Lab 2: AC Circuits and Oscilloscope

Post on 14-Apr-2022

22 views 0 download

Transcript of Lab 2: AC Circuits and Oscilloscope

Lab 2: AC Circuits and Oscilloscope

Ideal meters

V

I

Imeter 0VOLTMETER:

EXAMPLE: 10X oscilloscope probe

Ideal meters

V

I

Imeter 0

+ _

V

VOLTMETER:

AAMMMETER:

Vmeter 0

EXAMPLE: 10X oscilloscope probe

Power Dissipation

I

+ _V

Power Dissipation

I

+ _V

Power dissipated

AC (alternating current) circuits

Current flow

AC (alternating current) circuits

AC (alternating current) circuits

Current flow

AC (alternating current) circuits

Square wave source

VOLTAGE t

Square wave source

VOLTAGE

CURRENT

t

t

Square wave source +

t

V

0

+ 0.5 V

− 0.5 V

Square wave source + voltage offset

1 V

1 V

t

1.5 V

0.5 V

0

Square wave source + voltage offset

1 V

1 V

t

−0.5 V

−1.5 V

Square wave source + voltage offset

1 V

0.5 V

t

1.0 V

0

Triangle wave source

VOLTAGE

CURRENT

t

t

Sinusoidal wave source + dc offset

Vdc

Vdc

0

Characterizing an AC wave

Peak

Peak-to-peak

The average voltage of a pure sine wave is identically zero.

V(t) = Vp sin (ωt)

t

+Vp

−Vp

We know that an AC voltage can deliver plenty of power to a load

current

current

We know that an AC voltage can deliver plenty of power to a load

current

We know that an AC voltage can deliver plenty of power to a load

How do we calculate this power if the average voltage and current is zero?

POWER =

This is easy in a DC circuit: Use Ohm's Law

Power dissipated in an AC circuit is time dependent:

What is the energy delivered in one period?Temporally integrate the power over one period:

DC power dissipation =

AC power dissipation =

AC voltage producing power dissipation equivalent

• An RMS measurement assumes a stable, periodic signal

• Characterized by a single value of voltage, current

• Measured with a multimeter or oscilloscope

The situation is often not that convenient!

TIME

VO

LTA

GE

DISPLAY

• • • •

CONTROLS

INPUTS

OSCILLOSCOPE

DISPLAY

• • • •

CONTROLS

INPUTS

OSCILLOSCOPE

ANALOG: Cathode ray tube, swept electron beam

DIGITAL: A/D converter, LCD display

Although physical operation is completely different, controls are nearly identical

• • • •

CONTROLS

DISPLAY ADJUSTMENT

VOLTS/DIV•

• • • •

CONTROLS

DISPLAY ADJUSTMENT

VOLTS/DIV•

• • • •

CONTROLS

DISPLAY ADJUSTMENT

SEC/DIV•

• • • •

CONTROLS

DISPLAY ADJUSTMENT

SEC/DIV•

DISPLAY

• • • •

CONTROLS

DC coupling, AC coupling, and Ground

DC

AC

GND

EXAMPLE: Sinusoidal wave source + DC offset

VDC

VDC

0

• • • •

DC COUPLING

Ground

Offset

CONTROLS

DC

AC

GND

• • • •

AC COUPLING

CONTROLS

DC

AC

GND

• • • •

GROUND: Defines location of 0 Volts

CONTROLS

DC

AC

GND

• • • •

GROUND can be positionedat any convenient level

CONTROLS

DC

AC

GND

• • • •

Why bother with AC couplingwhen DC coupling shows everything?

Ground

CONTROLS

DC

AC

GND

• • • •

Often we have very weak modulationof a DC signal

Ground

CONTROLS

DC

AC

GND

• • • •

AC couple and change the vertical scale

CONTROLS

DC

AC

GND

Auto: Scope gives continually updated display

Normal: User controls when the slope triggers; Level, Slope Trigger source: Channel 1, Channel 2, etc

Line: Triggers on 60 Hz AC

Single event

External

Use Auto-Set only when all else fails!

TRIGGERING

• • • •

TRIGGER LEVEL

• • • •

Example: Measure fall time of square wave

• • • •

SOLUTION: Trigger on negative slope

Pre-triggerdata

Post-triggerdata

SAMPLING BANDWIDTH

••• •

••

•• •

•• •

• ••

•• •

•• •

SAMPLING BANDWIDTH

••• •

••

•• •

•• •

• ••

•• •

•• •

Sample spacing: T (sec) Sampling bandwidth = 1 / T (samples/sec)

T

SAMPLING BANDWIDTH

••• •

••

•• •

•• •

• ••

•• •

•• •

Sample spacing: T (sec) Sampling bandwidth = 1 / T (samples/sec)

SAMPLING BANDWIDTH

• •

••

• •

••

Reduce sample bandwidth 2x Increase period 2x

SAMPLING BANDWIDTH

• •

••

• •

••

Reduce sample bandwidth 2x Increase period 2x