Finding self-force quantities in a post-Newtonian expansion

Post on 16-Jan-2017

113 views 0 download

Transcript of Finding self-force quantities in a post-Newtonian expansion

Finding self-force quantities in a post-Newtonian expansion

Seth Hopper

Eccentric orbits on a Schwarzschild background

π�

π�π�

�π

-�

-�

-�

-�

-�

p = 10

6

e = 0.01

x = 10

�6

p = 10

6

e = 0.2

x = 0.96⇥ 10

�6

log10

p

22,+tr

(�) residuals

log10

p

22,�tr

(�) residuals

¯

G

`m

(�) = 8

p⇡

µ

M

(`�m+ 1)

(`� 1)`(`+ 1)(`+ 2)

s

(2`+ 1)(`�m)!

(m+ `)!

P

m

`+1

⇥(

h

� 2 +

2e

i�

(m� 1)� 2e

�i�

(m+ 1)

e+O �

e

2�

i

x

3/2

+

h

1 +

e

�i�

(4� 2m) + 2e

i�

(m+ 2)

e+O �

e

2�

i

x

5/2+O �

x

7/2�

)

x

3/2

R

±`mn

(�) = C

±`mn

ˆ

R

±`mn

(�)

p = 10

e = 0.5

Chris Kavanagh

Adrian Ottewill

Erik Forseth

Charles Evans

Institut des Hautes Études Scientifiques - November 12, 2015

An electron in free fall will radiate

e-

e-

e-

An electron is a non-local object

Outline

Orbits

Homogeneous solutions

Particular solutions

Black Hole Perturbation Theory

Formalism

Analytic PN solutions

Numeric PN solutions

Outline

Orbits

Homogeneous solutions

Particular solutions

Black Hole Perturbation Theory

Formalism

Analytic PN solutions

Numeric PN solutions

In black hole perturbation theory, we alternate

between correcting fields and particle motion

Field equations Equations of motion

0

1

2

Order

G

µ⌫

= 0

dE

dt

, New parameters, 7PN

dE

dt

22

= 3.24778951144055583601917 . . . 50 more digits . . . 0413022224171085141009521⇥ 10

�100

dE

dt

lm

=

X

n

!

2

64⇡

(l + 2)!

(l � 2)!

|C+lmn

|2

L4 =

1

(1� e

2)

15/2

�323105549467

3178375200

+

232597

4410

�E � 1369

126

2+

39931

294

log(2)� 47385

1568

log(3)

+

�128412398137

23543520

+

4923511

2940

�E � 104549

252

2 � 343177

252

log(2) +

55105839

15680

log(3)

e

2

+

�981480754818517

25427001600

+

142278179

17640

�E � 1113487

504

2+

762077713

5880

log(2)� 2595297591

71680

log(3)

� 15869140625

903168

log(5)

e

4

+

�874590390287699

12713500800

+

318425291

35280

�E � 881501

336

2 � 90762985321

63504

log(2) +

31649037093

1003520

log(3)

+

10089048828125

16257024

log(5)

e

6

+ d8e8+ d10e

10+ d12e

12+ d14e

14+ d16e

16+ d18e

18+ d20e

20+ d22e

22+ d24e

24+ d26e

26

+ d28e28

+ d30e30

+ d32e32

+ d34e34

+ d36e36

+ d38e38

+ d40e40

+ · · ·�

L7/2 = �16285⇡

504

1

(1� e

2)

7

1 + a2e2+ a4e

4+ a6e

6+ · · · �

dE

dt

=

dE

dt

3PN

+

32

5

µ

M

⌘2x

5

x

7/2L7/2 + x

4⇣

L4 + log(x)L4L

+ x

9/2⇣

L9/2 + log(x)L9/2L

+ x

5⇣

L5 + log(x)L5L

+ x

11/2⇣

L11/2 + log(x)L11/2L

+ x

6⇣

L6 + log(x)L6L + log

2(x)L6L2

+ x

13/2⇣

L13/2 + log(x)L13/2L

+ x

7⇣

L7 + log(x)L7L + log

2(x)L7L2

G

µ⌫

= 0

Du

µ

d⌧

= 0

dE

dt

, New parameters, 7PN

dE

dt

22

= 3.24778951144055583601917 . . . 50 more digits . . . 0413022224171085141009521⇥ 10

�100

dE

dt

lm

=

X

n

!

2

64⇡

(l + 2)!

(l � 2)!

|C+lmn

|2

L4 =

1

(1� e

2)

15/2

�323105549467

3178375200

+

232597

4410

�E � 1369

126

2+

39931

294

log(2)� 47385

1568

log(3)

+

�128412398137

23543520

+

4923511

2940

�E � 104549

252

2 � 343177

252

log(2) +

55105839

15680

log(3)

e

2

+

�981480754818517

25427001600

+

142278179

17640

�E � 1113487

504

2+

762077713

5880

log(2)� 2595297591

71680

log(3)

� 15869140625

903168

log(5)

e

4

+

�874590390287699

12713500800

+

318425291

35280

�E � 881501

336

2 � 90762985321

63504

log(2) +

31649037093

1003520

log(3)

+

10089048828125

16257024

log(5)

e

6

+ d8e8+ d10e

10+ d12e

12+ d14e

14+ d16e

16+ d18e

18+ d20e

20+ d22e

22+ d24e

24+ d26e

26

+ d28e28

+ d30e30

+ d32e32

+ d34e34

+ d36e36

+ d38e38

+ d40e40

+ · · ·�

L7/2 = �16285⇡

504

1

(1� e

2)

7

1 + a2e2+ a4e

4+ a6e

6+ · · · �

dE

dt

=

dE

dt

3PN

+

32

5

µ

M

⌘2x

5

x

7/2L7/2 + x

4⇣

L4 + log(x)L4L

+ x

9/2⇣

L9/2 + log(x)L9/2L

+ x

5⇣

L5 + log(x)L5L

+ x

11/2⇣

L11/2 + log(x)L11/2L

+ x

6⇣

L6 + log(x)L6L + log

2(x)L6L2

+ x

13/2⇣

L13/2 + log(x)L13/2L

+ x

7⇣

L7 + log(x)L7L + log

2(x)L7L2

g

µ⌫

= g

BHµ⌫

+ p

µ⌫

2pµ⌫

+ 2R

↵µ�⌫

p

↵�

= �16⇡T

µ⌫

G

µ⌫

= 0

Du

µ

d⌧

= 0

dE

dt

, New parameters, 7PN

dE

dt

22

= 3.24778951144055583601917 . . . 50 more digits . . . 0413022224171085141009521⇥ 10

�100

dE

dt

lm

=

X

n

!

2

64⇡

(l + 2)!

(l � 2)!

|C+lmn

|2

L4 =

1

(1� e

2)

15/2

�323105549467

3178375200

+

232597

4410

�E � 1369

126

2+

39931

294

log(2)� 47385

1568

log(3)

+

�128412398137

23543520

+

4923511

2940

�E � 104549

252

2 � 343177

252

log(2) +

55105839

15680

log(3)

e

2

+

�981480754818517

25427001600

+

142278179

17640

�E � 1113487

504

2+

762077713

5880

log(2)� 2595297591

71680

log(3)

� 15869140625

903168

log(5)

e

4

+

�874590390287699

12713500800

+

318425291

35280

�E � 881501

336

2 � 90762985321

63504

log(2) +

31649037093

1003520

log(3)

+

10089048828125

16257024

log(5)

e

6

+ d8e8+ d10e

10+ d12e

12+ d14e

14+ d16e

16+ d18e

18+ d20e

20+ d22e

22+ d24e

24+ d26e

26

+ d28e28

+ d30e30

+ d32e32

+ d34e34

+ d36e36

+ d38e38

+ d40e40

+ · · ·�

L7/2 = �16285⇡

504

1

(1� e

2)

7

1 + a2e2+ a4e

4+ a6e

6+ · · · �

g

µ⌫

= g

BHµ⌫

+ p

µ⌫

2pµ⌫

+ 2R

↵µ�⌫

p

↵�

= �16⇡T

µ⌫

G

µ⌫

= 0

Du

µ

d⌧

= 0

dE

dt

, New parameters, 7PN

dE

dt

22

= 3.24778951144055583601917 . . . 50 more digits . . . 0413022224171085141009521⇥ 10

�100

dE

dt

lm

=

X

n

!

2

64⇡

(l + 2)!

(l � 2)!

|C+lmn

|2

L4 =

1

(1� e

2)

15/2

�323105549467

3178375200

+

232597

4410

�E � 1369

126

2+

39931

294

log(2)� 47385

1568

log(3)

+

�128412398137

23543520

+

4923511

2940

�E � 104549

252

2 � 343177

252

log(2) +

55105839

15680

log(3)

e

2

+

�981480754818517

25427001600

+

142278179

17640

�E � 1113487

504

2+

762077713

5880

log(2)� 2595297591

71680

log(3)

� 15869140625

903168

log(5)

e

4

+

�874590390287699

12713500800

+

318425291

35280

�E � 881501

336

2 � 90762985321

63504

log(2) +

31649037093

1003520

log(3)

+

10089048828125

16257024

log(5)

e

6

+ d8e8+ d10e

10+ d12e

12+ d14e

14+ d16e

16+ d18e

18+ d20e

20+ d22e

22+ d24e

24+ d26e

26

+ d28e28

+ d30e30

+ d32e32

+ d34e34

+ d36e36

+ d38e38

+ d40e40

+ · · ·�

L7/2 = �16285⇡

504

1

(1� e

2)

7

1 + a2e2+ a4e

4+ a6e

6+ · · · �

Du

µ

d⌧

= F

µ

self [p↵� ]

Du

µ

d⌧

= 0

g

µ⌫

= g

BHµ⌫

+ p

µ⌫

2pµ⌫

+ 2R

↵µ�⌫

p

↵�

= �16⇡T

µ⌫

G

µ⌫

= 0

dE

dt

, New parameters, 7PN

dE

dt

22

= 3.24778951144055583601917 . . . 50 more digits . . . 0413022224171085141009521⇥ 10

�100

dE

dt

lm

=

X

n

!

2

64⇡

(l + 2)!

(l � 2)!

|C+lmn

|2

L4 =

1

(1� e

2)

15/2

�323105549467

3178375200

+

232597

4410

�E � 1369

126

2+

39931

294

log(2)� 47385

1568

log(3)

+

�128412398137

23543520

+

4923511

2940

�E � 104549

252

2 � 343177

252

log(2) +

55105839

15680

log(3)

e

2

+

�981480754818517

25427001600

+

142278179

17640

�E � 1113487

504

2+

762077713

5880

log(2)� 2595297591

71680

log(3)

� 15869140625

903168

log(5)

e

4

+

�874590390287699

12713500800

+

318425291

35280

�E � 881501

336

2 � 90762985321

63504

log(2) +

31649037093

1003520

log(3)

+

10089048828125

16257024

log(5)

e

6

+ d8e8+ d10e

10+ d12e

12+ d14e

14+ d16e

16+ d18e

18+ d20e

20+ d22e

22+ d24e

24+ d26e

26

+ d28e28

+ d30e30

+ d32e32

+ d34e34

+ d36e36

+ d38e38

+ d40e40

+ · · ·�

L7/2 = �16285⇡

504

1

(1� e

2)

7

1 + a2e2+ a4e

4+ a6e

6+ · · · �

2p2 = (1 + p1)T [z + �z] + (rp1)2

Du

µ

d⌧

= F

µ

self [p↵� ]

Du

µ

d⌧

= 0

g

µ⌫

= g

BHµ⌫

+ p

µ⌫

2pµ⌫

+ 2R

↵µ�⌫

p

↵�

= �16⇡T

µ⌫

G

µ⌫

= 0

dE

dt

, New parameters, 7PN

dE

dt

22

= 3.24778951144055583601917 . . . 50 more digits . . . 0413022224171085141009521⇥ 10

�100

dE

dt

lm

=

X

n

!

2

64⇡

(l + 2)!

(l � 2)!

|C+lmn

|2

L4 =

1

(1� e

2)

15/2

�323105549467

3178375200

+

232597

4410

�E � 1369

126

2+

39931

294

log(2)� 47385

1568

log(3)

+

�128412398137

23543520

+

4923511

2940

�E � 104549

252

2 � 343177

252

log(2) +

55105839

15680

log(3)

e

2

+

�981480754818517

25427001600

+

142278179

17640

�E � 1113487

504

2+

762077713

5880

log(2)� 2595297591

71680

log(3)

� 15869140625

903168

log(5)

e

4

+

�874590390287699

12713500800

+

318425291

35280

�E � 881501

336

2 � 90762985321

63504

log(2) +

31649037093

1003520

log(3)

+

10089048828125

16257024

log(5)

e

6

+ d8e8+ d10e

10+ d12e

12+ d14e

14+ d16e

16+ d18e

18+ d20e

20+ d22e

22+ d24e

24+ d26e

26

+ d28e28

+ d30e30

+ d32e32

+ d34e34

+ d36e36

+ d38e38

+ d40e40

+ · · ·�

Eccentric orbits on Schwarzschild have two

frequencies

Tr

'(t)

'(Tr)

�'(t)

t

0 t Tr

rmin ! rmin

1

Tr

'(t)

'(Tr)

�'(t)

t

0 t Tr

rmin ! rmin

1

r

=

2⇡

T

r

'

=

'

p

(T

r

)

T

r

�'(t) = '

p

(t)� ⌦

'

t

"d

2

dr

2⇤+ !

2 � V

`

(r)

#R

`!

(r) = 0

f

d

dr

✓f

d

dr

◆+ !

2 � V

l

(r)

�X

lm!

(r) = 0

7

Tr

1

Tr

'(t)

t

1

x =

�M⌦

'

�2/3

T

r

'

p

(t)

'(T

r

)

�'(t)

X

1

=

M

r

X

2

= (!r)

2

4

x =

�M⌦

'

�2/3

T

r

'

p

(t)

'

p

(T

r

)

�'(t)

X

1

=

M

r

X

2

= (!r)

2

4

The radial frequency is oscillatory, but the azimuthal

frequency is not

Tr

1

Tr

'(t)

t

1

Tr

'(t)

'(Tr)

�'(t)

t

1

r

=

2⇡

T

r

'

=

'(T

r

)

T

r

�'(t) = '

p

(t)� ⌦

'

t

"d

2

dr

2⇤+ !

2 � V

`

(r)

#R

`!

(r) = 0

f

d

dr

✓f

d

dr

◆+ !

