CH.8 Feedback

37
Y. Kwon Chap. 8 : Feedback Amplifier Microelectronic Circuit Course Note, SoEE, SNU CH.8 Feedback CH.8 Feedback Prof. Y.Kwon

Transcript of CH.8 Feedback

Page 1: CH.8 Feedback

Y. Kwon Chap. 8 : Feedback Amplifier Microelectronic Circuit Course Note, SoEE, SNU

CH.8 FeedbackCH.8 Feedback

Prof. Y.Kwon

Page 2: CH.8 Feedback

Y. Kwon Chap. 8 : Feedback Amplifier Microelectronic Circuit Course Note, SoEE, SNU

Feedback AmpFeedback Amp

0xx f β=

1⟩⟩βA

Assumption : 1) open-loop gain, ‘A’ is not affected by loading.2) signal direction specified

: feedback factor

( Aβ : loop gain , : amount of feedback )

When , ( irrespective of A)

When , ( “error” signal )

βA+1

0xx f β= β

βAA

xxA

s

of +

==1

β1

≈fA

1⟩⟩βA si xA

xβ+

=1

1

Page 3: CH.8 Feedback

Y. Kwon Chap. 8 : Feedback Amplifier Microelectronic Circuit Course Note, SoEE, SNU

Properties of FeedbackProperties of Feedback

1. Gain Desensitvity

2. Bandwidth Extension– consider a single pole circuit

AdA

AAdA

f

f

β+=

11

desensitivity factor

H

M

sAsA

ω+=

1)(

)1(1)1()(βω

β

MH

M

M

f

As

AA

sA++

+= )1( βωω MHH A+→

Bandwidth Extended !!

Page 4: CH.8 Feedback

Y. Kwon Chap. 8 : Feedback Amplifier Microelectronic Circuit Course Note, SoEE, SNU

Properties of FeedbackProperties of Feedback

3. Noise Reduction

– To keep the same gain, precede noise amp with a noiseless amp and apply negative feedback.

– Also, assume that noise from feedback network = ‘0’

– ex) preamplifier in audio power amp

2AVV

NS

n

s=∴ββ 21

1

21

21

11 AAAV

AAAAVV nso +

++

=

Page 5: CH.8 Feedback

Y. Kwon Chap. 8 : Feedback Amplifier Microelectronic Circuit Course Note, SoEE, SNU

Properties of FeedbackProperties of Feedback

4. Linear Enhancement

– by reducing gain linearize the amp

Page 6: CH.8 Feedback

Y. Kwon Chap. 8 : Feedback Amplifier Microelectronic Circuit Course Note, SoEE, SNU

Basic Feedback Topologies 1 : Voltage Amp : SeriesBasic Feedback Topologies 1 : Voltage Amp : Series--ShuntShunt

Voltage Amplifiers– Rin = ∞, Rout = 0

– Sample output voltage and mix with input voltageSeries shunt feedback

− Increases input voltageRin

− Increase output currentRout

Page 7: CH.8 Feedback

Y. Kwon Chap. 8 : Feedback Amplifier Microelectronic Circuit Course Note, SoEE, SNU

Voltage Feedback Amp : Series Voltage Feedback Amp : Series –– Shunt FeedbackShunt Feedback

(1) Input Resistance (Rif) (2) Output Resistance (Rof)

( )

)]()(1)[()(

1

ssAsZZor

ARI

VVAI

VVIVR

iif

ii

ii

i

if

i

sif

βω

ββ

+=

+=+

=+

==βA

RII

VI

VR o

fo

t

V

tof

s+

=+

=== 10

Additional voltage Additional current

Page 8: CH.8 Feedback

Y. Kwon Chap. 8 : Feedback Amplifier Microelectronic Circuit Course Note, SoEE, SNU

Basic Feedback Topologies 2 : Basic Feedback Topologies 2 : TransconductanceTransconductance Amp : SeriesAmp : Series--SeriesSeries

Transconductance Amplifier– Rin = ∞, Rout = ∞– Series-Series feedback

)1( βARR iif +=)1( βARR oof +=

):( impedanceβ

•Sample approximate Io by sensing IE•Feed it back to Vs via reducing VBE

Page 9: CH.8 Feedback

Y. Kwon Chap. 8 : Feedback Amplifier Microelectronic Circuit Course Note, SoEE, SNU

Basic Feedback Topologies 3 : Current Amp : ShuntBasic Feedback Topologies 3 : Current Amp : Shunt--SeriesSeries

