hydrogenation to γ-valerolactone · LA η 2 μ 2 (O, O) −0.90 CH ... TS1 TS2 TS3 TS4 TS5 TS6 TS7...

Post on 27-Sep-2020

18 views 0 download

Transcript of hydrogenation to γ-valerolactone · LA η 2 μ 2 (O, O) −0.90 CH ... TS1 TS2 TS3 TS4 TS5 TS6 TS7...

S1

Supplementary Information for

Ru nanoparticles deposited on ultrathin TiO2

nanosheets as highly active catalyst for levulinic acid

hydrogenation to γ-valerolactone

Xiaoqing Gaoa,b, Shanhui Zhua,*, Mei Donga, Jianguo Wanga, Weibin Fana,*

aState Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese

Academy of Sciences, Taiyuan 030001, PR China.

bUniversity of Chinese Academy of Sciences, Beijing 100039, PR China

S2

Supplementary details on catalyst characterization

N2 adsorption-desorption isotherms were collected on at −196 °C on a

Micromeritics TriStar 3000 instrument. Prior to the measurements, the samples were

pretreated under vacuum at 250 °C for 8 h. The data were analysed by the BET method.

ICP-OES (Optima 2100DV, PerkinElmer) was employed to detect the Ru content.

Prior to the measurement, 0.01g sample was initially treated in 3 mL aqua regia (75

vol.% HCl and 25 vol.% HNO3). The solution was left overnight, and diluted to 100

mL with deionized water in a volumetric flask.

X-ray diffraction (XRD) was carried out in a Rigaku Miniflex II desktop X-ray

diffractometer with a Cu Kα radiation source at 40 kV and 40 mA. Scan speed was set

as 4°/min in the 2θ range of 5° and 90°. The sample was pressed flat and held on the

sample holder.

The low-magnification Transmission electron microscopy (TEM) and high-

resolution transmission electron microscopy (HRTEM) measurements were performed

on a JEOL JEM-2011F instrument operated at 200 kV voltages. Samples were dispersed

onto a carbon coated copper grid after 20 min ultrasonic treatment in ethanol.

X-ray photoelectron spectroscopy (XPS) was performed on a Kratos AXIS

ULTRA DLD spectrometer with Al Kα radiation under ultrahigh vacuum conditions.

The as-prepared catalyst was made into a small tablet (6.0 mm diameter) and held on

the sample holder. The sample was then introduced into the UHV chamber for XPS test

at room temperature. The C 1s peak at 284.8 eV was employed as an internal standard.

S3

Temperature-programmed reduction of hydrogen (H2-TPR) was performed on

Micromeritics Autochem 2920 with a thermal conductivity detector (TCD). For each

run, 0.05 g catalyst sample was loaded in a U-shaped quartz tube. The sample was

initially pretreated on Ar gas at 300 °C for 0.5 h. After the sample was cooled to 30 °C,

the Ar flow was switched to 10 vol% H2/Ar mixed gas. The sampled was heated from

30 °C to 500 °C at a ramp of 5 °/min and the consumed H2 was monitored by a TCD

detector.

S4

Fig. S1. XRD patterns of TiO2 and various supported Ru-based catalysts.

S5

Fig. S2. (a and b) TEM and HRTEM images of Ru/SiO2; (c) Ru nanoparticles size

distribution histogram of Ru/SiO2.

S6

Fig. S3. (a and b) TEM and HRTEM images of Ru/MoS2; (c) Ru nanoparticles size

distribution histogram of Ru/MoS2.

S7

Fig. S4. (a and b) TEM and HRTEM images of Ru/GO; (c) Ru nanoparticles size

distribution histogram of Ru/GO.

S8

Fig. S5. (a and b) TEM and HRTEM images of Ru/C; (c) Ru nanoparticles size

distribution histogram of Ru/C.

S9

Fig. S6. Reusability tests of LA conversion over Ru/TiO2. Reaction conditions: 0.005

g catalyst, 2 mmol LA, 4 MPa H2, 100 °C, 4 mL water, and 30 min.

S10

Table S1 Comparison the catalytic performance of LA hydrogenation to GVL

between the references with our results.