2 � V

l

(r)

�X

lm!

(r) = 0

7

Tr

1

Tr

'(t)

t

1

x =

�M⌦

'

�2/3

T

r

'

p

(t)

'(T

r

)

�'(t)

X

1

=

M

r

X

2

= (!r)

2

4

x =

�M⌦

'

�2/3

T

r

'

p

(t)

'

p

(T

r

)

�'(t)

X

1

=

M

r

X

2

= (!r)

2

4

r

=

2⇡

T

r

'

=

'

p

(T

r

)

T

r

�'(t) = '

p

(t)� ⌦

'

t

"d

2

dr

2⇤+ !

2 � V

`

(r)

#R

`!

(r) = 0

f

d

dr

✓f

d

dr

◆+ !

2 � V

l

(r)

�X

lm!

(r) = 0

7

Darwin’s parametrization puts the orbit into a

“Newtonian-like” form

'

=

1

M

1� e

2

p

!3/2

"1 + 3

e

2

p

+O⇣p

�2

⌘#

r

p

(�) =

pM

1 + e cos�

x =

�M⌦

'

�2/3

T

r

'(t)

'(T

r

)

�'(t)

1

pM

C

±=

1

WT

r

ZT

r

0

"1

f

p

X

⌥G(t)+

2M

r

2

p

f

2

p

X

⌥ � 1

f

p

dX

⌥dr

!F (t)

#e

i!t

dt

'

p

(�)

C

±=

1

WT

r

Z2⇡

0

"1

f

p

X

⌥¯

G+

2M

r

2

p

f

2

p

X

⌥ � 1

f

p

dX

⌥dr

F

#e

in⌦

r

t

dt

p

d�

d�

�'(�)

r

p

(�) =

hM �M cos(�)e +O

⇣e

2

⌘ ix

�1

+

h2e

2

M � 2e

3

M cos(�) +O⇣e

4

⌘ ix

0

+O⇣x

1

⌘.

(p, e) = (10, 0.5)

0 � 2⇡ () 0 t T

r

pM

C

±=

1

WT

r

ZT

r

0

"1

f

p

X

⌥G(t)+

2M

r

2

p

f

2

p

X

⌥ � 1

f

p

dX

⌥dr

!F (t)

#e

i!t

dt

'

p

(�)

C

±=

1

WT

r

Z2⇡

0

"1

f

p

X

⌥¯

G+

2M

r

2

p

f

2

p

X

⌥ � 1

f

p

dX

⌥dr

F

#e

in⌦

r

t

dt

p

d�

d�

�'(�)

r

p

(�) =

hM �M cos(�)e +O

⇣e

2

⌘ ix

�1

+

h2e

2

M � 2e

3

M cos(�) +O⇣e

4

⌘ ix

0

+O⇣x

1

⌘.

dt

p

d�

=

p

2

M

(p� 2� 2e cos�)(1 + e cos�)

2

"(p� 2)

2 � 4e

2

p� 6� 2e cos�

#1/2

'

p

(�) =

✓4p

p� 6� 2e

◆1/2

F

✓�

2

�����4e

p� 6� 2e

'

=

1

M

1� e

2

p

!3/2

"1 + 3

e

2

p

+O⇣p

�2

⌘#

r

p

(�) =

pM

1 + e cos�

1

t

p

(�) =

Z�

0

p

2

M

(p� 2� 2e cos�

0)(1 + e cos�

0)

2

"(p� 2)

2 � 4e

2

p� 6� 2e cos�

0

#1/2

d�

0

One radial period

The metric perturbation in Regge-Wheeler gauge is

found by solving a wave equation

"� @

2

@t

2

+

@

2

@r

2⇤� V

`

(r)

#

`m

(t, r) = S

`m

(t, r)

�'(�) = '

p

(�)� ⌦'

t

p

(�)

'

p

(�) = �+

h3� + sin(�)e + 3�e

2

+O⇣e

3

⌘ix+O

⇣x

2

�'(�) =

2e sin(�)� 3

4

e

2

sin(2�) +O⇣e

3

⌘�x

0

+

4e sin(�)� 3

4

e

2

sin(2�) +O⇣e

3

⌘�x

1

+O⇣x

2

TD master equation

"d

2

dr

2⇤+ !

2 � V

`

(r)

#R

`mn

(r) = Z

`mn

(r)

! ⌘ !

mn

= m⌦

'

+ n⌦

r

`m

(t, r) =

1X

n=�1R

`mn

(r) e

�i!t

S

`m

(t, r) =

1X

n=�1Z

`mn

(r) e

�i!t

FD master equation

`m

(t, r) =

1X

n=�1R

`mn

(r) e

�i!t

S

`m

(t, r) =

1X

n=�1Z

`mn

(r) e

�i!t

"� @

2

@t

2

+

@

2

@r

2⇤� V

`

(r)

#

`m

(t, r) = S

`m

(t, r)

�'(�) = '

p

(�)� ⌦'

t

p

(�)

'

p

(�) = �+

h3� + sin(�)e + 3�e

2

+O⇣e

3

⌘ix+O

⇣x

2

! ⌘ !

mn

= m⌦

'

+ n⌦

r

`m

(t, r) =

1X

n=�1R

`mn

(r) e

�i!t

S

`m

(t, r) =

1X

n=�1Z

`mn

(r) e

�i!t

"� @

2

@t

2

+

@

2

@r

2⇤� V

`

(r)

#

`m

(t, r) = S

`m

(t, r)

�'(�) = '

p

(�)� ⌦'

t

p

(�)

Fourier Series

Doubly periodic

Exponential convergence is achieved through

extended homogeneous solutions

10-13

10-11

10-9

10-7

10-5

10-3

10-1

3 4 5 6 7 8 9 10 11 12 13 14

r/M

log

!

|Ψstd

22

(nm

ax)−

Ψstd

22

(N)|"

rmin rmax

N = 3

N = 5

N = 8

N = 10

N = 12

N = 14

10-13

10-11

10-9

10-7

10-5

10-3

10-1

3 4 5 6 7 8 9 10 11 12 13 14

r/M

log

!

|ΨE

HS

22

(nm

ax)−

ΨE

HS

22

(N)|"

rmin rmax

N = 3

N = 5

N = 8

N = 10

N = 12

N = 14

R

±`mn

(r) ⌘ C

±`mn

ˆ

R

±`mn

(r)

±`m

(t, r) =

X

n

C

±`mn

ˆ

R

±`mn

(r) e

�i!t

r > 2M

`m

(t, r) =

+

`m

(t, r)✓

⇥r � r

p

(t)

⇤+

�`m

(t, r)✓

⇥r

p

(t)� r

"d

2

dr

2⇤+ !

2 � V

`

(r)

#R

`mn

(r) = Z

`mn

(r)

! ⌘ !

mn

= m⌦

'

+ n⌦

r

R

±`mn

(r) ⌘ C

±`mn

ˆ

R

±`mn

(r)

±`m

(t, r) =

X

n

C

±`mn

ˆ

R

±`mn

(r) e

�i!t

r > 2M

`m

(t, r) =

+

`m

(t, r)✓

⇥r � r

p

(t)

⇤+

�`m

(t, r)✓

⇥r

p

(t)� r

"d

2

dr

2⇤+ !

2 � V

`

(r)

#R

`mn

(r) = Z

`mn

(r)

! ⌘ !

mn

= m⌦

'

+ n⌦

r

Time domain EHS

Normalization coefficients are found by integrating a

radially-periodic function

C

±`mn

=

1

W

`mn

T

r

ZT

r

0

"1

f

p

ˆ

R

⌥`mn

(r

p

)G

`m

(t)+

2M

r

2p

f

2p

ˆ

R

⌥`mn

(r

p

)� 1

f

p

d

ˆ

R

⌥`mn

(r

p

)

dr

!F

`m

(t)

#e

i!t

dt

'

p

(�)

C

±=

1

WT

r

Z 2⇡

0

"1

f

p

X

⌥¯

G(t) +

✓2M

r

2p

f

2p

X

⌥ � 1

f

p

dX

dr

◆¯

F (t)

#e

in⌦r

t

dt

p

d�

d�

�'(�)

r

p

(�) =

hM � eM cos(�) +O �e2�

ix

�1

+

h2e

2M � 2e

3M cos(�) +O �e4�

ix

0+O �x1� .

¯

G

`m

(t) ⌘ G

`m

(t) e

im⌦

'

t

,

¯

F

`m

(t) ⌘ F

`m

(t) e

im⌦

'

t

±`m

(t, r) =

X

n

R

±`mn

(r) e

�i!t

! = m⌦

'

+ n⌦

r

a, b, . . . 2 {t, r}

A,B, . . . 2 {✓,'}

(t, r, ✓,') ! ⇥t

p

(�), r

p

(�), ✓

p

(�),'

p

(�)

±`m

(t, r) =

X

n

R

±`mn

(r) e

�i!t

! = m⌦

'

+ n⌦

r

a, b, . . . 2 {t, r}

A,B, . . . 2 {✓,'}

(t, r, ✓,') ! ⇥t

p

(�), r

p

(�), ✓

p

(�),'

p

(�)

Radially periodic

S

`m

(t, r) = G

`m

(t) �[r � r

p

(t)] + F

`m

(t) �

0[r � r

p

(t)]

¯

±22

(�)

±22

(�)

C

±`mn

=

1

W

`mn

T

r

ZT

r

0

"1

f

p

ˆ

R

⌥`mn

(r

p

)

¯

G

`m

(t)+

2M

r

2p

f

2p

ˆ

R

⌥`mn

(r

p

)� 1

f

p

d

ˆ

R

⌥`mn

(r

p

)

dr

F

`m

(t)

#e

in⌦r

t

dt

¯

G

`m

(t) ⌘ G

`m

(t) e

im⌦

'

t

,

¯

F

`m

(t) ⌘ F

`m

(t) e

im⌦

'

t

Master equation source term

Homogeneous solutions

C

±`mn

=

1

W

`mn

T

r

ZT

r

0

"1

f

p

ˆ

R

⌥`mn

(r

p

)

¯

G

`m

(t)+

2M

r

2p

f

2p

ˆ

R

⌥`mn

(r

p

)� 1

f

p

d

ˆ

R

⌥`mn

(r

p

)

dr

F

`m

(t)

#e

in⌦r

t

dt

¯

G

`m

(t) ⌘ G

`m

(t) e

im⌦

'

t

,

¯

F

`m

(t) ⌘ F

`m

(t) e

im⌦

'

t

±`m

(t, r) =

X

n

R

±`mn

(r) e

�i!t

! = m⌦

'

+ n⌦

r

a, b, . . . 2 {t, r}

A,B, . . . 2 {✓,'}

Manifestly radially periodic

Removing the azimuthal frequency dependence from

the master function makes it periodic

±`m

(t, r) =

X

n

R

±`mn

(r) e

�i!t

! = m⌦

'

+ n⌦

r

a, b, . . . 2 {t, r}

A,B, . . . 2 {✓,'}

(t, r, ✓,') ! ⇥t

p

(�), r

p

(�), ✓

p

(�),'

p

(�)

-�

-�

�π�

π�π�

�π

¯

±22

(�)

±22

(�)

C

±`mn

=

1

W

`mn

T

r

ZT

r

0

"1

f

p

ˆ

R

⌥`mn

(r

p

)

¯

G

`m

(t)+

2M

r

2p

f

2p

ˆ

R

⌥`mn

(r

p

)� 1

f

p

d

ˆ

R

⌥`mn

(r

p

)

dr

F

`m

(t)

#e

in⌦r

t

dt

¯

G

`m

(t) ⌘ G

`m

(t) e

im⌦

'

t

,

¯

F

`m

(t) ⌘ F

`m

(t) e

im⌦

'

t

±`m

(t, r) =

X

n

R

±`mn

(r) e

�i!t

p = 10

e = 0.5

'

,⌦

r

E ,Jr

p

(�), r

p

(�), t

p

(�), �'(�)

ˆ

R

e/o,±`mn

(�)

@

r

ˆ

R

e/o,±`mn

(�)

@

2r

ˆ

R

e/o,±`mn

(�)

¯

G

e/o

`m

(�),

¯

F

e/o

`m

(�)

C

e/o,±`mn

R

e/o,±`mn

(�)

@

r

R

e/o,±`mn

(�)

@

2r

R

e/o,±`mn

(�)

¯

e/o,±`m

(�)

@

t

¯

e/o,±`m

(�), @

2t

¯

e/o,±`m

(�)

@

r

¯

e/o,±`m

(�), @

2r

¯

e/o,±`m

(�)

.

.

.

¯

±22

(�)

±22

(�)

C

±`mn

=

1

W

`mn

T

r

ZT

r

0

"1

f

p

ˆ

R

⌥`mn

(r

p

)

¯

G

`m

(t)+

2M

r

2p

f

2p

ˆ

R

⌥`mn

(r

p

)� 1

f

p

d

ˆ

R

⌥`mn

(r

p

)

dr

F

`m

(t)

#e

in⌦r

t

dt

¯

G

`m

(t) ⌘ G

`m

(t) e

im⌦

'

t

,

¯

F

`m

(t) ⌘ F

`m

(t) e

im⌦

'

t

±`m

(t, r) =

X

n

R

±`mn

(r) e

�i!t

-�

�π�

π�π�

�π

h

`m,±t

=

f

2

@

r

r

±`m

h

`m,±r

=

r

2f

@

t

±`m

¯

h

`m,±t

=

f

2

@

r

r

¯

±`m

¯

h

`m,±r

=

r

2f

@

t

¯

±`m

� im⌦

'

¯

±`m

¯

±`m

(t, r) =

±`m

(t, r)e

im⌦'t

¯

±`m

(t, r) ⌘ ±`m

(t, r)e

im⌦'t

=

X

n

R

±`mn

(r) e

�in⌦rt

h

21r

(�)

¯

h

21r

(�)

C

±`mn

=

1

W

`mn

T

r

Z 2⇡

0

"

1

f

p

ˆ

R

⌥`mn

(�)

¯

G

`m

(�)+

2M

r

2p

f

2p

ˆ

R

⌥`mn

(�)� 1

f

p

d

ˆ

R

⌥`mn

(�)

dr

!