Current Amplifiers– Rin = 0, Rout = ∞

– Shunt-Series Feedback– Sample output current and mix with input current

Page 10: CH.8 Feedback

Y. Kwon Chap. 8 : Feedback Amplifier Microelectronic Circuit Course Note, SoEE, SNU

for Trans-Impedance Amp – Rin =0, Rout = 0– Sense V, mix with input I

Basic Feedback Topologies 4 : Basic Feedback Topologies 4 : TransimpedanceTransimpedance Amp : Amp : ShuntShunt--ShuntShunt

Page 11: CH.8 Feedback

Y. Kwon Chap. 8 : Feedback Amplifier Microelectronic Circuit Course Note, SoEE, SNU

Practical Network (Loading Effect) Practical Network (Loading Effect) Transformation into Ideal NetworkTransformation into Ideal Network

– Practical Situation:

① Rs , RL should be included

② Feedback network has finite Rin and Rout functions as loads to main amp

③ Forward gain of amplifier ≫ Forward gain of feedback network

h21 can be neglected

Page 12: CH.8 Feedback

Y. Kwon Chap. 8 : Feedback Amplifier Microelectronic Circuit Course Note, SoEE, SNU

Page 13: CH.8 Feedback

Y. Kwon Chap. 8 : Feedback Amplifier Microelectronic Circuit Course Note, SoEE, SNU

Transformation to Ideal NetworkTransformation to Ideal Network

Step 1: Represent feedback network with appropriate network parameters (Input: Series R , Output: Shunt R)

Step 2: Absorb Rs and RL , Z’s in feedback network into main amplifier

Step 3: Calculate

Step 4: Calculate A from the augmented main amplifier

Step 5: Calculate Rif , Rof , Af from A and β

QuantitySensingOutputQuantityMixingInput

1IV

2VIG =

Consistent !!

Page 14: CH.8 Feedback

Y. Kwon Chap. 8 : Feedback Amplifier Microelectronic Circuit Course Note, SoEE, SNU

Analysis of Practical SeriesAnalysis of Practical Series--Series Feedback AmpSeries Feedback AmpBest for Transconductance Amp : Sense I, mix V

Page 15: CH.8 Feedback

Y. Kwon Chap. 8 : Feedback Amplifier Microelectronic Circuit Course Note, SoEE, SNU

Practical SeriesPractical Series--Series FA : Derivation of A andSeries FA : Derivation of A and β

Page 16: CH.8 Feedback

Y. Kwon Chap. 8 : Feedback Amplifier Microelectronic Circuit Course Note, SoEE, SNU

Page 17: CH.8 Feedback

Y. Kwon Chap. 8 : Feedback Amplifier Microelectronic Circuit Course Note, SoEE, SNU

Page 18: CH.8 Feedback

Y. Kwon Chap. 8 : Feedback Amplifier Microelectronic Circuit Course Note, SoEE, SNU

Page 19: CH.8 Feedback

Y. Kwon Chap. 8 : Feedback Amplifier Microelectronic Circuit Course Note, SoEE, SNU

Loop Gain DeterminationLoop Gain Determination

Set

When is known

,0=sV ,tr VAV β−=

tZ

Page 20: CH.8 Feedback

Y. Kwon Chap. 8 : Feedback Amplifier Microelectronic Circuit Course Note, SoEE, SNU

Loop Gain DeterminationLoop Gain Determination

When is unknown

From [Rosenstark]

tZ

)11(

1

SCOC TT

A+

−=β

Page 21: CH.8 Feedback

Y. Kwon Chap. 8 : Feedback Amplifier Microelectronic Circuit Course Note, SoEE, SNU

Loop Gain Determination ExampleLoop Gain Determination Example

– Insert Vt where Zt is clearly known: at OP Amp input– Calculate Vr

Page 22: CH.8 Feedback

Y. Kwon Chap. 8 : Feedback Amplifier Microelectronic Circuit Course Note, SoEE, SNU

Example 2Example 2

Page 23: CH.8 Feedback

Y. Kwon Chap. 8 : Feedback Amplifier Microelectronic Circuit Course Note, SoEE, SNU

Page 24: CH.8 Feedback

Y. Kwon Chap. 8 : Feedback Amplifier Microelectronic Circuit Course Note, SoEE, SNU

Equivalence of Circuits Equivalence of Circuits from a Feedbackfrom a Feedback--Loop Point of ViewLoop Point of View

1. Poles of a circuit are independent of the external excitation. (Poles are determined by setting Vs = 0)

2. Poles of a FA depend only on the feedback loop.3. Characteristic equation (whose roots are poles) is completely determined by

the loop gain.4. A given feedback loop may be used to generate different circuits with same

poles and different zeros. (depending on where Vs is injected)Stability is a function of the loop.

