Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit...

58
Chapter 6: AC Circuits

Transcript of Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit...

Page 1: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

Chapter 6: AC Circuits

Page 2: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

Chapter 6: Outline

Page 3: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

Phasors and the AC Steady State

Page 4: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

AC Circuits

l A stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

l Complete response = forced response + natural response.

l In the steady state, natural response à 0.

Page 5: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

)cos( 11 θω +tA )cos( 22 θω +tA

Same frequency, different amplitudes and phases

Page 6: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

Sinusoids

l Three parameters are needed to determine a sinusoid.l x(t)=Xmcos(ωt+φ)=Re[Xmej(ωt+φ)].l Xm: amplitude, ω=2πf=2π/Τ: angular frequency, φ:

phase angle (radian).

Page 7: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

Phasors

l The three parameters can be represented by a rotating phasor in a two-dimensional plane.

l At a given time (e.g., t=0 ), the nonrotating phasor is represented by .

l The frequency information is not included.φ∠= mXX

Page 8: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

AC Forced Response

l The forced response of any branch variable (current or voltage) is at the same frequency as the excitation frequency ω for a linear circuit.

l In other words, any branch variable has the general form y(t)=Ymcos(ωt+φy).

l Circuit analysis becomes manipulation of complex numbers.

Page 9: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

Complex Numbers in the Complex Plane

ai

ar

Aa

Aa

φ

φ

sin

cos

=

=

1−≡j

Rotating phasor

( )

0 tan180

0 tan

10

1

2/122

<

−±=

>

=

+=

rr

ia

rr

ia

ir

aaa

aaa

aaA

φ

φ

Page 10: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

Complex Addition and Subtraction

[ ] [ ] [ ][ ] [ ] [ ]BABA

BABAImImImReReRe

±=±±=±

Page 11: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

Complex Conjugate

222*

*

AaaAA

ajaAA

ajaAA

ir

ira

ira

=+=⋅

⋅−=−∠≡

⋅+=∠=

φ

φ

Page 12: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

Complex Multiplication

[ ] [ ]]Im[]Im[],Re[]Re[ real, is if

ImRe)()(

BkkBBkkBk

ABABbabajbabaBA riiriirr

==+=−⋅+−=⋅

Page 13: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

Complex Division (Rationalization)

2222*

*

ir

riir

ir

iirr

aaabab

jaa

ababAABA

AB

+−

+++

==

Page 14: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

Complex Number in Exponential Form

l Euler’s formula: l Complex number in exponential form:

ααα sincos jje ±=±

ajeAA

φ=

0901∠=

−∠=

+∠=⋅

j

BA

BA

BABA

ba

ba

φφ

φφ

Page 15: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

Phasor Representation

l A sinusoid can be represented by a phasor:

==+=+ tjeXtjejXetjXetX ωωφφωφω ReReRe)cos(

l The sum of two sinusoids at the same frequency can be represented by another phasor. The new phasor is simply the sum of the two original phasors.

+=+=+ tjeXXtjeXtjeXtjeXtjeX ωωωωω )21(Re21Re2Re1Re

Page 16: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

Phasor Representation

l The steady-state response of any branch variable in a stable circuit with a sinusoidal excitation will be another sinusoid at the same frequency (forced response in Chapter 5)

l Kirchhoff’s laws hold in phasor form (only additions are involved).

Page 17: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

Phasor with Differentiation

[ ]XjX

Xejdt

dXedt

ationdifferenti

tjtj

tjXed

ω

ω φωφω

φω

=

=

++

+

ReReRe

Page 18: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

Example 6.3: Parallel Network with an AC Voltage Source

VjCIdt

tdvCti

VI

vi

Vttv

Cc

C

RR

ω⋅=⇒=

=⇒=

∠=⇒+=

)()(

55

2030)204000cos(30)( 00

))(6.464000cos(71.6)(

)(6.4671.60 Atti

AIII CR

+=

∠=+=

Page 19: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

Example 6.4: Parallel Network with an AC Current Source

VjCIV

I

Itti

CR ω⋅==

=⇒=

,5

34000cos3)(

))(6.264000cos(4.13)(

1.02.03

)1.02.0(3

0 Vttv

jV

VjIII CR

−=

⋅+=

⋅+=+==

Page 20: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

Impedance and Admittance

Page 21: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

Phasor Representation

l Under ac steady-state, both the voltage and the current of a branch are sinusoids at the same frequency.