¯

F

`m

(�)

#

e

in⌦rtp(�) dtp

d�

d�

e

9

e

5

p = 10

6

e = 0.01

x = 10

�6

h

`m,±t

=

f

2

@

r

r

±`m

h

`m,±r

=

r

2f

@

t

±`m

¯

h

`m,±t

=

f

2

@

r

r

¯

±`m

¯

h

`m,±r

=

r

2f

@

t

¯

±`m

� im⌦

'

¯

±`m

¯

±`m

(t, r) =

±`m

(t, r)e

im⌦'t

¯

±`m

(t, r) ⌘ ±`m

(t, r)e

im⌦'t

=

X

n

R

±`mn

(r) e

�in⌦rt

h

21r

(�)

¯

h

21r

(�)

C

±`mn

=

1

W

`mn

T

r

Z 2⇡

0

"

1

f

p

ˆ

R

⌥`mn

(�)

¯

G

`m

(�)+

2M

r

2p

f

2p

ˆ

R

⌥`mn

(�)� 1

f

p

d

ˆ

R

⌥`mn

(�)

dr

!

¯

F

`m

(�)

#

e

in⌦rtp(�) dtp

d�

d�

e

9

e

5

p = 10

6

e = 0.01

x = 10

�6

“Barred” versions of the metric perturbation

amplitudes pick up counter terms

h

`m,±t

=

f

2

@

r

�r

±`m

�, h

`m,±r

=

r

2f

�@

t

±`m

¯

h

`m,±t

=

f

2

@

r

�r

¯

±`m

�,

¯

h

`m,±r

=

r

2f

�@

t

¯

±`m

� im⌦

'

¯

±`m

¯

±`m

(t, r) =

±`m

(t, r)e

im⌦

'

t

¯

±`m

(t, r) ⌘

±`m

(t, r)e

im⌦

'

t

=

X

n

R

±`mn

(r) e

�in⌦

r

t

X

1

! M

r

p

X

2

! (!r

p

)

2

π�

π�π�

�π

-���

-���

-���

���

���

h

`m,±t

=

f

2

@

r

r

±`m

h

`m,±r

=

r

2f

@

t

±`m

¯

h

`m,±t

=

f

2

@

r

r

¯

±`m

¯

h

`m,±r

=

r

2f

@

t

¯

±`m

� im⌦

'

¯

±`m

¯

±`m

(t, r) =

±`m

(t, r)e

im⌦'t

¯

±`m

(t, r) ⌘ ±`m

(t, r)e

im⌦'t

=

X

n

R

±`mn

(r) e

�in⌦rt

C

±`mn

=

1

W

`mn

T

r

Z 2⇡

0

"

1

f

p

ˆ

R

⌥`mn

(�)

¯

G

`m

(�)+

2M

r

2p

f

2p

ˆ

R

⌥`mn

(�)� 1

f

p

d

ˆ

R

⌥`mn

(�)

dr

!

¯

F

`m

(�)

#

e

in⌦rtp(�) dtp

d�

d�

e

9

e

5

p = 10

6

e = 0.01

x = 10

�6

p = 10

6

e = 0.2

x = 0.96⇥ 10

�6

h

`m,±t

=

f

2

@

r

r

±`m

h

`m,±r

=

r

2f

@

t

±`m

¯

h

`m,±t

=

f

2

@

r

r

¯

±`m

¯

h

`m,±r

=

r

2f

@

t

¯

±`m

� im⌦

'

¯

±`m

¯

±`m

(t, r) =

±`m

(t, r)e

im⌦'t

¯

±`m

(t, r) ⌘ ±`m

(t, r)e

im⌦'t

=

X

n

R

±`mn

(r) e

�in⌦rt

h

21r

(�)

¯

h

21r

(�)

C

±`mn

=

1

W

`mn

T

r

Z 2⇡

0

"

1

f

p

ˆ

R

⌥`mn

(�)

¯

G

`m

(�)+

2M

r

2p

f

2p

ˆ

R

⌥`mn

(�)� 1

f

p

d

ˆ

R

⌥`mn

(�)

dr

!

¯

F

`m

(�)

#

e

in⌦rtp(�) dtp

d�

d�

e

9

e

5

p = 10

6

e = 0.01

x = 10

�6

π�

π�π�

�π

-���

-���

���

���

h

`m,±t

=

f

2

@

r

r

±`m

h

`m,±r

=

r

2f

@

t

±`m

¯

h

`m,±t

=

f

2

@

r

r

¯

±`m

¯

h

`m,±r

=

r

2f

@

t

¯

±`m

� im⌦

'

¯

±`m

¯

±`m

(t, r) =

±`m

(t, r)e

im⌦'t

¯

±`m

(t, r) ⌘ ±`m

(t, r)e

im⌦'t

=

X

n

R

±`mn

(r) e

�in⌦rt

C

±`mn

=

1

W

`mn

T

r

Z 2⇡

0

"

1

f

p

ˆ

R

⌥`mn

(�)

¯

G

`m

(�)+

2M

r

2p

f

2p

ˆ

R

⌥`mn

(�)� 1

f

p

d

ˆ

R

⌥`mn

(�)

dr

!

¯

F

`m

(�)

#

e

in⌦rtp(�) dtp

d�

d�

e

9

e

5

p = 10

6

e = 0.01

x = 10

�6

p = 10

6

e = 0.2

x = 0.96⇥ 10

�6

h

`m,±t

=

f

2

@

r

r

±`m

h

`m,±r

=

r

2f

@

t

±`m

¯

h

`m,±t

=

f

2

@

r

r

¯

±`m

¯

h

`m,±r

=

r

2f

@

t

¯

±`m

� im⌦

'

¯

±`m

¯

±`m

(t, r) =

±`m

(t, r)e

im⌦'t

¯

±`m

(t, r) ⌘ ±`m

(t, r)e

im⌦'t

=

X

n

R

±`mn

(r) e

�in⌦rt

h

21r

(�)

¯

h

21r

(�)

C

±`mn

=

1

W

`mn

T

r

Z 2⇡

0

"

1

f

p

ˆ

R

⌥`mn

(�)

¯

G

`m

(�)+

2M

r

2p

f

2p

ˆ

R

⌥`mn

(�)� 1

f

p

d

ˆ

R

⌥`mn

(�)

dr

!

¯

F

`m

(�)

#

e

in⌦rtp(�) dtp

d�

d�

e

9

e

5

p = 10

6

e = 0.01

x = 10

�6

p = 10

e = 0.5

'

,⌦

r

E ,Jr

p

(�), r

p

(�), t

p

(�), �'(�)

ˆ

R

e/o,±`mn

(�)

@

r

ˆ

R

e/o,±`mn

(�)

@

2r

ˆ

R

e/o,±`mn

(�)

¯

G

e/o

`m

(�),

¯

F

e/o

`m

(�)

C

e/o,±`mn

R

e/o,±`mn

(�)

@

r

R

e/o,±`mn

(�)

@

2r

R

e/o,±`mn

(�)

¯

e/o,±`m

(�)

@

t

¯

e/o,±`m

(�), @

2t

¯

e/o,±`m

(�)

@

r

¯

e/o,±`m

(�), @

2r

¯

e/o,±`m

(�)

.

.

.

Quantities evaluated on the worldline are strictly

periodic in the radial motion

p

tt

(t, r, ✓,') =

X

`,m

h

`m

tt

(t, r)Y

`m

(✓,')

p

tt

(t

p

, r

p

, ✓

p

,'

p

) =

X

`,m

¯

h

`m

tt

(t

p

, r

p

)e

�im⌦

'

t

Y

`m

(✓

p

, 0)e

im⌦

'

t

p

tt

(t

p

, r

p

, ✓

p

,'

p

) =

X

`,m

¯

h

`m

tt

(t

p

, r

p

)

¯

Y

`m

¯

Y

`m

(✓

p

, 0)Y

`m

(✓

p

, 0)

h

`m,±t

=

f

2

@

r

�r

±`m

�, h

`m,±r

=

r

2f

�@

t

±`m

Dependent on four variables

p

tt

(t, r, ✓,') =

X

`,m

h

`m

tt

(t, r)Y

`m

(✓,')

p

tt

(�) =

X

`,m

h

`m

tt

(t

p

, r

p

)Y

`m

(✓

p

,'

p

)

p

tt

(�) =

X

`,m

¯

h

`m

tt

(t

p

, r

p

)e

�im⌦'t⇤ · ⇥Y `m

(✓

p

, 0)e

im�'(t)e

im⌦'tp⇤

p

tt

(�) =

X

`,m

¯

h

`m

tt

(t, r

p

)

¯

Y

`m

(✓

p

,'

p

)

¯

Y

`m

(✓

p

,'

p

) = Y

`m

(✓

p

,'

p

)e

�im⌦'t

h

`m,±t

=

f

2

@

r

r

±`m

h

`m,±r

=

r

2f

@

t

±`m

¯

h

`m,±t

=

f

2

@

r

r

¯

±`m

¯

h

`m,±r

=

r

2f

@

t

¯

±`m

� im⌦

'

¯

±`m

¯

±`m

(t, r) =

±`m

(t, r)e

im⌦'t

¯

±`m

(t, r) ⌘ ±`m

(t, r)e

im⌦'t

=

X

n

R

±`mn

(r) e

�in⌦rt

h

21r

(�)

¯

h

21r

(�)

(t, r, ✓,') ! [t

p

(�), r

p

(�), ✓

p

(�),'

p

(�)]

p

tt

(t, r, ✓,') =

X

`,m

h

`m

tt

(t, r)Y

`m

(✓,')

p

tt

(�) =

X

`,m

h

`m

tt

(t

p

, r

p

)Y

`m

(✓

p

,'

p

)

p

tt

(�) =

X

`,m

¯

h

`m

tt

(t

p

, r

p

)e

�im⌦'t⇤ · ⇥Y `m

(✓

p

, 0)e

im�'(t)e

im⌦'tp⇤

p

tt

(�) =

X

`,m

¯

h

`m

tt

(t, r

p

)

¯

Y

`m

(✓

p

,'

p

)

¯

Y

`m

(✓

p

,'

p

) = Y

`m

(✓

p

,'

p

)e

�im⌦'t

h

`m,±t

=

f

2

@

r

r

±`m

h

`m,±r

=

r

2f

@

t

±`m

¯

h

`m,±t

=

f

2

@

r

r

¯

±`m

¯

h

`m,±r

=

r

2f

@

t

¯

±`m

� im⌦

'

¯

±`m

¯

±`m

(t, r) =

±`m

(t, r)e

im⌦'t

¯

±`m

(t, r) ⌘ ±`m

(t, r)e

im⌦'t

=

X

n

R

±`mn

(r) e

�in⌦rt

h

21r

(�)

¯

h

21r

(�)

Evaluated at the particle

p

tt

(t, r, ✓,') =

X

`,m

h

`m

tt

(t, r)Y

`m

(✓,')

p

tt

(t) =

X

`,m

⇣¯

h

`m

tt

(t, r

p

)e

�im⌦

'

t

⌘⇣Y

`m

[✓

p

,�'(t)]e

im⌦

'

t

p

tt

(t) =

X

`,m

¯

h

`m

tt

(t, r

p

)

¯

Y

`m

(✓

p

,'

p

)

¯

Y

`m

(✓

p

,'

p

) = Y

`m

(✓

p

,'

p

)e

�im⌦

'

t

h

`m,±t

=

f

2

@

r

�r

±`m

�, h

`m,±r

=

r

2f

�@

t

±`m

(t, r, ✓,') ! ⇥t

p

(�), r

p

(�), ✓

p

(�),'

p

(�)

p

tt

(t, r, ✓,') =

X

`,m

h

`m

tt

(t, r)Y

`m

(✓,')

p

tt

(�) =

X

`,m

h

`m

tt

(t, r

p

)e

�im⌦

'

t

i·hY

`m

(✓

p

, 0)e

im�'(t)

e

im⌦

'

t

i

p

tt

(�) =

X

`,m

¯

h

`m

tt

(t, r

p

)

¯

Y

`m

(✓

p

,'

p

)

¯

Y

`m

(✓

p

,'

p

) = Y

`m

(✓

p

,'

p

)e

�im⌦

'

t

�π�

π�π�

�π

�����

�����

�����

�����Re

hp

22

tt

(�)

i

Im

hp

22

tt

(�)

i

t

p

(�) =

Z�

0

p

2

M

(p� 2� 2e cos�

0)(1 + e cos�

0)

2

"(p� 2)

2 � 4e

2

p� 6� 2e cos�

0

#1/2

d�

0

p = 10

e = 0.5

'

,⌦

r

E ,Jr

p

(�), r

p

(�), t

p

(�), �'(�)

ˆ

R

e/o,±`mn

(�)

@

r

ˆ

R

e/o,±`mn

(�)

@

2r

ˆ

R

e/o,±`mn

(�)

¯

G

e/o

`m

(�),

¯

F

e/o

`m

(�)

C

e/o,±`mn

R

e/o,±`mn

(�)

@

r

R

e/o,±`mn

(�)

@

2r

R

e/o,±`mn

(�)

¯

e/o,±`m

(�)

@

t

¯

e/o,±`m

(�), @

2t

¯

e/o,±`m

(�)

@

r

¯

e/o,±`m

(�), @

2r

¯

e/o,±`m

(�)

.

.

.