Ex) Inverting

orNon-inverting

depending on Vs location

Page 25: CH.8 Feedback

Y. Kwon Chap. 8 : Feedback Amplifier Microelectronic Circuit Course Note, SoEE, SNU

Time Domain

Solution of algebraicequations

Basics on Transfer FunctionBasics on Transfer Function

1. Laplace Transform

dsesFj

tf

sdtetftf

stj

j

st

∫∞+

∞−

∞ −

=

=−

α

απ)(

21)(

.complexfor)()]([0

L

f(t) F(s)δ(t) 1u(t)e-at

sinωt

s1

)(1 as +

)( 222 ωω +s

Frequency Domain

Solution of algebraicequations

Circuit describedin the time domain

by differential equations

Circuit described in thefrequency domain

by algebraic equations

Solution expressedin the time domain

Solution expressedin the frequency domain

Transformation intothe frequency domain

Transformation intothe time domain

Page 26: CH.8 Feedback

Y. Kwon Chap. 8 : Feedback Amplifier Microelectronic Circuit Course Note, SoEE, SNU

Basic on Transfer FunctionBasic on Transfer Function

2. Transfer Function

② When Vi(t) = δ(t), Vi(s) = 1.H(s) = Vo(s) = L[impulse response]

3. StabilityWith given Vi(t)=δ(t), Vo(t) = h(t)

Poles have negative real part

H(s)Vi(s) Vo(s) = H(s)·Vi(s)

)()()(

sVsVsH

i

o=

)()()()(

ttVoi

tVthδ=

==

0)(lim =∞→

tht

stablep

tueApspsps

sNth

i

N

i

tpi

N

i

,0]Re[

)()())((

)()(121

1

<∴

=⎥⎦

⎤⎢⎣

⎡−⋅⋅⋅−−

= ∑=

−L

⎢⎢⎣

⎡=⇒

= ωω

ω

jssHH

H)()(circuitstablefor

))((FunctionNetwork

Page 27: CH.8 Feedback

Y. Kwon Chap. 8 : Feedback Amplifier Microelectronic Circuit Course Note, SoEE, SNU

Transfer Function of Feedback AmplifierTransfer Function of Feedback Amplifier

– Loop gain :

determines stability (φ(ω180) = 180º)

Linear Systemejωt F(jω) ejωt

Transfer function

)()(1)()(

ωβωωω

jjAjAjAf +

=

)()()()()()( ωφωβωωβωω jejjAjjAjL ==

.tiesnonlineariby1)(togose:1)(:3

sustainedbecan,0with1)(:2:1)(:1

180180

180

180

−=−<⇒

=→−=

<

ωω

ωω

LLcasenoscillatio

VVLcasestableLcase

os

Usually indep. of frequency

Page 28: CH.8 Feedback

Y. Kwon Chap. 8 : Feedback Amplifier Microelectronic Circuit Course Note, SoEE, SNU

NyquistNyquist PlotPlot

polar plot of for

,

At contour crosses real axis– if G < 1, unstable

Nyquist Criterion : if Nyquist plot encircles the point simplified (-1,0),amplifier is unstable

)()( ωβωjAβAβA∠

∞<<∞− ω

realvvg

i

o →= )()( * ωω jGjG =)()( ωω jGjG =−

)()( ωω jGjG −∠=−∠

,180ωω =

Page 29: CH.8 Feedback

Y. Kwon Chap. 8 : Feedback Amplifier Microelectronic Circuit Course Note, SoEE, SNU

Stability and Pole LocationStability and Pole Location

If Re(a) > 0, pole exists in the left half plane StableIf Re(a) = 0, : sinusoidal oscillationIf Re(a) < 0, pole exists in right half plane unstable

ex) tetv nto ωσ cos2)( =no js ωσ ±=

tje ω

Page 30: CH.8 Feedback

Y. Kwon Chap. 8 : Feedback Amplifier Microelectronic Circuit Course Note, SoEE, SNU

AA『『SingleSingle--polepole』』CaseCase

Assume① Open-loop amp(A) has real poles and no finite zero’s② β is frequency independent and negative feedback

