ECES 352 Winter 2007Ch 13 Oscillators1 Oscillators *Feedback amplifier but frequency dependent...
-
Author
stephen-summers -
Category
Documents
-
view
221 -
download
1
Embed Size (px)
Transcript of ECES 352 Winter 2007Ch 13 Oscillators1 Oscillators *Feedback amplifier but frequency dependent...

Ch 13 Oscillators 1ECES 352 Winter 2007
Oscillators
* Feedback amplifier but frequency dependent feedback
* Positive feedback, i.e. βf () A () < 0
* Oscillator gain defined by
* Oscillation condition at ω = ωo (Barkhausen’s criterion) Af (ωo) =
)()(1 sAs
sAsA
ff
)()()(
1)()()()()( )(
oofo
joofoofo
Aofphase
eAAL o
)()(1 sAs
sAsA
ff

Ch 13 Oscillators 2ECES 352 Winter 2007
Wien Bridge Oscillator
* Based on op amp
* Combination of R’s and C’s in feedback loop so feedback factor βf has a frequency dependence.
* Analysis assumes op amp is ideal. Gain A is very large Input currents are negligibly
small (I+ I_ 0).
Input terminals are virtually shorted (V+ V_ ).
* Analyze like a normal feedback amplifier. Determine input and output
loading. Determine feedback factor. Determine gain with feedback.
* Shunt-shunt configuration.
Vi
V0
ZS
ZP
If
R2
R1

Ch 13 Oscillators 3ECES 352 Winter 2007
Wien Bridge Oscillator
Vi = 0
V0
ZS
ZP
Input Loading Output Loading
sCR
R
sCRZR
ZRZ
sC
sRC
sCRZRZ
CCP
CS
1
111
11
11
Z1 Z2ZP ZP
ZS ZS
2
1
1
1
)1(
1
1
1
11
sCRsCR
sCRR
sCR
sC
R
sCR
ZZZZZ
SPSP
If
Vi
sC
sRCZRZZ CS
12
V0 = 0
R2R1
Define

Ch 13 Oscillators 4ECES 352 Winter 2007
Wien Bridge Oscillator
Z1
V0
Z2IS
IS
R2
R1
IS
Amplifier gain including loading effects
2
1
2
21
1
21
0
1
1
2
1
210
121
11
2121
0
00
)1(
11
)1(
1
1
,0
1
,
sCRsCR
sCRR
R
RA
sosCRsCR
sCRRZwhere
R
RZ
I
V
V
VA
andZI
VISince
R
R
R
RR
V
V
soRRR
VRIVVV
andRR
VIIusewe
V
VgetTo
I
V
V
V
I
VA
r
S
i
ir
S
i
i
oi
o
i
S
i
iSr
Feedback factor
If
V0ZP
ZS
sRC
sC
ZV
I
X
X
So
f
o
ff
1
1
I1 I2
Vi

Ch 13 Oscillators 5ECES 352 Winter 2007
Wien Bridge Oscillator
rf
rrf
rrf
A
AA
sCRsCR
sCR
R
R
sCRsCR
sCRR
R
R
sCR
sC
AsCR
sCA
1
isfeedback Gain with
)1(1
)1(
11
1
1
21
2
21
2
Loop Gain
Oscillation condition
213
11
usingely appropriat
and resistors theselectingby 1get can weThen,
1
frequency n oscillatio at the 0 termimaginary Then
13
11
13
11
311
211
)1(1
Rewriting
1)1(
1only needThen
0. since isalready It .180 toequal of Phase
1
2
1
2
21
1
2
1
2222
1
2
2221
2
21
2
21
2
o
R
Ror
R
R
RRA
RC
CRCRjR
R
sCRsCR
R
R
RCssCR
sCR
R
R
RCssCRsCR
sCR
R
R
sCRsCR
sCR
R
RA
sCRsCR
sCR
R
RA
AA
rf
o
rf
rf
rfrf

Ch 13 Oscillators 6ECES 352 Winter 2007
Wien Bridge Oscillator - Example
Oscillator specifications: o=1x106 rad/s
KKR
K
sradxnFCR
RCnFC
o
o
20)10(2
get weR 2 R sincethen ,10R Choosing
100)/101(10
11
1 fromthen ,10 econveniencfor Selecting
2
121
6

Ch 13 Oscillators 7ECES 352 Winter 2007
Wien Bridge Oscillator
Final note: No input signal is needed. Noise at the desired oscillation frequency will likely be present at the input and when picked up by the oscillator when the DC power is turned on, it will start the oscillator and the output will quickly buildup to an acceptable level.