Outline

Orbits

Homogeneous solutions

Particular solutions

Black Hole Perturbation Theory

Formalism

Previous work

Analytic PN solutions

Previous work

Numeric PN solutions

There has been a lot of previous work, but here are a

couple highlights

Mano, Suzuki & Takasugi

Ganz, Hikida, Nakano, Sago &

Tanaka

Sago & Fujita

1996 1997 2007 2015

Mano & Takasugi

General orbits on Kerr

4PN & 𝑒6

Outline

Orbits

Homogeneous solutions

Particular solutions

Black Hole Perturbation Theory

Formalism

Previous work

Analytic PN solutions

Previous work

Numeric PN solutions

The fundamental frequencies can be expanded in the

gauge invariant PN parameter 𝑥

T

r

= 2⇡M

p

1� e

2

◆3/2

1 +

3 (1� e

2)

p

+O �

p

�2�

T

r

=

2⇡M

x

3/2+

6⇡M

(1� e

2)

px

+O �

x

1/2�

(t, r, ✓,') ! [t

p

(�), r

p

(�), ✓

p

(�),'

p

(�)]

p

tt

(t, r, ✓,') =

X

`,m

h

`m

tt

(t, r)Y

`m

(✓,')

p

tt

(�) =

X

`,m

h

`m

tt

(t

p

, r

p

)Y

`m

(✓

p

,'

p

)

p

tt

(�) =

X

`,m

¯

h

`m

tt

(t

p

, r

p

)e

�im⌦'t⇤ · ⇥Y `m

(✓

p

, 0)e

im�'(t)e

im⌦'tp⇤

p

tt

(�) =

X

`,m

¯

h

`m

tt

(t, r

p

)

¯

Y

`m

(✓

p

,'

p

)

¯

Y

`m

(✓

p

,'

p

) = Y

`m

(✓

p

,'

p

)e

�im⌦'t

h

`m,±t

=

f

2

@

r

r

±`m

h

`m,±r

=

r

2f

@

t

±`m

¯

h

`m,±t

=

f

2

@

r

r

¯

±`m

¯

h

`m,±r

=

r

2f

@

t

¯

±`m

� im⌦

'

¯

±`m

¯

±`m

(t, r) =

±`m

(t, r)e

im⌦'t

¯

±`m

(t, r) ⌘ ±`m

(t, r)e

im⌦'t

=

X

n

R

±`mn

(r) e

�in⌦rt

Z 2⇡

0

dt

p

d�

d�

T

r

= 2⇡M

p

1� e

2

◆3/2

1 +

3 (1� e

2)

p

+O �

p

�2�

T

r

=

2⇡M

x

3/2+

6⇡M

(1� e

2)

px

+O �

x

1/2�

(t, r, ✓,') ! [t

p

(�), r

p

(�), ✓

p

(�),'

p

(�)]

p

tt

(t, r, ✓,') =

X

`,m

h

`m

tt

(t, r)Y

`m

(✓,')

p

tt

(�) =

X

`,m

h

`m

tt

(t

p

, r

p

)Y

`m

(✓

p

,'

p

)

p

tt

(�) =

X

`,m

¯

h

`m

tt

(t

p

, r

p

)e

�im⌦'t⇤ · ⇥Y `m

(✓

p

, 0)e

im�'(t)e

im⌦'tp⇤

p

tt

(�) =

X

`,m

¯

h

`m

tt

(t, r

p

)

¯

Y

`m

(✓

p

,'

p

)

¯

Y

`m

(✓

p

,'

p

) = Y

`m

(✓

p

,'

p

)e

�im⌦'t

h

`m,±t

=

f

2

@

r

r

±`m

h

`m,±r

=

r

2f

@

t

±`m

¯

h

`m,±t

=

f

2

@

r

r

¯

±`m

¯

h

`m,±r

=

r

2f

@

t

¯

±`m

� im⌦

'

¯

±`m

¯

±`m

(t, r) =

±`m

(t, r)e

im⌦'t

Integrate order-by-order

⌦'

=1

M

1� e

2

p

!3/2 "1 + 3

e

2

p

+O⇣p

�2⌘#

x =�M⌦

'

�2/3

T

r

'(t)

'(Tr

)

�'(t)

X1 =M

r

X2 = (!r)2

1

⌦' =1

M

1� e2

p

!3/2 "1 + 3

e2

p+O

⇣p�2⌘#

Tr

'(t)

'(Tr)

�'(t)

X1 =M

rX2 = (!r)2

X1 ⇠ X2 ⌧ 1

1

𝑥 as an expansion in 1/𝑝

p =

1� e

2

x

+ 2e

2

+O⇣x

1

r

=

x

3/2

M

1� 3

1� e

2

x +O(x

2

)

'

=

x

3/2

M

dt

p

d�

=

p

2

M

(p� 2� 2e cos�)(1 + e cos�)

2

"(p� 2)

2 � 4e

2

p� 6� 2e cos�

#1/2

1

Invert the expansion

r

=

x

3/2

M

1� 3

1� e

2

x +O(x

2

)

'

=

x

3/2

M

dt

p

d�

=

p

2

M

(p� 2� 2e cos�)(1 + e cos�)

2

"(p� 2)

2 � 4e

2

p� 6� 2e cos�

#1/2

'

p

(�) =

✓4p

p� 6� 2e

◆1/2

F

✓�

2

�����4e

p� 6� 2e

◆1

r

=

x

3/2

M

1� 3

1� e

2

x +O(x

2

)

'

=

x

3/2

M

dt

p

d�

=

p

2

M

(p� 2� 2e cos�)(1 + e cos�)

2

"(p� 2)

2 � 4e

2

p� 6� 2e cos�

#1/2

'

p

(�) =

✓4p

p� 6� 2e

◆1/2

F

✓�

2

�����4e

p� 6� 2e

1

Fundamental frequencies

Homogeneous solutions are found by expanding in

two separate limits

Tr

'(t)

'(Tr)

�'(t)

X1 =M

rX2 = (!r)2

X1 ⇠ X2 ⌧ 1

t

0 t Tr

rmin ! rmin1

Expansion variables Example, 𝑙 = 2, through 1PN

Tr

'(t)

'(Tr)

�'(t)

X1 =M

rX2 = (!r)2

X1 ⇠ X2 ⌧ 1

R+ = � i

16X2c2 � i(10X1 +X2)

96X2c0 +O

⇣c�2

1R� =

i

384X41pX2

c9 � ipX2

5376X41

c7 +O⇣c5⌘

t

0 t Tr

rmin ! rmin

` = 2

⌦r =2⇡

Tr

⌦' ='(Tr)

Tr

�'(t) = '(t)� ⌦'t

2

"d2

dr2⇤+ !2 � V`(r)

#R`!(r) = 0

fd

dr

✓fd

dr

◆+ !2 � Vl(r)

�Xlm!(r) = 0

3

Odd parity, homogenous

equation

Use expressions for the position and the

frequency, expanded in both 𝑥 and 𝑒

'

p

(�)

C

±=

1

WT

r

Z 2⇡

0

"1

f

p

X

⌥¯

G(t) +

✓2M

r

2p

f

2p

X

⌥ � 1

f

p

dX

dr

◆¯

F (t)

#e

in⌦r

t

dt

p

d�

d�

�'(�)

r

p

(�) =

hM � eM cos(�) +O �

e

2� i

x

�1

+

h2e

2M � 2e

3M cos(�) +O �

e

4� i

x

0+O �

x

1�.

(p, e) = (10, 0.5)

! =

(m + n)

M

x

3/2

+

"�3n

M

� 3ne

2

M

+O⇣e

3

⌘#x

5/2

+O⇣x

3

⌘.

R

+

= � i

16!

2

r

2

p

c

2 � 1

96

i

10M

!

2

r

3

p

+ 1

!c

0

+O⇣c

�2

R

�=

ir

3

p

384M

4

!

c

9 � i!r

5

p

5376M

4

c

7

+O⇣c

5

R

+=

� i

16(m + n)

2� i cos(�)e

8(m + n)

2+O �e2�

�x

�1

+

"�i

�m

3+ 3m

2n + 3mn

2+ 10m + n

3+ 46n

96(m + n)

3� ie(5m + 17n) cos(�)

16(m + n)

3+O �e2�

#x

0+O �x1�

Spectrum from source’s Fourier seriesR

+

= � i

16!

2

r

2

p

c

2 � 1

96

i

10M

!

2

r

3

p

+ 1

!c

0

+O⇣c

�2

R

�=

ir

3

p

384M

4

!

c

9 � i!r

5

p

5376M

4

c

7

+O⇣c

5

R

+=

� i

16(m + n)

2� i cos(�)e

8(m + n)

2+O �e2�

�x

�1

+

"�i

�m

3+ 3m

2n + 3mn

2+ 10m + n

3+ 46n

96(m + n)

3� ie(5m + 17n) cos(�)

16(m + n)

3+O �e2�

#x

0+O �x1�

R

±`mn

(r) ⌘ C

±`mn

ˆ

R

±`mn

(r)

±`m

(t, r) =

X

n

C

±`mn

ˆ

R

±`mn

(r) e

�i!t

r > 2M

R

�=

i

384(m+ n)

� i cos(�)e

128(m+ n)

+O �e

2��

x

�9/2

+

"�i

(m+ n)

3 � 42n

5376(m+ n)

2+

i

�5m

3+ 15nm

2+ 15n

2m+ 5n

3 � 126n

�cos(�)e

5376(m+ n)

2+O �

e

2�#x

�7/2+O

⇣x

�5/2⌘

¯

G

o

2m =

p5⇡µ

3M

(m� 3)

s(2�m)!

(2 +m)!

P

m

3

(h2 +

�e

i�

(2� 2m) + 2e

�i�

(m+ 1)

�e+O �

e

2� i

x

3/2

+

h� 1 +

�2e

�i�

(m� 2)� 2e

i�

(m+ 2)

�e+O �

e

2� i

x

5/2+O

⇣x

7/2⌘)

R

+=

� i

16(m+ n)

2� i cos(�)e

8(m+ n)

2+O �

e

2��

x

�1

+

"�i

�m

3+ 3m

2n+ 3mn

2+ 10m+ n

3+ 46n

96(m+ n)

3� ie(5m+ 17n) cos(�)

16(m+ n)

3+O �

e

2�#x

0+O �

x

1�

R

±`mn

(r) ⌘ C

±`mn

ˆ

R

±`mn

(r)

±`m

(t, r) =

X

n

C

±`mn

ˆ

R

±`mn

(r) e

�i!t

r > 2M

Homogeneous solutions, odd parity, 𝑙=2, generic 𝑚,𝑛

Normalized frequency domain solutions are found for

generic 𝑚 and 𝑛R

+2mn = µ

s(2�m)!

(2 +m)!

sin(n⇡)p5⇡

(�8 ((m� 3)P

m3 )

3n

+

✓8(m� 3)(2m� n)

3 (n

2 � 1)

� 16(m� 3) cos(�)

3n

◆P

m3 e+O �e2�

�px

+

"� 2 ((m� 3) (5m

2+ 10nm+ 5n

2+ 98)P

m3 )

63n

+

2(m� 3) (10m

3+ 33nm

2+ 36n

2m+ 511m+ 13n

3 � 287n)

63 (n

2 � 1)

+

4(m� 3) (3m

2+ 6nm+ 3n

2 � 56) cos(�)

21n

!P

m3 e+O �e2�

#x

3/2+O �x2

�)

C

+2mn = µ

s(2�m)!

(2 +m)!

sin(n⇡)p5⇡

(�128i(m� 3)(m+ n)

2P

m3

3n

+

128i(m� 3)(2m� n)(m+ n)

2P

m3 e

3 (n

2 � 1)

+O �e2��x

3/2

+

"32i(m� 3) (3m

4+ 12nm

3+ 2 (9n

2+ 7)m

2+ 4n (3n

2+ 49)m+ n

2(3n

2+ 182))P

m3

21n

� 32i(m� 3)(m+ n) (6m

4+ 9nm

3 � (9n

2+ 77)m

2 � 7n (3n

2 � 44)m� n

2(9n

2+ 119))P

m3 e

21 (n

2 � 1)

+O �e2�#x

5/2+O �x3

�)

R

±`mn

(�) = C

±`mn

ˆ

R

±`mn

(�)

p = 10

e = 0.5

'

,⌦

r

E ,Jr

p

(�), r

p

(�), t

p

(�), �'(�)

ˆ

R

e/o,±`mn

(�)

@

r

ˆ

R

e/o,±`mn

(�)

@

2r

ˆ

R

e/o,±`mn

(�)

¯

G

e/o

`m

(�),

¯

F

e/o

`m

(�)

C

e/o,±`mn

R

e/o,±`mn

(�)

@

r

R

e/o,±`mn

(�)

@

2r

R

e/o,±`mn

(�)

¯

e/o,±`m

(�)

@

t

¯

e/o,±`m

(�), @

2t

¯

e/o,±`m

(�)

@

r

¯

e/o,±`m

(�), @

2r

¯

e/o,±`m

(�)

.

.

.

R

+2mn = µ

s(2�m)!

(2 +m)!

sin(n⇡)p5⇡

(�8 ((m� 3)P

m3 )

3n

+

✓8(m� 3)(2m� n)

3 (n

2 � 1)

� 16(m� 3) cos(�)

3n

◆P

m3 e+O �e2�

�px

+

"� 2 ((m� 3) (5m

2+ 10nm+ 5n

2+ 98)P

m3 )

63n

+

2(m� 3) (10m

3+ 33nm

2+ 36n

2m+ 511m+ 13n

3 � 287n)

63 (n

2 � 1)

+

4(m� 3) (3m

2+ 6nm+ 3n

2 � 56) cos(�)

21n

!P

m3 e+O �e2�

#x

3/2+O �x2

�)

C

+2mn = µ

s(2�m)!

(2 +m)!

sin(n⇡)p5⇡

(�128i(m� 3)(m+ n)

2P

m3

3n

+

128i(m� 3)(2m� n)(m+ n)

2P

m3 e

3 (n

2 � 1)

+O �e2��x

3/2

+

"32i(m� 3) (3m

4+ 12nm

3+ 2 (9n

2+ 7)m

2+ 4n (3n

2+ 49)m+ n

2(3n

2+ 182))P

m3

21n

� 32i(m� 3)(m+ n) (6m

4+ 9nm

3 � (9n

2+ 77)m

2 � 7n (3n

2 � 44)m� n

2(9n

2+ 119))P

m3 e

21 (n

2 � 1)

+O �e2�#x

5/2+O �x3

�)

FD extended homogeneous solutions, odd parity, 𝑙=2, generic 𝑚,𝑛

C

±`mn

=

1

W

`mn

T

r

Z 2⇡

0

"

1

f

p

ˆ

R

⌥`mn

(�)

¯

G

`m

(�)+

2M

r

2p

f

2p

ˆ

R

⌥`mn

(�)� 1

f

p

d

ˆ

R

⌥`mn

(�)

dr

!

¯

F

`m

(�)

#

e

in⌦rtp(�) dtp

d�

d�

e

9

e

5

p = 10

6

e = 0.01

x = 10

�6

p = 10

6

e = 0.2

x = 0.96⇥ 10

�6

log10

p

22,+tr

(�) residuals

log10

p

22,�tr

(�) residuals

¯

G

`m

(�) = 8

p⇡

µ

M

(`�m+ 1)

(`� 1)`(`+ 1)(`+ 2)

s

(2`+ 1)(`�m)!

(m+ `)!