)90)(max (stable

)1(at pole)1(1

)1()(

at pole1

)( 0

oQ −=∠→

+−=⇒++

+=

−=⇒+

=

sA

AsAs

AAsA

ssAsA

pp

of

pp

βωβω

β

ωω

Page 31: CH.8 Feedback

Y. Kwon Chap. 8 : Feedback Amplifier Microelectronic Circuit Course Note, SoEE, SNU

AA『『TwoTwo--polepole』』CaseCase

How does pole change with loop gain A0β ?— Characteristic eq.:

— Solution:

— Root-Locus Diagram:

locus of poles as loop gain is increased

)1)(1()(

21

0

pp ssAsA

ωω ++=

⎟⎟⎠

⎞⎜⎜⎝

⎛ ∞==∠stable

sA ωat happensbut 180)(max o

0)1()(0)(1

210212 =++++

=+

pppp AsssA

ωωβωω

β

2102

2121 )1(4)(21)(

21

pppppp As ωωβωωωω +−+±+−=

Page 32: CH.8 Feedback

Y. Kwon Chap. 8 : Feedback Amplifier Microelectronic Circuit Course Note, SoEE, SNU

TwoTwo--pole Responsepole Response

For general second-order response, characteristic equation becomes

polescomplex : 0.5 poles, real:5.0

with changecan factor pole :

frequency pole :

0

00

202

><⇒⎭⎬⎫

⎜⎜⎝

=++

QQ

AQQ

Qss

βω

ωω

axis frompart real of distance :center thefrom distance :0

ωω

jQ

Page 33: CH.8 Feedback

Y. Kwon Chap. 8 : Feedback Amplifier Microelectronic Circuit Course Note, SoEE, SNU

TwoTwo--pole Responsepole Response

Frequency Dependence

① Q=0.707, maximally flat② Can have peaks

Page 34: CH.8 Feedback

Y. Kwon Chap. 8 : Feedback Amplifier Microelectronic Circuit Course Note, SoEE, SNU

Amp with 3 or more polesAmp with 3 or more poles

One pole moves outwardTwo poles move inward and then become complex poles

can reach up to enters right half planeHow to guarantee stability

– at , ( Nyquist plot dose not encircle (-1,0) )For given A, max and min exist beyond which the amplifier becomes unstable

fA

°− 270fA∠

180ωω = 1<βA∴ β

no Zero’s

Page 35: CH.8 Feedback

Y. Kwon Chap. 8 : Feedback Amplifier Microelectronic Circuit Course Note, SoEE, SNU

Basics of Bode PlotsBasics of Bode Plots

Bode plot : approximate plot of magnitude and phase of a transfer function driven by poles and zerosMagnitude ( zero : )

Phase ( pole : )

as+1

210 )(1log20 aω+

as+1

1

)(tan 1

aphase ω−−=∠

Page 36: CH.8 Feedback

Y. Kwon Chap. 8 : Feedback Amplifier Microelectronic Circuit Course Note, SoEE, SNU

Stability using Bode Plots of Loop GainStability using Bode Plots of Loop Gain )(

Idea : two break points phase : gain :

Gain margin : amount by which the loop gain can increase and still guarantee stability (@ )

phase margin : (@ )

βA

180ω1ω)( βA

180ω

Page 37: CH.8 Feedback

Y. Kwon Chap. 8 : Feedback Amplifier Microelectronic Circuit Course Note, SoEE, SNU

Stability using Bode Plots of Loop GainStability using Bode Plots of Loop Gain

Phase margin and (closed loop gain at unity loop gain frequency)

)( βA

)( 1ωjAf

βωωω

)(1)()(1

11 jA

jAjAf += θω j

f ejA −+= 1)( 1

θβω

jfe

jA−+

=1

11)( 1

LF cloosed –loop gain overshoot effect

Phase margin

1.3 1.931Overshoot factor 0.707

°90 °60 °45 °30 °0∞