Entry Catalyst Reaction

temperature (°C)

Reaction

pressure

(MPa)

TOF value

(h−1)

rGVL

(molGVLgmetal−1·h−1)f

Reference

1 Ru-NPs 130 2.5 143.3 1.4 [1]

2 Ru/ZrO2 130 2.4 180 1.7 [2]

3 5% wt%Ru/C 130 1.2 133.2 1.1 [3]

4 Ru0.9Ni0.1-OMC 150 4.5 2501 24.8 [4]

5 Ru40@Meso-SiO2 150 1.0 6555 1.0 [5]

6 Pt/HAPa 275 0.1 8352 63.8 [6]

7 Ru/HAPa 275 0.1 10440 84.7 [6]

8 Ru18/Sn5/C 180 3.5 50.4 9.2 [7]

9 1wt%Ru/OMSb 100 3.0 3420 37.8 [8]

10 5%Ru/NOMCc 120 1.3 438 3.4 [9]

11 Ru/ZrO2@C 140 1.0 612 9.5 [10]

12 3Cs-Ru/Al2O3 220 1.4 2844 18.0g [11]

13 3K-Ru/C 220 1.4 2016 15.8g [12]

14 AuPd/TiO2 200 4.0 360 2.0 [13]

15 CuZn120MLDd 240 1.0 11.2 0.04 [14]

16 NiZr-Al2O3/NFe 250 0.1 41.3 0.2 [15]

17 Ni-MoOx/C 250 5.0 206 3.6 [16]

18 20%Mo2C/CNT 100 3.0 4.8 0.02 [17]

19 Ir@ZrO2@C 180 4.0 122.4 42.9 [18]

20 Ru/TiO2(P25) 150 3.0 1044 2.9 [19]

21 Ru/H-β 200 4.0 1450.8 4.7 [20]

22 CePO4/Co2P 90 4.0 2196 0.01h [21]

23 Ru/TiO2 100 4.0 19045 152.8 this work

ahydroxyapatite

S11

boctahedral molecular sieve

cN-doped ordered mesoporous carbon

dmolecular layer deposition

enickel-foam

f rGVL =

𝑀𝑜𝑙𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝐺𝑉𝐿

𝑚𝑎𝑠𝑠 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑎𝑐𝑡𝑖𝑣𝑒 𝑚𝑒𝑡𝑎𝑙 𝑎𝑡𝑜𝑚𝑠 ×𝑟𝑒𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

gBecause the yield of GVL is not provided, the consumed amount of LA is used to

calculate rGVL.

hThe total catalyst mass is used to calculate rGVL.

S12

Table S2 Adsorption configuration and adsorption energy of the most stable species

on Ru (002) facet optimized by DFT calculation.

Species Binding mode Ead (eV) Side view Top view

LA η2μ3 (O, O) −0.18

CH3COHCH2CH2COOH η2μ2 (O, C) −1.23

CH3CHOCH2CH2COOH η2μ3 (O, O) −2.68

HPA η1μ1 (O) −0.40

CH3CHOHCH2CH2CO η3μ3 (O, C, O) −2.47

CH3CHOCH2CH2CO η3μ5 (O, C, O) −2.19

GVL η2μ2 (O, O) −0.13

GVL−OH η1μ1 (O) −2.65

H2 η2μ1 (H, H) −0.50

S13

H η1μ3 (H) −2.88

OH η1μ3 (O) −3.37

H2O η1μ1 (O) −0.42

S14

Table S3 Adsorption configuration and adsorption energy of the most stable species

on Ru10/TiO2 optimized by DFT calculation.

Species Binding mode Ead (eV) Side view Top view

LA η2μ2 (O, O)

−0.90

CH3COHCH2CH2COOH η1μ2 (O)

−1.56

CH3CHOCH2CH2COOH η1μ2 (O)

−2.62

HPA η1μ1 (O)

−0.46

CH3CHOHCH2CH2CO η2μ2(O, C)

−2.36

CH3CHOCH2CH2CO η3μ3 (O, O, C)

−1.95

GVL η2μ2 (O, O)

−0.65

S15

GVL−OH η2μ2 (O, O)

−2.23

H2 η2μ1 (H, H)

−0.46

H η1μ1 (H)

−2.85

OH η1μ2 (O)

−3.74

H2O η1μ1 (O)

−0.54

S16

TS1 TS2 TS3

TS4 TS5 TS6

TS7 TS8 TS9

TS10 TS11

Fig. S6. The TS configurations of LA hydrogenation to GVL on Ru (0 0 2) surface.