P

m

`+1

⇥(

h

� 2 +

2e

i�

(m� 1)� 2e

�i�

(m+ 1)

e+O �e2�i

x

3/2

+

h

1 +

e

�i�

(4� 2m) + 2e

i�

(m+ 2)

e+O �e2�i

x

5/2+O �x7/2

)

x

3/2

The finite-order 𝒆 expansion truncates the sum over

harmonics

¯

±`m(t, r) =

X

n

R

±`mn(r) e

�in⌦rt

n R

+2mn(�)

�3 0

�2 �µ3

q

⇡(2�m)!5(2+m)! (m� 3) (4m

2 �m� 2)P

m3 e

2

�1 �4µ3

q

⇡(2�m)!5(2+m)! (m� 3)(�2m� 1)P

m3

h

e+ 2e

2cos(�)

i

0 �8µ3

q

⇡(2�m)!5(2+m)! (m� 3)P

m3

n

1 + 2e cos(�) + e

2⇥

2�m

2+ cos

2(�)

o

1 �4µ3

q

⇡(2�m)!5(2+m)! (m� 3)(2m� 1)P

m3

h

e+ 2e

2cos(�)

i

2 �µ3

q

⇡(2�m)!5(2+m)! (m� 3) (4m

2+m� 2)P

m3 e

2

3 0

R

+2mn = µ

s

(2�m)!

(2 +m)!

sin(n⇡)p5⇡

(

�8 ((m� 3)P

m3 )

3n

+

8(m� 3)(2m� n)

3 (n

2 � 1)

� 16(m� 3) cos(�)

3n

P

m3 e+O �e2�

�px

+

"

� 2 ((m� 3) (5m

2+ 10nm+ 5n

2+ 98)P

m3 )

63n

+

2(m� 3) (10m

3+ 33nm

2+ 36n

2m+ 511m+ 13n

3 � 287n)

63 (n

2 � 1)

+

4(m� 3) (3m

2+ 6nm+ 3n

2 � 56) cos(�)

21n

!

P

m3 e+O �e2�

#

x

3/2+O �x2

)

C

+2mn = µ

s

(2�m)!

(2 +m)!

sin(n⇡)p5⇡

(

�128i(m� 3)(m+ n)

2P

m3

3n

+

128i(m� 3)(2m� n)(m+ n)

2P

m3 e

3 (n

2 � 1)

+O �e2��

x

3/2

+

"

32i(m� 3) (3m

4+ 12nm

3+ 2 (9n

2+ 7)m

2+ 4n (3n

2+ 49)m+ n

2(3n

2+ 182))P

m3

21n

� 32i(m� 3)(m+ n) (6m

4+ 9nm

3 � (9n

2+ 77)m

2 � 7n (3n

2 � 44)m� n

2(9n

2+ 119))P

m3 e

21 (n

2 � 1)

+O �e2�#

x

5/2+O �x3

)

p

`m,±µ⌫

(�)

@

t

p

`m,±µ⌫

(�)

@

r

p

`m,±µ⌫

(�)

¯

±`m

(�) =

X

n

R

±`mn

(�) e

�in⌦rtp(�)

n R

+2mn

(�)

�3 0

�2 �µ

3

q

⇡(2�m)!5(2+m)! (m� 3) (4m

2 �m� 2)P

m

3 e

2

�1 �4µ3

q

⇡(2�m)!5(2+m)! (m� 3)(�2m� 1)P

m

3

h

e+ 2e

2cos(�)

i

0 �8µ3

q

⇡(2�m)!5(2+m)! (m� 3)P

m

3

n

1 + 2e cos(�) + e

2⇥

2�m

2+ cos

2(�)

o

1 �4µ3

q

⇡(2�m)!5(2+m)! (m� 3)(2m� 1)P

m

3

h

e+ 2e

2cos(�)

i

2 �µ

3

q

⇡(2�m)!5(2+m)! (m� 3) (4m

2+m� 2)P

m

3 e

2

3 0

R

+2mn

= µ

s

(2�m)!

(2 +m)!

sin(n⇡)p5⇡

(

�8 ((m� 3)P

m

3 )

3n

+

8(m� 3)(2m� n)

3 (n

2 � 1)

� 16(m� 3) cos(�)

3n

P

m

3 e+O �e2��p

x

+

"

� 2 ((m� 3) (5m

2+ 10nm+ 5n

2+ 98)P

m

3 )

63n

+

2(m� 3) (10m

3+ 33nm

2+ 36n

2m+ 511m+ 13n

3 � 287n)

63 (n

2 � 1)

+

4(m� 3) (3m

2+ 6nm+ 3n

2 � 56) cos(�)

21n

!

P

m

3 e+O �e2�#

x

3/2+O �x2

)

The retarded metric perturbation is computed only once

for each 𝑙 mode

'

,⌦

r

E ,Jr

p

(�), r

p

(�), t

p

(�), �'(�)

ˆ

R

e/o,±`mn

(�)

@

r

ˆ

R

e/o,±`mn

(�)

@

2r

ˆ

R

e/o,±`mn

(�)

¯

G

`m

(�),

¯

F

`m

(�)

C

e/o,±`mn

R

e/o,±`mn

(�)

@

r

R

e/o,±`mn

(�)

@

2r

R

e/o,±`mn

(�)

¯

±`m

(�)

@

t

¯

±`m

(�), @

2t

¯

±`m

(�)

@

r

¯

±`m

(�), @

2r

¯

±`m

(�)

.

.

.

p

`m

µ⌫

(�)

@

t

p

`m

µ⌫

(�)

@

r

p

`m

µ⌫

(�)

Orbit quantities

'

,⌦

r

E ,Jr

p

(�), r

p

(�), t

p

(�), �'(�)

ˆ

R

e/o,±`mn

(�)

@

r

ˆ

R

e/o,±`mn

(�)

@

2r

ˆ

R

e/o,±`mn

(�)

¯

G

`m

(�),

¯

F

`m

(�)

C

e/o,±`mn

R

e/o,±`mn

(�)

@

r

R

e/o,±`mn

(�)

@

2r

R

e/o,±`mn

(�)

¯

±`m

(�)

@

t

¯

±`m

(�), @

2t

¯

±`m

(�)

@

r

¯

±`m

(�), @

2r

¯

±`m

(�)

.

.

.

p

`m

µ⌫

(�)

@

t

p

`m

µ⌫

(�)

@

r

p

`m

µ⌫

(�)

Norm. coeffs.

'

,⌦

r

E ,Jr

p

(�), r

p

(�), t

p

(�), �'(�)

ˆ

R

e/o,±`mn

(�)

@

r

ˆ

R

e/o,±`mn

(�)

@

2r

ˆ

R

e/o,±`mn

(�)

¯

G

`m

(�),

¯

F

`m

(�)

C

e/o,±`mn

R

e/o,±`mn

(�)

@

r

R

e/o,±`mn

(�)

@

2r

R

e/o,±`mn

(�)

¯

±`m

(�)

@

t

¯

±`m

(�), @

2t

¯

±`m

(�)

@

r

¯

±`m

(�), @

2r

¯

±`m

(�)

.

.

.

p

`m

µ⌫

(�)

@

t

p

`m

µ⌫

(�)

@

r

p

`m

µ⌫

(�)

FD particular sols. Metric perturbation

'

,⌦

r

E ,Jr

p

(�), r

p

(�), t

p

(�), �'(�)

ˆ

R

e/o,±`mn

(�)

@

r

ˆ

R

e/o,±`mn

(�)

@

2r

ˆ

R

e/o,±`mn

(�)

¯

G

e/o

`m

(�),

¯

F

e/o

`m

(�)

C

e/o,±`mn

R

e/o,±`mn

(�)

@

r

R

e/o,±`mn

(�)

@

2r

R

e/o,±`mn

(�)

¯

e/o,±`m

(�)

@

t

¯

e/o,±`m

(�), @

2t

¯

e/o,±`m

(�)

@

r

¯

e/o,±`m

(�), @

2r

¯

e/o,±`m

(�)

.

.

.

p

`m,±µ⌫

(�)

@

t

p

`m,±µ⌫

(�)

@

r

p

`m,±µ⌫

(�)

TD particular sols.

'

,⌦

r

E ,Jr

p

(�), r

p

(�), t

p

(�), �'(�)

ˆ

R

e/o,±`mn

(�)

@

r

ˆ

R

e/o,±`mn

(�)

@

2r

ˆ

R

e/o,±`mn

(�)

¯

G

e/o

`m

(�),

¯

F

e/o

`m

(�)

C

e/o,±`mn

R

e/o,±`mn

(�)

@

r

R

e/o,±`mn

(�)

@

2r

R

e/o,±`mn

(�)

¯

e/o,±`m

(�)

@

t

¯

e/o,±`m

(�), @

2t

¯

e/o,±`m

(�)

@

r

¯

e/o,±`m

(�), @

2r

¯

e/o,±`m

(�)

.

.

.

p

`m,±µ⌫

(�)

@

t

p

`m,±µ⌫

(�)

@

r

p

`m,±µ⌫

(�)

'

,⌦

r

E ,Jr

p

(�), r

p

(�), t

p

(�), �'(�)

ˆ

R

e/o,±`mn

(�)

@

r

ˆ

R

e/o,±`mn

(�)

@

2r

ˆ

R

e/o,±`mn

(�)

¯

G

`m

(�),

¯

F

`m

(�)

C

e/o,±`mn

R

e/o,±`mn

(�)

@

r

R

e/o,±`mn

(�)

@

2r

R

e/o,±`mn

(�)

¯

±`m

(�)

@

t

¯

±`m

(�), @

2t

¯

±`m

(�)

@

r

¯

±`m

(�), @

2r

¯

±`m

(�)

.

.

.

p

`m

µ⌫

(�)

@

t

p

`m

µ⌫

(�)

@

r

p

`m

µ⌫

(�)

Homog. sols.

Source terms

'

,⌦

r

E ,Jr

p

(�), r

p

(�), t

p

(�), �'(�)

ˆ

R

e/o,±`mn

(�)

@

r

ˆ

R

e/o,±`mn

(�)

@

2r

ˆ

R

e/o,±`mn

(�)

¯

G

e/o

`m

(�),

¯

F

e/o

`m

(�)

C

e/o,±`mn

R

e/o,±`mn

(�)

@

r

R

e/o,±`mn

(�)

@

2r

R

e/o,±`mn

(�)

¯

e/o,±`m

(�)

@

t

¯

e/o,±`m

(�), @

2t

¯

e/o,±`m

(�)

@

r

¯

e/o,±`m

(�), @

2r

¯

e/o,±`m

(�)

.

.

.

p

`m,±µ⌫

(�)

@

t

p

`m,±µ⌫

(�)

@

r

p

`m,±µ⌫

(�)

Metric perturbation expressions are remarkably simple

p

22,+tt

=

µ

M

3

4

+

✓3e

�i�

8

+

3e

i�

8

◆e +O �

e

2��

x

+

µ

M

�149

56

+

✓�229

112

e

�i� � 437e

i�

112

◆e +O �

e

2��

x

2+O �

x

3�

p

22,�tt

=

µ

M

3

4

+

✓3e

�i�

8

+

3e

i�

8

◆e +O �

e

2��

x

+

µ

M

�149

56

+

✓�509

112

e

�i� � 157e

i�

112

◆e +O �

e

2��

x

2+O �

x

3�

�π�

π�π�

�π

�����

�����

�����

�����

Re

hp

22

tt

(�)

i

Im

hp

22

tt

(�)

i

t

p

(�) =

Z�

0

p

2

M

(p� 2� 2e cos�

0)(1 + e cos�

0)

2

"(p� 2)

2 � 4e

2

p� 6� 2e cos�

0

#1/2

d�

0

r

p

(�) =

hM �M cos(�)e +O

⇣e

2

⌘ ix

�1

+

h2e

2

M � 2e

3

M cos(�) +O⇣e

4

⌘ ix

0

+O⇣x

1

⌘.

(p, e) = (10, 0.5)

p = 10

e = 0.5

x = 0.08

p =

1� e

2

x

+ 2e

2

+O⇣x

1

1

We see convergence in 𝑥 for small values of 𝑒

π�

π �π�

�π

-��

-��

-�

-�

-�

-��� �����

�����

p = 1000

e = 0.01

x ⇡ 0.001

log

10

hp

22

tt

res.

i

p

22

tt

(�)

Re

hp

22

tt

(�)

i

Im

hp

22

tt

(�)

i

t

p

(�) =

Z�

0

p

2

M

(p� 2� 2e cos�

0)(1 + e cos�

0)

2

"(p� 2)

2 � 4e

2

p� 6� 2e cos�

0

#1/2

d�

0

p = 1000

e = 0.01

x ⇡ 0.001

log

10

hp

22

tt

residuals

i

p

22

tt

(�)

Re

hp

22

tt

(�)

i

Im

hp

22

tt

(�)

i

t

p

(�) =

Z�

0

p

2

M

(p� 2� 2e cos�

0)(1 + e cos�

0)

2

"(p� 2)

2 � 4e

2

p� 6� 2e cos�

0

#1/2

d�

0

Sometimes the convergence with 𝑒 stalls

p = 10

6

e = 0.2

x = 0.96⇥ 10

�6

log10

p

22,+tr

residuals

log10

p

22,�tr

residuals

¯

G

`m

(�) = 8

p⇡

µ

M

(`�m+ 1)

(`� 1)`(`+ 1)(`+ 2)

s

(2`+ 1)(`�m)!

(m+ `)!

P

m

`+1

⇥(

h

� 2 +

2e

i�

(m� 1)� 2e

�i�

(m+ 1)

e+O �

e

2�

i

x

3/2

+

h

1 +

e

�i�

(4� 2m) + 2e

i�

(m+ 2)

e+O �

e

2�

i

x

5/2+O �

x

7/2�

)

x

3/2

R

±`mn

(�) = C

±`mn

ˆ

R

±`mn

(�)

p = 10

e = 0.5

'

,⌦

r

E ,Jr

p

(�), r

p

(�), t

p

(�), �'(�)

������������ ������ � � � � � � � � � ��

π�

π �π�

�π

-�

-�

-�

p = 10

6

e = 0.01

x = 10

�6

p = 10

6

e = 0.2

x = 0.96⇥ 10

�6

log10

p

22,+tr

(�) residuals

log10

p

22,�tr

(�) residuals

¯

G

`m

(�) = 8

p⇡

µ

M

(`�m+ 1)

(`� 1)`(`+ 1)(`+ 2)

s

(2`+ 1)(`�m)!

(m+ `)!

