

)()(1

)()(

sfsa

sasA

+=

IF feedback can turn our system unstable . . .

. . . . means that poles of a(s) are not the poles of A(s)

1 + a(s)f = 0 characteristic

equation

Guillermo Carpintero – Universidad Carlos III de Madrid

)()(1 sfsa+

L(s)

fja

jajA

)(1

)()(

ωωω

+= 1 + a(jω)f = 0

1 + | a(jω)f |ejφ(ω) = 0

Origin of the instability

¿What happens when φφφφ = ππππ?

| a(ωπ f | e j π = - | a(ωπ) f |

fja

jajA

)(1

)()(

ωωω

−=

What is significant here?

Guillermo Carpintero – Universidad Carlos III de Madrid

ωπ

fja )(1 ω−

Be careful

with it !!!!

What is significant here?

Origin of the instability

+

Phase change in the loop gain Aβ has influence in the type of feedback of the amplifier :

• β < 1

• Aβ is always positive

Guillermo Carpintero – Universidad Carlos III de Madrid

A

β

++

-180º

sε and sfb are in phase. . . . . thus the comparator SUBSTRACTS

Origin of the instability

-A++

At ωπ :

• It is no longer true that Aβ es positive

Guillermo Carpintero – Universidad Carlos III de Madrid

POSITIVE feedback

-A-

β

360º

Origin of the instability

• We have clear out the OSCILATION FREQUENCY.

• How about the conditions for oscillation, . . . Why does it depend on f ?

Guillermo Carpintero – Universidad Carlos III de Madrid

. . . Why does it depend on f ?

Origin of the instability

-a β

a(ωπ) f < 1

Guillermo Carpintero – Universidad Carlos III de Madrid

-a β

a(ωπ) f > 1

Tools to analyze the stability of feedback amplifiers

Guillermo Carpintero – Universidad Carlos III de Madrid

Tools to analyze the stability . . .

a(jω) f

| a(jω) f | ejφ(ω)

The secret is within the LOOP GAIN, a(s) f

Guillermo Carpintero – Universidad Carlos III de Madrid

| a(jω) f | ejφ(ω)

ωπωπ a(ωπ) f > 1

Tools to analyze the stability . . .

Starting point. . . . The frequency response of the BASIC AMPLIFIER

Guillermo Carpintero – Universidad Carlos III de Madrid

Tools to analyze the stability . . .

Nyquist diagram

Polar representation of a(jω)f

Guillermo Carpintero – Universidad Carlos III de Madrid

Stable? . . .or

not?

Tools to analyze the stability . . .

PM|Aβ|=1

Criteria for stability in the Nyquist diagram

Guillermo Carpintero – Universidad Carlos III de Madrid

PM180 – Φ0

GM

Tools to analyze the stability . . .

20 log10(a(jω)f ) = 20 log10 [a(jω)] + 20 log10 [ f ] =

= 20 log10 [a(jω)] - 20 log10 [ 1/ f ] =

a(jω)f in the Bode plot

Guillermo Carpintero – Universidad Carlos III de Madrid

= 20 log10 [a(jω)] - 20 log10 [ 1/ f ] =

= 20 log10 [a(jω)] - 20 log10( A )

(feedback network is resistive and presents a flat frequency response)

Tools to analyze the stability . . .

f0 fπ

a(f) a0 aπ

Φ(f) Φ0 Φπ

Two basic reference frequencies,

Guillermo Carpintero – Universidad Carlos III de Madrid

donde, a0 = A ( =1/f )

Φπ = -180

PM = 180º + Φ0GM = G - aπ

Tools to analyze the stability . . .

Guillermo Carpintero – Universidad Carlos III de Madrid

Tools to analyze the stability . . .

For ω0

fa

aAf

)(1

)()( 00

0jωjω

jω+

=

0)/1(θj

ef−

=

The importance of the Phase Margin,

Guillermo Carpintero – Universidad Carlos III de Madrid

en las que

θ0 = 180 - PM

0

0

1

)/1(θj

e

ef−+

=

01

)/1()( 0 θ

ωjf

e

fjA

−+=

Compensation

Guillermo Carpintero – Universidad Carlos III de Madrid

Compensation

Tools to control the gain/phase margins

Modify the BASIC AMPLIFIER freq. response a(s), by:

• DOMINANT POLE:

Place a new pole at LF

Guillermo Carpintero – Universidad Carlos III de Madrid

• POLE-ZERO:

Place a new pole at LF and cancel lowest frequency pole of basic amplifier with a new zero.

AIM: Keep the phase change in the loop below -180º at all frequencies where the loop gain is greater that unity (UNITY GAIN COMPENSATION)

Compensation

Modify the frequency response

of the Basic Amplifier

Guillermo Carpintero – Universidad Carlos III de Madrid

Compensation

OP AMP 741 before . . . .

Guillermo Carpintero – Universidad Carlos III de Madrid

ADC = 120 dB

Compensation

. . . . and after compensation

Guillermo Carpintero – Universidad Carlos III de Madrid

Compensation

Guillermo Carpintero – Universidad Carlos III de Madrid

Compensation

Guillermo Carpintero – Universidad Carlos III de Madrid