S17

TS1 TS2 TS3

TS4 TS5 TS6

TS7 TS8 TS9

TS10 TS11

Fig. S7. The TS configurations of LA hydrogenation to GVL on Ru10/TiO2 surface.

S18

References

[1] C. Ortiz-Cervantes, J.J. García, Inorg. Chim. Acta 397 (2013) 124-128.

[2] B. Coşkuner Filiz, E.S. Gnanakumar, A. Martínez-Arias, R. Gengler, P. Rudolf, G.

Rothenberg, N.R. Shiju, Catal. Lett. 147 (2017) 1744-1753.

[3] M.G. Al-Shaal, W.R.H. Wright, R. Palkovits, Green Chem. 14 (2012) 1260-1263.

[4] Y. Yang, G. Gao, X. Zhang, F. Li, ACS Catal. 4 (2014) 1419-1425.

[5] M. Nemanashi, J.-H. Noh, R. Meijboom, Appl. Catal. A: Gen. 550 (2018) 77-89.

[6] M. Sudhakar, V.V. Kumar, G. Naresh, M.L. Kantam, S.K. Bhargava, A. Venugopal,

Appl. Catal. B: Environ. 180 (2016) 113-120.

[7] S.G. Wettstein, J.Q. Bond, D.M. Alonso, H.N. Pham, A.K. Datye, J.A. Dumesic,

Appl. Catal. B: Environ. 117-118 (2012) 321-329.

[8] J. Molleti, M.S. Tiwari, G.D. Yadav, Chem. Eng. J. 334 (2018) 2488-2499.

[9] W. Zuojun, L. Jiongtao, S. Chuanmin, G. Dechao, L. Yingxin, D. Shuguang,

ChemSusChem 10 (2017) 1720-1732.

[10] W. Cao, W. Luo, H. Ge, Y. Su, A. Wang, T. Zhang, Green Chem. 19 (2017) 2201-

2211.

[11] S. Cao, J.R. Monnier, J.R. Regalbuto, J. Catal. 347 (2017) 72-78.

[12] S. Cao, J.R. Monnier, C.T. Williams, W. Diao, J.R. Regalbuto, J. Catal. 326 (2015)

69-81.

[13] W. Luo, M. Sankar, A.M. Beale, Q. He, C.J. Kiely, P.C.A. Bruijnincx, B.M.

Weckhuysen, Nat. Commun. 6 (2015) 6540.

S19

[14] B. Zhang, Y. Chen, J. Li, E. Pippel, H. Yang, Z. Gao, Y. Qin, ACS Catal. 5 (2015)

5567-5573.

[15] L. Wei, F. Guoli, Y. Lan, L. Feng, ChemCatChem 8 (2016) 2724-2733.

[16] K.-i. Shimizu, S. Kanno, K. Kon, Green Chem. 16 (2014) 3899-3903.

[17] E.F. Mai, M.A. Machado, T.E. Davies, J.A. Lopez-Sanchez, V. Teixeira da Silva,

Green Chem. 16 (2014) 4092-4097.

[18] W. Cao, L. Lin, H. Qi, Q. He, Z. Wu, A. Wang, W. Luo, T. Zhang, J. Catal. 373

(2019) 161-172.

[19] J. Ftouni, A. Muñoz-Murillo, A. Goryachev, J.P. Hofmann, E.J.M. Hensen, L. Lu,

C.J. Kiely, P.C.A. Bruijnincx, B.M. Weckhuysen, ACS Catal. 6 (2016) 5462-5472.

[20] W. Luo, U. Deka, A.M. Beale, E.R.H. van Eck, P.C.A. Bruijnincx, B.M.

Weckhuysen, J. Catal. 301 (2013) 175-186.

[21] H.-J. Feng, X.-C. Li, H. Qian, Y.-F. Zhang, D.-H. Zhang, D. Zhao, S.-G. Hong, N.

Zhang, Green Chem. 21 (2019) 1743-1756.