P

m

`+1

⇥(

h

� 2 +

2e

i�

(m� 1)� 2e

�i�

(m+ 1)

e+O �

e

2�

i

x

3/2

+

h

1 +

e

�i�

(4� 2m) + 2e

i�

(m+ 2)

e+O �

e

2�

i

x

5/2+O �

x

7/2�

)

x

3/2

R

±`mn

(�) = C

±`mn

ˆ

R

±`mn

(�)

p = 10

e = 0.5

π�

π�π�

�π

-�

-�

-�

-�

-�

p = 10

6

e = 0.01

x = 10

�6

p = 10

6

e = 0.2

x = 0.96⇥ 10

�6

log10

p

22,+tr

(�) residuals

log10

p

22,�tr

(�) residuals

¯

G

`m

(�) = 8

p⇡

µ

M

(`�m+ 1)

(`� 1)`(`+ 1)(`+ 2)

s

(2`+ 1)(`�m)!

(m+ `)!

P

m

`+1

⇥(

h

� 2 +

2e

i�

(m� 1)� 2e

�i�

(m+ 1)

e+O �

e

2�

i

x

3/2

+

h

1 +

e

�i�

(4� 2m) + 2e

i�

(m+ 2)

e+O �

e

2�

i

x

5/2+O �

x

7/2�

)

x

3/2

R

±`mn

(�) = C

±`mn

ˆ

R

±`mn

(�)

p = 10

e = 0.5

e

9

e

5

p = 10

6

e = 0.01

x = 10

�6

p = 10

6

e = 0.2

x = 0.96⇥ 10

�6

log10

p

22,+tr

(�) residuals

log10

p

22,�tr

(�) residuals

¯

G

`m

(�) = 8

p⇡

µ

M

(`�m+ 1)

(`� 1)`(`+ 1)(`+ 2)

s

(2`+ 1)(`�m)!

(m+ `)!

P

m

`+1

⇥(

h

� 2 +

2e

i�

(m� 1)� 2e

�i�

(m+ 1)

e+O �

e

2�

i

x

3/2

+

h

1 +

e

�i�

(4� 2m) + 2e

i�

(m+ 2)

e+O �

e

2�

i

x

5/2+O �

x

7/2�

)

x

3/2

R

±`mn

(�) = C

±`mn

ˆ

R

±`mn

(�)

e

9

e

5

p = 10

6

e = 0.01

x = 10

�6

p = 10

6

e = 0.2

x = 0.96⇥ 10

�6

log10

p

22,+tr

(�) residuals

log10

p

22,�tr

(�) residuals

¯

G

`m

(�) = 8

p⇡

µ

M

(`�m+ 1)

(`� 1)`(`+ 1)(`+ 2)

s

(2`+ 1)(`�m)!

(m+ `)!

P

m

`+1

⇥(

h

� 2 +

2e

i�

(m� 1)� 2e

�i�

(m+ 1)

e+O �

e

2�

i

x

3/2

+

h

1 +

e

�i�

(4� 2m) + 2e

i�

(m+ 2)

e+O �

e

2�

i

x

5/2+O �

x

7/2�

)

x

3/2

R

±`mn

(�) = C

±`mn

ˆ

R

±`mn

(�)

For small values of 𝑒 the convergence continues

π�

π�π�

�π

-��

-��

-�

������������ ������ � � � � � � � � � ��

π�

π �π�

�π

-��

-��

-��

-�

p = 10

6

e = 0.01

x = 10

�6

p = 10

6

e = 0.2

x = 0.96⇥ 10

�6

log10

p

22,+tr

residuals

log10

p

22,�tr

residuals

¯

G

`m

(�) = 8

p⇡

µ

M

(`�m+ 1)

(`� 1)`(`+ 1)(`+ 2)

s

(2`+ 1)(`�m)!

(m+ `)!

P

m

`+1

⇥(

h

� 2 +

2e

i�

(m� 1)� 2e

�i�

(m+ 1)

e+O �

e

2�

i

x

3/2

+

h

1 +

e

�i�

(4� 2m) + 2e

i�

(m+ 2)

e+O �

e

2�

i

x

5/2+O �

x

7/2�

)

x

3/2

R

±`mn

(�) = C

±`mn

ˆ

R

±`mn

(�)

p = 10

e = 0.5

p = 10

6

e = 0.01

x = 10

�6

p = 10

6

e = 0.2

x = 0.96⇥ 10

�6

log10

p

22,+tr

(�) residuals

log10

p

22,�tr

(�) residuals

¯

G

`m

(�) = 8

p⇡

µ

M

(`�m+ 1)

(`� 1)`(`+ 1)(`+ 2)

s

(2`+ 1)(`�m)!

(m+ `)!

P

m

`+1

⇥(

h

� 2 +

2e

i�

(m� 1)� 2e

�i�

(m+ 1)

e+O �

e

2�

i

x

3/2

+

h

1 +

e

�i�

(4� 2m) + 2e

i�

(m+ 2)

e+O �

e

2�

i

x

5/2+O �

x

7/2�

)

x

3/2

R

±`mn

(�) = C

±`mn

ˆ

R

±`mn

(�)

p = 10

e = 0.5

p = 10

6

e = 0.01

x = 10

�6

p = 10

6

e = 0.2

x = 0.96⇥ 10

�6

log10

p

22,+tr

(�) residuals

log10

p

22,�tr

(�) residuals

¯

G

`m

(�) = 8

p⇡

µ

M

(`�m+ 1)

(`� 1)`(`+ 1)(`+ 2)

s

(2`+ 1)(`�m)!

(m+ `)!

P

m

`+1

⇥(

h

� 2 +

2e

i�

(m� 1)� 2e

�i�

(m+ 1)

e+O �

e

2�

i

x

3/2

+

h

1 +

e

�i�

(4� 2m) + 2e

i�

(m+ 2)

e+O �

e

2�

i

x

5/2+O �

x

7/2�

)

x

3/2

R

±`mn

(�) = C

±`mn

ˆ

R

±`mn

(�)

p = 10

e = 0.5

Outline

Orbits

Homogeneous solutions

Particular solutions

Black Hole Perturbation Theory

Formalism

Previous work

Analytic PN solutions

Previous work

Numeric PN solutions

Here are specific numerical highlights

Mano, Suzuki & Takasugi

1996 1997

Mano & Takasugi

2014

Shah

Kerr fluxes

Shah, Friedman, & Whiting

Redshift invariant

Outline

Orbits

Homogeneous solutions

Particular solutions

Black Hole Perturbation Theory

Formalism

Previous work

Analytic PN solutions

Previous work

Numeric PN solutions

Our new code can solve the first order field equations

to hundreds of digits

Mathematica for arbitrary precision

dE

dt

22

= 3.24778951144055583601917 . . . 50 more digits . . . 0413022224171085141009521⇥ 10

�100

dE

dt

lm

=

X

n

!

2

64⇡

(l + 2)!

(l � 2)!

|C+lmn

|2

L4 =

1

(1� e

2)

15/2

�323105549467

3178375200

+

232597

4410

�E � 1369

126

2+

39931

294

log(2)� 47385

1568

log(3)

+

�128412398137

23543520

+

4923511

2940

�E � 104549

252

2 � 343177

252

log(2) +

55105839

15680

log(3)

e

2

+

�981480754818517

25427001600

+

142278179

17640

�E � 1113487

504

2+

762077713

5880

log(2)� 2595297591

71680

log(3)

� 15869140625

903168

log(5)

e

4

+

�874590390287699

12713500800

+

318425291

35280

�E � 881501

336

2 � 90762985321

63504

log(2) +

31649037093

1003520

log(3)

+

10089048828125

16257024

log(5)

e

6

+ d8e8+ d10e

10+ d12e

12+ d14e

14+ d16e

16+ d18e

18+ d20e

20+ d22e

22+ d24e

24+ d26e

26

+ d28e28

+ d30e30

+ d32e32

+ d34e34

+ d36e36

+ d38e38

+ d40e40

+ · · ·�

L7/2 = �16285⇡

504

1

(1� e

2)

7

1 + a2e2+ a4e

4+ a6e

6+ · · · �

dE

dt

=

dE

dt

3PN

+

dE

dt

N

L7/2x7/2

+ x

4⇣

L4 + log(x)L4L

+ x

9/2⇣

L9/2 + log(x)L9/2L

+ x

5⇣

L5 + log(x)L5L

+ x

11/2⇣

L11/2 + log(x)L11/2L

+ x

6⇣

L6 + log(x)L6L + log

2(x)L6L2

+ x

13/2⇣

L13/2 + log(x)L13/2L

+ x

7⇣

L7 + log(x)L7L + log

2(x)L7L2

p = 1000

p = 10

20

dE

dt

22

= 3.24778951144055583601917 . . . 50 more digits . . . 0413022224171085141009521⇥ 10

�100

dE

dt

lm

=

X

n

!

2

64⇡

(l + 2)!

(l � 2)!

|C+lmn

|2

L4 =

1

(1� e

2)

15/2

�323105549467

3178375200

+

232597

4410

�E � 1369

126

2+

39931

294

log(2)� 47385

1568

log(3)

+

�128412398137

23543520

+

4923511

2940

�E � 104549

252

2 � 343177

252

log(2) +

55105839

15680

log(3)

e

2

+

�981480754818517

25427001600

+

142278179

17640

�E � 1113487

504

2+

762077713

5880

log(2)� 2595297591

71680

log(3)

� 15869140625

903168

log(5)

e

4

+

�874590390287699

12713500800

+

318425291

35280

�E � 881501

336

2 � 90762985321

63504

log(2) +

31649037093

1003520

log(3)

+

10089048828125

16257024

log(5)

e

6

+ d8e8+ d10e

10+ d12e

12+ d14e

14+ d16e

16+ d18e

18+ d20e

20+ d22e

22+ d24e

24+ d26e

26

+ d28e28

+ d30e30

+ d32e32

+ d34e34

+ d36e36

+ d38e38

+ d40e40

+ · · ·�

L7/2 = �16285⇡

504

1

(1� e

2)

7

1 + a2e2+ a4e

4+ a6e

6+ · · · �

dE

dt

=

dE

dt

3PN

+

dE

dt

N

L7/2x7/2

+ x

4⇣

L4 + log(x)L4L

+ x

9/2⇣

L9/2 + log(x)L9/2L

+ x

5⇣

L5 + log(x)L5L

+ x

11/2⇣

L11/2 + log(x)L11/2L

+ x

6⇣

L6 + log(x)L6L + log

2(x)L6L2

+ x

13/2⇣

L13/2 + log(x)L13/2L

+ x

7⇣

L7 + log(x)L7L + log

2(x)L7L2

p = 1000

p = 10

20

e = 0.1

(1)

"d

2

dr

2⇤+ !

2 � V

`

(r)

#R

`mn

(r) = Z

`mn

(r)

! ⌘ !

mn

= m⌦

'

+ n⌦

r

`m

(t, r) =

1X

n=�1R

`mn

(r) e

�i!t

S

`m

(t, r) =

1X

n=�1Z

`mn

(r) e

�i!t

Energy flux from an eccentric binary is known to 3PN

8

Once the C

±lmn

are determined, the energy fluxes at infinity can be calculated using

dE

dt

=X

lmn

!

2

64⇡

(l + 2)!

(l � 2)!|C+

lmn

|2, (3.26)

given our initial unit normalization of the modes X±lmn

.

IV. CONFIRMING ECCENTRIC ORBIT FLUXES THROUGH 3PN RELATIVE ORDER

The average energy and angular momentum fluxes from an eccentric binary are known to 3PN relative order[49–51] (see also the review by Blanchet [20]). The expressions are given in terms of three parameters; e.g., the

gauge-invariant post-Newtonian compactness parameter x ⌘ (M⌦'

)2/3, the eccentricity, and the symmetric massratio ⌫ = m

1

m

2

/(m1

+m

2

)2 ' µ/M . In this paper we ignore contributions that are higher order in the mass ratiothan O(⌫2), as these would require a second-order GSF calculation to reach. The energy flux is composed of a set ofeccentricity-dependent coe�cients. Its form through 3PN relative order is

dE

dt

3PN

=32

5

µ

M

2

x

5

I0

+ x I1

+ x

3/2 K3/2

+ x

2 I2

+ x

5/2 K5/2

+ x

3 I3

+ x

3 K3

. (4.1)

The In

are instantaneous flux functions [of eccentricity and (potentially) log(x)] that have known closed-form ex-pressions (summarized below). The K

n

coe�cients are hereditary, or tail, contributions (without apparently closedforms). In a subsequent section, we derive new expansions for these hereditary terms, which are useful at minimumfor BHP/PN comparisons.

A. Known instantaneous energy flux terms

For later reference and use, we list here the instantaneous energy flux functions, expressed in modified harmonic(MH) gauge [20, 49, 51] and in terms of e

t

, a particular definition of eccentricity (“time eccentricity”) used in thequasi-Keplerian (QK) representation [52] of the orbit (see also [20, 49–51, 53–55])

I0

=1

(1� e

2

t

)7/2

1 +73

24e

2

t

+37

96e

4

t

, (4.2)

I1

=1

(1� e

2

t

)9/2

�1247

336+

10475

672e

2

t

+10043

384e

4

t

+2179

1792e

6

t

, (4.3)

I2

=1

(1� e

2

t

)11/2

�203471

9072� 3807197

18144e

2

t

� 268447

24192e

4

t

+1307105

16128e

6

t

+86567

64512e

8

t

+1

(1� e

2

t

)5

35

2+

6425

48e

2

t

+5065

64e

4

t

+185

96e

6

t

,

(4.4)

I3

=1

(1� e

2

t

)13/2

2193295679

9979200+

20506331429

19958400e

2

t

� 3611354071

13305600e

4

t

+4786812253

26611200e

6

t

+21505140101

141926400e

8

t

� 8977637

11354112e

10

t

+1

(1� e

2

t

)6

�14047483

151200+

36863231

100800e

2

t

+759524951

403200e

4

t

+1399661203

2419200e

6

t

+185

48e

8

t

+1712

105log

"

x

x

0

1 +p

1� e

2

t

2(1� e

2

t

)

#

F (et

),

(4.5)

where the function F (et

) in Eqn. (4.5) has the following closed-form [49]

F (et

) =1

(1� e

2

t

)13/2

1 +85

6e

2

t

+5171

192e

4

t

+1751

192e

6

t

+297

1024e

8

t

. (4.6)

Peters & Mathews, 1963

8

Once the C

±lmn

are determined, the energy fluxes at infinity can be calculated using

dE

dt

=X

lmn

!

2

64⇡

(l + 2)!

(l � 2)!|C+

lmn

|2, (3.26)

given our initial unit normalization of the modes X±lmn

.