Ch 13 Oscillators 8ECES 352 Winter 2007
Wien Bridge Oscillator * Once oscillations start, a limiting circuit is needed to prevent
them from growing too large in amplitude

Ch 13 Oscillators 9ECES 352 Winter 2007
Phase Shift Oscillator
* Based on op amp using inverting input
* Combination of R’s and C’s in feedback loop so get additional phase shift. Target 180o to get oscillation.
* Analysis assumes op amp is ideal.
V0
VX
R
IC1
R
IC2IC3
IR1IR2
If Rf
2
23
2
2
223
22
212
112
)(
143
)(
131
12
Finally
)(
131
12
111
11
12
12
12
111
11
sCRsCRsCR
V
sCRsCRsCR
V
sCRsCR
V
sC
IVV
sCRsCRR
V
sCRsCRsCRR
V
sCRR
V
sCRsCRR
VIII
sCRsCRR
V
R
VI
sCRsCR
V
sCsCRR
V
sCR
VZIVV
sCRR
V
R
V
sCRR
VIII
f
o
f
o
f
oCX
f
o
f
o
f
o
f
oCRC
f
oR
f
o
f
o
f
oCC
f
o
f
o
f
oCRC
V1V2
f
o
f
oR
f
oCC
Cf
of
sCRR
V
sCR
V
RR
VI
sCR
VZIVV
IR
VIsoVV
1
0
11
11
1
CC C

Ch 13 Oscillators 10ECES 352 Winter 2007
RR
soR
R
CR
RRCRRC
ωRRC
)L(ω
so)L(ω
RCso
CRCR
CRCRj
RRC
CRCRj
CRj
sCRsCR
sCR
V
VAL
sCRsCRsCR
V
f
fff
of
o
o
ff
f
X
f
oX
12
1123
1
44
get wefor ngsubstituti and14
1 need also wens,oscillatioget To
3
113
so frequency oneat thisachievecan We
zero. togo to termimaginary theneed wens,oscillatioget To
134
)(14
3
1
)(14
3
)()()(
gain loop for theget we
)(
143V
gRearrangin
22
2220
220
0
o
22
2
2
0
2
Phase Shift Oscillator
V0
VX
R
IC1
R
IC2IC3
IR1IR2
If Rf
V1V2
ExampleOscillator specifications: o=1x106 rad/s
KR
sradxnFCR
RC
nFC
f
o
o
67.0)58(12
Then
58)/101(103
1
3
13
1 fromthen
,10 econveniencfor Selecting
6
Note: We get 180o phase shift from op amp since input is to inverting terminal and another 180o from the RC ladder.
CC C

Ch 13 Oscillators 11ECES 352 Winter 2007
Colpitts LC-Tuned Oscillator
* Feedback amplifier with inductor L and capacitors C1 and C2 in feedback network. Feedback is frequency dependent. Aim to adjust components to get
positive feedback and oscillation. Output taken at collector Vo. No input needed, noise at oscillation
frequency o is picked up and amplified.
* RB1 and RB2 are biasing resistors.* RFC is RF Choke (inductor) to allow dc
current flow for transistor biasing, but to block ac current flow to ac ground.
* Simplified circuit shown at midband frequencies where large emitter bypass capacitor CE and base capacitor CB are shorts and transistor capacitances (C and C) are opens.
CB
CE
V0
Vi
V0
Vi

Ch 13 Oscillators 12ECES 352 Winter 2007
Colpitts LC-Tuned Oscillator* Voltage across C2 is just V
* Neglecting input current to transistor (I 0),
* Then, output voltage Vo is
* KCL at output node (C)
* Setting s = j
AC equivalent circuit
VsCZ
VI
CC 2
22
VsCZ
VII
CCL 2
22
22
2 1))(( LCsVsLVsCVZIVV LLo
01
011
01
2122
213
22
12
12
RgCCs
R
LCsCLCs
LCsVsCR
VgVsC
VsCR
VgVsC
m
m
om
01
213
212
2
CLCCCj
R
LC
Rgm
Iπ ≈ 0
sC2V
sC2V
V0
Assuming oscillations have started, then V ≠ 0 and Vo ≠ 0, so

Ch 13 Oscillators 13ECES 352 Winter 2007
Colpitts LC-Tuned Oscillator* To get oscillations, both the real and imaginary
parts of this equation must be set equal to zero.
* From the imaginary part we get the expression for the oscillation frequency
* From the real part, we get the condition on the ratio of C2/C1
01
213
212
2
CLCCCj
R
LC
Rgm
21
2121
21
213
21
1
0
CC
CCL
CLC
CC
CLCCC
o
oo
RgC
C
C
C
CLC
CCLCLCRg
R
LC
Rg
m
om
om
1
2
1
2
21
2122
2
22
11
01

Ch 13 Oscillators 14ECES 352 Winter 2007
Colpitts LC-Tuned Oscillator* Given:
Design oscillator at 150 MHz
Transistor gm = 100 mA/V, R = 0.5 K
* Design:
Select L= 50 nH, then calculate C2, and then C1
sradxxfo /104.91015022 86
50)5.0)(/100(1
2 KVmARgC
Cm
pFpFC
C
pFFxxnHC
C
LC
C
C
LCCLC
CC
o
o
2350
130,1
50
130,11013.1)501()104.9(50
11
1
11
21
928
1
222
1
2
221
21
Example

Ch 13 Oscillators 15ECES 352 Winter 2007
Summary of Oscillator Design* Shown how feedback can be used with
reactive components (capacitors) in the feedback path.
* Can be used to achieve positive feedback. With appropriate choice of the resistor
sizes, can get feedback signal in phase with the input signal.
Resulting circuit can produce large amplitude sinusoidal oscillations.
* Demonstrated three oscillator circuits: Wien Bridge oscillator Phase Shift oscillator Colpitts LC-Tuned oscillator
* Derived equations for calculating resistor and capacitor sizes to produce oscillations at the desired oscillator frequency.
* Key result: Oscillator design depends primarily on components in feedback network, i.e. not on the amplifier’s characteristics.
Wien Bridge Oscillator
Phase Shift Oscillator
Colpitts LC-Tuned Oscillator