=+= tjeVvtmVtv ωφω Re)cos()(

=+= tjeIitmIti ωφω Re)cos()(

Page 22: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

Resistors

l Current and voltage are collinear (in phase).

=×== tjeIRtjeIRtjeVv ωωω ReReRe

imRIvmVIRV φφ ∠=∠==

ivmRImV φφ == ,

Page 23: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

Inductors

l Current lags voltage by 90 degrees.

==×=== tjeVtjeILj

dt

tjdeILtjeIdtdL

dtdiLv ωωω

ωω ReReReRe

ILjV ω=

o90 , +== ivmLImV φφω

Page 24: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

Capacitors

l Current leads voltage by 90 degrees.

==×=== tjeItjeVCj

dt

tjdeVCtjeVdtdC

dtdvCi ωωω

ωω ReReReRe

ICjI

CjV

ωω−== 1

o90 , −== ivCmI

mV φφω

Page 25: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

Phasor Relations (Resistor)

Page 26: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

Phasor Relations (Inductor)

Page 27: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

Phasor Relation (Capacitor)

Page 28: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

Impedance

l In general, we can define a quantity Z and Ohm’s law for ac circuits as IZV =

o90/1/1

o90

−∠==

∠==

=

CCjcZ

LLjLZ

RRZ

ωω

ωω

Page 29: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

Time Domain vs. Frequency Domain

Page 30: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

Admittance

l Similarly, another quantity admittance Y can be defined.

ZY /1≡

VYI =

Page 31: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

Equivalent Impedance and Admittance

)21( NVVVV +++= L

•Series equivalent impedance:

•Parallel equivalent impedance:

NZZZserZ +++= L21

NYYYparY +++= L21

)21( NIIII +++= L

Page 32: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

Load Network

IVeqZ /≡

Page 33: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

Impedance and Admittance

l Impedance and admittance are complex functions of frequency.

[ ] [ ] )()(ImRe)( ωωω jXRZjZjZZ +=+==

Resistance (Ω) Reactance (Ω)

l Inductors and capacitors are reactive elements, inductive reactance is positive and capacitive reactance is negative.

Page 34: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

Impedance and Admittance

Conductance(Siemens)

Susceptance(Siemens)

l Inductors and capacitors are reactive elements, inductive reactance is positive and capacitive reactance is negative.

[ ] [ ] )()(ImRe)( ωωω jBGYjYjYY +=+==

Page 35: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

Impedance Triangle

Page 36: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

Example 6.6: Impedance Analysis of a Parallel RC Circuit.

0

0

0

6.4671.6

6.26224.015.02.010

151

6.2647.410||5

∠===

∠=+=−

+=

−∠Ω=−=

AYVZV

I

Sjj

Y

jZ

Page 37: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

Example 6.7: Frequency Dependence of a Parallel RC Network.

2

2

2

2

2

)(1]Im[)(

)(1]Re[)(

)(1)(

CRCR

ZX

CRR

ZR

CRCRjR

ZZZZ

jZCR

CR

ωω

ω

ωω

ωω

ω

+−==

+==

+−

=+

=

Page 38: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

Example 6.8: AC Ladder Calculationsl AC ladder networks can be analyzed by series-parallel

reduction (by replacing resistance with impedance).

Cjω1

Ljω

)(50000cos10)( mAtti =

Page 39: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

Example 6.8: (Cont.)

0

0

0

9.364010)24(

24

7.794.8910)24(

101.53806448

−∠=+−

−=

∠=+−

=

∠=+==

VVjj

jV

VVjj

jV

VjIZV

C

L

Page 40: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

AC Circuit Analysis

Page 41: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

AC Circuit Analysis

l Sources at the same frequency:– Phasor transform method: the time domain sinusoids

are transformed to the frequency domain and represented by phasors.

Time domain à Frequency domain

Page 42: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

AC Circuit Analysis

l Sources at the same frequency:– With the transformation, all resistive circuit analysis

techniques are applicable. Resistance is replaced by impedance and conductance is replaced by admittance.