IV. CONFIRMING ECCENTRIC ORBIT FLUXES THROUGH 3PN RELATIVE ORDER

The average energy and angular momentum fluxes from an eccentric binary are known to 3PN relative order[49–51] (see also the review by Blanchet [20]). The expressions are given in terms of three parameters; e.g., the

gauge-invariant post-Newtonian compactness parameter x ⌘ (M⌦'

)2/3, the eccentricity, and the symmetric massratio ⌫ = m

1

m

2

/(m1

+m

2

)2 ' µ/M . In this paper we ignore contributions that are higher order in the mass ratiothan O(⌫2), as these would require a second-order GSF calculation to reach. The energy flux is composed of a set ofeccentricity-dependent coe�cients. Its form through 3PN relative order is

dE

dt

3PN

=32

5

µ

M

2

x

5

I0

+ x I1

+ x

3/2 K3/2

+ x

2 I2

+ x

5/2 K5/2

+ x

3 I3

+ x

3 K3

. (4.1)

The In

are instantaneous flux functions [of eccentricity and (potentially) log(x)] that have known closed-form ex-pressions (summarized below). The K

n

coe�cients are hereditary, or tail, contributions (without apparently closedforms). In a subsequent section, we derive new expansions for these hereditary terms, which are useful at minimumfor BHP/PN comparisons.

A. Known instantaneous energy flux terms

For later reference and use, we list here the instantaneous energy flux functions, expressed in modified harmonic(MH) gauge [20, 49, 51] and in terms of e

t

, a particular definition of eccentricity (“time eccentricity”) used in thequasi-Keplerian (QK) representation [52] of the orbit (see also [20, 49–51, 53–55])

I0

=1

(1� e

2

t

)7/2

1 +73

24e

2

t

+37

96e

4

t

, (4.2)

I1

=1

(1� e

2

t

)9/2

�1247

336+

10475

672e

2

t

+10043

384e

4

t

+2179

1792e

6

t

, (4.3)

I2

=1

(1� e

2

t

)11/2

�203471

9072� 3807197

18144e

2

t

� 268447

24192e

4

t

+1307105

16128e

6

t

+86567

64512e

8

t

+1

(1� e

2

t

)5

35

2+

6425

48e

2

t

+5065

64e

4

t

+185

96e

6

t

,

(4.4)

I3

=1

(1� e

2

t

)13/2

2193295679

9979200+

20506331429

19958400e

2

t

� 3611354071

13305600e

4

t

+4786812253

26611200e

6

t

+21505140101

141926400e

8

t

� 8977637

11354112e

10

t

+1

(1� e

2

t

)6

�14047483

151200+

36863231

100800e

2

t

+759524951

403200e

4

t

+1399661203

2419200e

6

t

+185

48e

8

t

+1712

105log

"

x

x

0

1 +p

1� e

2

t

2(1� e

2

t

)

#

F (et

),

(4.5)

where the function F (et

) in Eqn. (4.5) has the following closed-form [49]

F (et

) =1

(1� e

2

t

)13/2

1 +85

6e

2

t

+5171

192e

4

t

+1751

192e

6

t

+297

1024e

8

t

. (4.6)

“Enhances” flux from Hulse-Taylor pulsar (𝑒=0.62) by factor of 12

We confirm previously known PN parameters through

3PN

�80

�70

�60

�50

�40

�30

�20

�10

0

10

0 0.02 0.04 0.06 0.08 0.1

log

(P

Nresiduals)

eccentricity e

Peters-Mathews Flux

hEi � Peters-Mathews = O(1PN)

hEi � 1PN = O(1.5PN)

hEi � 1.5PN = O(2PN)

hEi � 2PN = O(2.5PN)

hEi � 2.5PN = O(3PN)

hEi � 3PN = O(3.5PN)

This was hard

p = 10

20

p

µ⌫

(�),

@p

µ⌫

@t

(�),

@p

µ⌫

@r

(�)

0 ` 10

4 PN, e

10

Z 2⇡

0

dt

p

d�

d�

T

r

= 2⇡M

p

1� e

2

◆3/2

1 +

3 (1� e

2)

p

+O �

p

�2�

T

r

=

2⇡M

x

3/2+

6⇡M

(1� e

2)

px

+O �

x

1/2�

(t, r, ✓,') ! [t

p

(�), r

p

(�), ✓

p

(�),'

p

(�)]

p

tt

(t, r, ✓,') =

X

`,m

h

`m

tt

(t, r)Y

`m

(✓,')

p

tt

(�) =

X

`,m

h

`m

tt

(t

p

, r

p

)Y

`m

(✓

p

,'

p

)

p

tt

(�) =

X

`,m

¯

h

`m

tt

(t

p

, r

p

)e

�im⌦'t⇤ · ⇥Y `m

(✓

p

, 0)e

im�'(t)e

im⌦'tp⇤

p

tt

(�) =

X

`,m

¯

h

`m

tt

(t, r

p

)

¯

Y

`m

(✓

p

,'

p

)

¯

Y

`m

(✓

p

,'

p

) = Y

`m

(✓

p

,'

p

)e

�im⌦'t

h

`m,±t

=

f

2

@

r

r

±`m

h

`m,±r

=

r

2f

@

t

±`m

dE

dt

22

= 3.24778951144055583601917 . . . 50 more digits . . . 0413022224171085141009521⇥ 10

�100

dE

dt

lm

=

X

n

!

2

64⇡

(l + 2)!

(l � 2)!

|C+lmn

|2

L4 =

1

(1� e

2)

15/2

�323105549467

3178375200

+

232597

4410

�E � 1369

126

2+

39931

294

log(2)� 47385

1568

log(3)

+

�128412398137

23543520

+

4923511

2940

�E � 104549

252

2 � 343177

252

log(2) +

55105839

15680

log(3)

e

2

+

�981480754818517

25427001600

+

142278179

17640

�E � 1113487

504

2+

762077713

5880

log(2)� 2595297591

71680

log(3)

� 15869140625

903168

log(5)

e

4

+

�874590390287699

12713500800

+

318425291

35280

�E � 881501

336

2 � 90762985321

63504

log(2) +

31649037093

1003520

log(3)

+

10089048828125

16257024

log(5)

e

6

+ d8e8+ d10e

10+ d12e

12+ d14e

14+ d16e

16+ d18e

18+ d20e

20+ d22e

22+ d24e

24+ d26e

26

+ d28e28

+ d30e30

+ d32e32

+ d34e34

+ d36e36

+ d38e38

+ d40e40

+ · · ·�

L7/2 = �16285⇡

504

1

(1� e

2)

7

1 + a2e2+ a4e

4+ a6e

6+ · · · �

dE

dt

=

dE

dt

3PN

+

32

5

µ

M

⌘2x

5

x

7/2L7/2 + x

4⇣

L4 + log(x)L4L

+ x

9/2⇣

L9/2 + log(x)L9/2L

+ x

5⇣

L5 + log(x)L5L

+ x

11/2⇣

L11/2 + log(x)L11/2L

+ x

6⇣

L6 + log(x)L6L + log

2(x)L6L2

+ x

13/2⇣

L13/2 + log(x)L13/2L

+ x

7⇣

L7 + log(x)L7L + log

2(x)L7L2

dE

dt

=

dE

dt

3PN

+

32

5

µ

M

⌘2x

5

x

7/2L7/2 + x

4⇣

L4 + log(x)L4L

+ x

9/2⇣

L9/2 + log(x)L9/2L

+ x

5⇣

L5 + log(x)L5L

+ x

11/2⇣

L11/2 + log(x)L11/2L

+ x

6⇣

L6 + log(x)L6L + log

2(x)L6L2

+ x

13/2⇣

L13/2 + log(x)L13/2L

+ x

7⇣

L7 + log(x)L7L + log

2(x)L7L2

dE

dt

22

= 3.24778951144055583601917 . . . 50 more digits . . . 0413022224171085141009521⇥ 10

�100

dE

dt

lm

=

X

n

!

2

64⇡

(l + 2)!

(l � 2)!

|C+lmn

|2

L4 =

1

(1� e

2)

15/2

�323105549467

3178375200

+

232597

4410

�E � 1369

126

2+

39931

294

log(2)� 47385

1568

log(3)

+

�128412398137

23543520

+

4923511

2940

�E � 104549

252

2 � 343177

252

log(2) +

55105839

15680

log(3)

e

2

+

�981480754818517

25427001600

+

142278179

17640

�E � 1113487

504

2+

762077713

5880

log(2)� 2595297591

71680

log(3)

� 15869140625

903168

log(5)

e

4

+

�874590390287699

12713500800

+

318425291

35280

�E � 881501

336

2 � 90762985321

63504

log(2) +

31649037093

1003520

log(3)

+

10089048828125

16257024

log(5)

e

6

+ d8e8+ d10e

10+ d12e

12+ d14e

14+ d16e

16+ d18e

18+ d20e

20+ d22e

22+ d24e

24+ d26e

26

+ d28e28

+ d30e30

+ d32e32

+ d34e34

+ d36e36

+ d38e38

+ d40e40

+ · · ·�

L7/2 = �16285⇡

504

1

(1� e

2)

7

1 + a2e2+ a4e

4+ a6e

6+ · · · �

dE

dt

=

dE

dt

3PN

+

32

5

µ

M

⌘2x

5

x

7/2L7/2 + x

4⇣

L4 + log(x)L4L

+ x

9/2⇣

L9/2 + log(x)L9/2L

+ x

5⇣

L5 + log(x)L5L

+ x

11/2⇣

L11/2 + log(x)L11/2L

+ x

6⇣

L6 + log(x)L6L + log

2(x)L6L2

+ x

13/2⇣

L13/2 + log(x)L13/2L

+ x

7⇣

L7 + log(x)L7L + log

2(x)L7L2

dE

dt

=

dE

dt

3PN

+

32

5

µ

M

⌘2x

5

x

7/2L7/2 + x

4⇣

L4 + log(x)L4L

+ x

9/2⇣

L9/2 + log(x)L9/2L

+ x

5⇣

L5 + log(x)L5L

+ x

11/2⇣

L11/2 + log(x)L11/2L

+ x

6⇣

L6 + log(x)L6L + log

2(x)L6L2

+ x

13/2⇣

L13/2 + log(x)L13/2L

+ x

7⇣

L7 + log(x)L7L + log

2(x)L7L2

We found new parameters through 7PN

L7/2 = �16285⇡

504

1

(1� e

2)

7

1 + a2e2+ a4e

4+ a6e

6+ · · · �

dE

dt

=

dE

dt

3PN

+

dE

dt

N

L7/2x7/2

+ x

4⇣

L4 + log(x)L4L

+ x

9/2⇣

L9/2 + log(x)L9/2L

+ x

5⇣

L5 + log(x)L5L

+ x

11/2⇣

L11/2 + log(x)L11/2L

+ x

6⇣

L6 + log(x)L6L + log

2(x)L6L2

+ x

13/2⇣

L13/2 + log(x)L13/2L

+ x

7⇣

L7 + log(x)L7L + log

2(x)L7L2

p = 1000

p = 10

20

p

µ⌫

(�),

@p

µ⌫

@t

(�),

@p

µ⌫

@r

(�)

0 ` 10

4 PN, e

10

Z 2⇡

0

dt

p

d�

d�

T

r

= 2⇡M

p

1� e

2

◆3/2"

1 +

3

1� e

2�

p

+O �

p

�2�

#

T

r

=

2⇡M

x

3/2+

6⇡M

(1� e

2)

px

+O⇣

x

1/2⌘

(t, r, ✓,') ! [t

p

(�), r

p

(�), ✓

p

(�),'

p

(�)]

p

tt

(t, r, ✓,') =

X

`,m

h

`m

tt

(t, r)Y

`m

(✓,')

p

tt

(�) =

X

`,m

h

`m

tt

(t

p

, r

p

)Y

`m

(✓

p

,'

p

)

p

tt

(�) =

X

`,m

¯

h

`m

tt

(t

p

, r

p

)e

�im⌦'t

⇤ ·h

Y

`m

(✓

p

, 0)e

im�'(t)e

im⌦'tp

i

Circular orbit limit Guessing the correct singular behavior extends range of validity

We spanned the two dimensional space of orbits

𝑒 = 0 𝑒 = 0.1

𝑝 = 1010

𝑝 = 1035

1683 orbits

33 eccentricities

51 radii

Each orbit involves solving for hundreds of modes

�300

�250

�200

�150

�100

-100 -50 0 50 100

log

D E1 `m

n

E

Harmonic number n

dE

dt

22

= 3.24778951144055583601917 . . . 50 more digits . . . 0413022224171085141009521⇥ 10

�100

dE

dt

lm

=

X

n

!

2

64⇡

(l + 2)!