ProportionalityThévenin-NortonNode AnalysisMesh Analysis…

Page 43: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

AC Circuit Analysis

l Sources at the same frequency:– After analysis, the resultant phasors are converted back

to the time-domain sinusoids.

Frequency domain à Time domain

Page 44: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

AC Circuit Analysis

l Sources at different frequencies:– Due to the linearity, the proportionality method is still

applicable.– The phasor analysis is performed at each individual

frequency

Page 45: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

Example 6.9: AC Network with a Controlled Source

)(1000cos20 Vtv =

2/2636

3132)4/(

812)01(01Let

1

21

11

1

02

jIVZjVVIV

jIIIjjVI

jVjI

x

−==+=+−=

+−=+=+−=−=

+=+=∠=

Ati

AIIII

AZVI

)3.1051000cos(4.11

3.1054.11)/(

9010/

01

011

0

+=

∠==

∠==

Use proportionality

Page 46: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

Example 6.10: Phase-Sift Oscillator

l Oscillator: Generator a sinusoidal output without an independent input source with initial stored energy.

l Design goal: At one particular frequency, vout=vin.

vx=vin/K

Page 47: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

Example 6.10: (Cont.)

RC

LjCR

LVV

I

x

in /2

1

,1let andality proportion Use

2

2

−+

+=

=

ωω

+===

=

=

21,when

/2

/2 :requiresn Oscillatio

CRL

KVV

LC

CL

x

inOSC

OSC

ωω

ω

ωω

Page 48: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

Superposition

l An ac source network is any two-terminal network that consists entirely of linear elements and sources. If there are more than one independent source, all of them must be at the same frequency so that the phasor method can be applied.

Page 49: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

Frequency Domain Thévenin Parameters

l Frequency-domain Thevenin parameters: – the open-circuit voltage phasor:– the short-circuit current phasor:– Thévenin impedance:

ocV

ocV

scI

scIocVtZ /=

Page 50: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

Example 6.11: Application of an AC Norton Network.

Thévenin parameters:

0

0

0

8.81495.0

13.89.91040280

280

7.73202028040

−∠==

−∠=+

=

∠Ω=−=

AZ

VI

Vj

V

jjZ

t

OCSC

OC

t

V Maximize

Page 51: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

Example 6.11: (Cont.)

08.814.35

048.00

)048.0()014.0(

minimum is if maximum is

/ and 11

−∠=

+=

−++=

=+=

VV

SjY

BjGY

YV

YIVZZ

Y

eq

eq

eqSCt

eq

Yeq

Page 52: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

AC Mesh Analysis

l By using phasors, impedance and admittance, node analysis and mesh analysis are still applicable assuming all independent sources are at the same frequency.

l AC mesh analysis:

[ ][ ] [ ]sVIZ = or [ ][ ] [ ]sVIZZ~~ =−

with controlled sources

Page 53: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

Example 6.12: Systematic AC Mesh Analysis

Find i1

Two sources at the same frequency

Page 54: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

Example 6.12: (Cont.)

)3.10410cos(9.3)(

3.1049.3

3615)10(2615681048

:equationmesh Single

01

01

1

+=

∠=

+=−−+=Ω−=−+=

=

tti

AI

VjjjVjjjZ

VIZ

S

S

Page 55: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

AC Node Analysis

[ ][ ] [ ]sIVY =

[ ][ ] [ ]sIVYY~~

=−

or

with controlled sources

Page 56: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

Example 6.13: Systematic AC Node Analysis

Find V1 and Z1

1 2

Constraint equation: I=(V-V1)/j4

Page 57: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

Example 6.13: (Cont.)

[ ]

[ ]

Ω+=∠Ω==

−∠=

−∠=

−=

++−−−

+

−+

−+

=

+−−−

=

39.192.88.803.9

1.3115.1

3.224.10

20180

3310226

05.005.0

69

24/2

332256

201

011

0

01

2

1

2

1

jI

VZ

AI

VV

jj

VV

jjj

VV

jj

jj

IjVI

I

jj

Y

s

Page 58: Chapter 6: AC Circuitscc.ee.ntu.edu.tw/~ultrasound/ · AC Circuits lA stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).

Chapter 6: Problem Set

l 7, 17, 24, 32, 36, 41, 44, 47, 51, 53, 57, 59