(l � 2)!

|C+lmn

|2

L4 =

1

(1� e

2)

15/2

�323105549467

3178375200

+

232597

4410

�E � 1369

126

2+

39931

294

log(2)� 47385

1568

log(3)

+

�128412398137

23543520

+

4923511

2940

�E � 104549

252

2 � 343177

252

log(2) +

55105839

15680

log(3)

e

2

+

�981480754818517

25427001600

+

142278179

17640

�E � 1113487

504

2+

762077713

5880

log(2)� 2595297591

71680

log(3)

� 15869140625

903168

log(5)

e

4

+

�874590390287699

12713500800

+

318425291

35280

�E � 881501

336

2 � 90762985321

63504

log(2) +

31649037093

1003520

log(3)

+

10089048828125

16257024

log(5)

e

6

+ d8e8+ d10e

10+ d12e

12+ d14e

14+ d16e

16+ d18e

18+ d20e

20+ d22e

22+ d24e

24+ d26e

26

+ d28e28

+ d30e30

+ d32e32

+ d34e34

+ d36e36

+ d38e38

+ d40e40

+ · · ·�

L7/2 = �16285⇡

504

1

(1� e

2)

7

1 + a2e2+ a4e

4+ a6e

6+ · · · �

dE

dt

=

dE

dt

3PN

+

dE

dt

N

L7/2x7/2

+ x

4⇣

L4 + log(x)L4L

+ x

9/2⇣

L9/2 + log(x)L9/2L

+ x

5⇣

L5 + log(x)L5L

+ x

11/2⇣

L11/2 + log(x)L11/2L

+ x

6⇣

L6 + log(x)L6L + log

2(x)L6L2

+ x

13/2⇣

L13/2 + log(x)L13/2L

+ x

7⇣

L7 + log(x)L7L + log

2(x)L7L2

p = 1000

p = 10

20

e = 0.1

(1)

PN parameters involve sums of trancendentals

L4 =

1

(1� e

2)

15/2

�323105549467

3178375200

+

232597

4410

�E � 1369

126

2+

39931

294

log(2)� 47385

1568

log(3)

+

�128412398137

23543520

+

4923511

2940

�E � 104549

252

2 � 343177

252

log(2) +

55105839

15680

log(3)

e

2

+

�981480754818517

25427001600

+

142278179

17640

�E � 1113487

504

2+

762077713

5880

log(2)� 2595297591

71680

log(3)

� 15869140625

903168

log(5)

e

4

+

�874590390287699

12713500800

+

318425291

35280

�E � 881501

336

2 � 90762985321

63504

log(2) +

31649037093

1003520

log(3)

+

10089048828125

16257024

log(5)

e

6

+ d8e8+ d10e

10+ d12e

12+ d14e

14+ d16e

16+ d18e

18+ d20e

20+ d22e

22+ d24e

24+ d26e

26

+ d28e28

+ d30e30

+ d32e32

+ d34e34

+ d36e36

+ d38e38

+ d40e40

+ · · ·�

L7/2 = �16285⇡

504

1

(1� e

2)

7

1 + a2e2+ a4e

4+ a6e

6+ · · · �

dE

dt

=

dE

dt

3PN

+

dE

dt

N

L7/2x7/2

+ x

4⇣

L4 + log(x)L4L

+ x

9/2⇣

L9/2 + log(x)L9/2L

+ x

5⇣

L5 + log(x)L5L

+ x

11/2⇣

L11/2 + log(x)L11/2L

+ x

6⇣

L6 + log(x)L6L + log

2(x)L6L2

+ x

13/2⇣

L13/2 + log(x)L13/2L

+ x

7⇣

L7 + log(x)L7L + log

2(x)L7L2

p = 1000

p = 10

20

p

µ⌫

(�),

@p

µ⌫

@t

(�),

@p

µ⌫

@r

(�)

0 ` 10

4 PN, e

10

Thanks to Nathan Johnson-McDaniel

L4 =

1

(1� e

2)

15/2

�323105549467

3178375200

+

232597

4410

�E � 1369

126

2+

39931

294

log(2)� 47385

1568

log(3)

+

�128412398137

23543520

+

4923511

2940

�E � 104549

252

2 � 343177

252

log(2) +

55105839

15680

log(3)

e

2

+

�981480754818517

25427001600

+

142278179

17640

�E � 1113487

504

2+

762077713

5880

log(2)� 2595297591

71680

log(3)

� 15869140625

903168

log(5)

e

4

+

�874590390287699

12713500800

+

318425291

35280

�E � 881501

336

2 � 90762985321

63504

log(2) +

31649037093

1003520

log(3)

+

10089048828125

16257024

log(5)

e

6

+ d8e8+ d10e

10+ d12e

12+ d14e

14+ d16e

16+ d18e

18+ d20e

20+ d22e

22+ d24e

24+ d26e

26

+ d28e28

+ d30e30

+ d32e32

+ d34e34

+ d36e36

+ d38e38

+ d40e40

+ · · ·�

L4 =

1

(1� e

2)

15/2

�323105549467

3178375200

+

232597

4410

�E � 1369

126

2+

39931

294

log(2)� 47385

1568

log(3)

+

�128412398137

23543520

+

4923511

2940

�E � 104549

252

2 � 343177

252

log(2) +

55105839

15680

log(3)

e

2

+

�981480754818517

25427001600

+

142278179

17640

�E � 1113487

504

2+

762077713

5880

log(2)� 2595297591

71680

log(3)

� 15869140625

903168

log(5)

e

4

+

�874590390287699

12713500800

+

318425291

35280

�E � 881501

336

2 � 90762985321

63504

log(2) +

31649037093

1003520

log(3)

+

10089048828125

16257024

log(5)

e

6

+ d8e8+ d10e

10+ d12e

12+ d14e

14+ d16e

16+ d18e

18+ d20e

20+ d22e

22+ d24e

24+ d26e

26

+ d28e28

+ d30e30

+ d32e32

+ d34e34

+ d36e36

+ d38e38

+ d40e40

+ · · ·�

L7/2 = �16285⇡

504

1

(1� e

2)

7

1 + a2e2+ a4e

4+ a6e

6+ · · · �

dE

dt

=

dE

dt

3PN

+

dE

dt

N

L7/2x7/2

+ x

4⇣

L4 + log(x)L4L

+ x

9/2⇣

L9/2 + log(x)L9/2L

+ x

5⇣

L5 + log(x)L5L

+ x

11/2⇣

L11/2 + log(x)L11/2L

+ x

6⇣

L6 + log(x)L6L + log

2(x)L6L2

+ x

13/2⇣

L13/2 + log(x)L13/2L

+ x

7⇣

L7 + log(x)L7L + log

2(x)L7L2

p = 1000

p = 10

20

p

µ⌫

(�),

@p

µ⌫

@t

(�),

@p

µ⌫

@r

(�)

0 ` 10

4 PN, e

10

Found with PSLQ algorithm

New PN parameters are valid well outside the regime

where they were found

Higher order PN residuals

0.60

0.90

�1.3

�1.6

�2.5

�2.2

�4

�4.3

�4.2

�4.5

�5.5

�5.2

�7.1

�7.4

�7.2

�7.5

�8.5

�8.2

�10.6

�10.9

�10.2

�10.5

0 0.2 0.4 0.6

Eccentricity e

0 0.2 0.4 0.6

�11.5

�11.2

Eccentricity e

I0 + O(x)

hEi/hEiC

xI1 + O(x3/2)

0

BBBBBBBBBBBBB@

hEi � I0

1

CCCCCCCCCCCCCA

/hEiC

x

3/2K3/2 + O(x2)

0

BBBBBBBBBBBBB@

hEi � hEi1PN

1

CCCCCCCCCCCCCA

/hEiC

x

2I2 + O(x5/2)

0

BBBBBBBBBBBBB@

hEi � hEi1.5PN

1

CCCCCCCCCCCCCA

/hEiC

x

5/2I5/2 + O(x3)

0

BBBBBBBBBBBBB@

hEi � hEi2PN

1

CCCCCCCCCCCCCA

/hEiC

x

3I3 + O(x7/2)

0

BBBBBBBBBBBBB@

hEi � hEi2.5PN

1

CCCCCCCCCCCCCA

/hEiC

x

7/2L7/2 + O(x4)

0

BBBBBBBBBBBBB@

hEi � hEi3PN

1

CCCCCCCCCCCCCA

/hEiC

x

4L4 + O(x9/2)

0

BBBBBBBBBBBBB@

hEi � hEi3.5PN

1

CCCCCCCCCCCCCA

/hEiC

x

9/2L9/2 + O(x5)

0

BBBBBBBBBBBBB@

hEi � hEi4PN

1

CCCCCCCCCCCCCA

/hEiC

x

5L5 + O(x11/2)

0

BBBBBBBBBBBBB@

hEi � hEi4.5PN

1

CCCCCCCCCCCCCA

/hEiC

x

11/2L11/2 + O(x6)

0

BBBBBBBBBBBBB@

hEi � hEi5PN

1

CCCCCCCCCCCCCA

/hEiC

x

6L6

0

BBBBBBBBBBBBB@

hEi � hEi5.5PN

1

CCCCCCCCCCCCCA

/hEiC

p = 1000

p = 10

20

p

µ⌫

(�),

@p

µ⌫

@t

(�),

@p

µ⌫

@r

(�)

0 ` 10

4 PN, e

10

Z 2⇡

0

dt

p

d�

d�

T

r

= 2⇡M

p

1� e

2

◆3/2

1 +

3 (1� e

2)

p

+O �

p

�2�

T

r

=

2⇡M

x

3/2+

6⇡M

(1� e

2)

px

+O �

x

1/2�

(t, r, ✓,') ! [t

p

(�), r

p

(�), ✓

p

(�),'

p

(�)]

p

tt

(t, r, ✓,') =

X

`,m

h

`m

tt

(t, r)Y

`m

(✓,')

p

tt

(�) =

X

`,m

h

`m

tt

(t

p

, r

p

)Y

`m

(✓

p

,'

p

)

p

tt

(�) =

X

`,m

¯

h

`m

tt

(t

p

, r

p

)e

�im⌦'t⇤ · ⇥Y `m

(✓

p

, 0)e

im�'(t)e

im⌦'tp⇤

p

tt

(�) =

X

`,m

¯

h

`m

tt

(t, r

p

)

¯

Y

`m

(✓

p

,'

p

)

¯

Y

`m

(✓

p

,'

p

) = Y

`m

(✓

p

,'

p

)e

�im⌦'t

New PN parameters have been confirmed with a

separate code

Flux residuals after subtracting new PN parameters

Code by Thomas Osburn

These are the main points

π�

π�π�

�π

-�

-�

-�

-�

-�

p

µ⌫

,

@p

µ⌫

@t

,

@p

µ⌫

@t

0 ` 10

4 PN, e

10

Z 2⇡

0

dt

p

d�

d�

T

r

= 2⇡M

p

1� e

2

◆3/2

1 +

3 (1� e

2)

p

+O �

p

�2�

T

r

=

2⇡M

x

3/2+

6⇡M

(1� e

2)

px

+O �

x

1/2�

(t, r, ✓,') ! [t

p

(�), r

p

(�), ✓

p

(�),'

p

(�)]

p

tt

(t, r, ✓,') =

X

`,m

h

`m

tt

(t, r)Y

`m

(✓,')

p

tt

(�) =

X

`,m

h

`m

tt

(t

p

, r

p

)Y

`m

(✓

p

,'

p

)

p

tt

(�) =

X

`,m

¯

h

`m

tt

(t

p

, r

p

)e

�im⌦'t⇤ · ⇥Y `m

(✓

p

, 0)e

im�'(t)e

im⌦'tp⇤

p

tt

(�) =

X

`,m

¯

h

`m

tt

(t, r

p

)

¯

Y

`m

(✓

p

,'

p

)

¯

Y

`m

(✓

p

,'

p

) = Y

`m

(✓

p

,'

p

)e

�im⌦'t

h

`m,±t

=

f

2

@

r

r

±`m

h

`m,±r

=

r

2f

@

t

±`m

p

µ⌫

,

@p

µ⌫

@t

,

@p

µ⌫

@t

0 ` 10

4 PN, e

10

Z 2⇡

0

dt

p

d�

d�

T

r

= 2⇡M

p

1� e

2

◆3/2

1 +

3 (1� e

2)

p

+O �

p

�2�

T

r

=

2⇡M

x

3/2+

6⇡M

(1� e

2)

px

+O �

x

1/2�

(t, r, ✓,') ! [t

p

(�), r

p

(�), ✓

p

(�),'

p

(�)]

p

tt

(t, r, ✓,') =

X

`,m

h

`m

tt

(t, r)Y

`m

(✓,')

p

tt

(�) =

X

`,m

h

`m

tt

(t

p

, r

p

)Y

`m

(✓

p

,'

p

)

p

tt

(�) =

X

`,m

¯

h

`m

tt

(t

p

, r

p

)e

�im⌦'t⇤ · ⇥Y `m

(✓

p

, 0)e

im�'(t)e

im⌦'tp⇤

p

tt

(�) =

X

`,m

¯

h

`m

tt

(t, r

p

)

¯

Y

`m

(✓

p

,'

p

)

¯

Y

`m

(✓

p

,'

p

) = Y

`m

(✓

p

,'

p

)e

�im⌦'t

h

`m,±t

=

f

2

@

r

r

±`m

h

`m,±r

=

r

2f

@

t

±`m

p

µ⌫

(�),

@p

µ⌫

@t

(�),

@p

µ⌫

@r

(�)

0 ` 10

4 PN, e

10

Z 2⇡

0

dt

p

d�

d�

T

r

= 2⇡M

p

1� e

2

◆3/2

1 +

3 (1� e

2)

p

+O �

p

�2�

T

r

=

2⇡M

x

3/2+

6⇡M

(1� e

2)

px

+O �

x

1/2�

(t, r, ✓,') ! [t

p

(�), r

p

(�), ✓

p

(�),'

p

(�)]

p

tt

(t, r, ✓,') =

X

`,m

h

`m

tt

(t, r)Y

`m

(✓,')

p

tt

(�) =

X

`,m

h

`m

tt

(t

p

, r

p

)Y

`m

(✓

p

,'

p

)

p

tt

(�) =

X

`,m

¯

h

`m

tt

(t

p

, r

p

)e

�im⌦'t⇤ · ⇥Y `m

(✓

p

, 0)e

im�'(t)e

im⌦'tp⇤

p

tt

(�) =

X

`,m

¯

h

`m

tt

(t, r

p

)

¯

Y

`m

(✓

p

,'

p

)

¯

Y

`m

(✓

p

,'

p

) = Y

`m

(✓

p

,'

p

)e

�im⌦'t

h

`m,±t

=

f

2

@

r

r

±`m

h

`m,±r

=

r

2f

@

t

±`m

dE

dt

, New parameters, 7PN

dE

dt

22

= 3.24778951144055583601917 . . . 50 more digits . . . 0413022224171085141009521⇥ 10

�100

dE

dt

lm

=

X

n

!

2

64⇡

(l + 2)!

(l � 2)!

|C+lmn

|2

L4 =

1

(1� e

2)

15/2

�323105549467

3178375200

+

232597

4410

�E � 1369

126

2+

39931

294

log(2)� 47385

1568

log(3)

+

�128412398137

23543520

+

4923511

2940

�E � 104549

252

2 � 343177

252

log(2) +

55105839

15680

log(3)

e

2

+

�981480754818517

25427001600

+

142278179

17640

�E � 1113487

504

2+

762077713

5880

log(2)� 2595297591

71680

log(3)

� 15869140625

903168

log(5)

e

4

+

�874590390287699

12713500800

+

318425291

35280

�E � 881501

336

2 � 90762985321

63504

log(2) +

31649037093

1003520

log(3)

+

10089048828125

16257024

log(5)

e

6

+ d8e8+ d10e

10+ d12e

12+ d14e

14+ d16e

16+ d18e

18+ d20e

20+ d22e

22+ d24e

24+ d26e

26

+ d28e28

+ d30e30

+ d32e32

+ d34e34

+ d36e36

+ d38e38

+ d40e40

+ · · ·�

L7/2 = �16285⇡

504

1

(1� e

2)

7

1 + a2e2+ a4e

4+ a6e

6+ · · · �

dE

dt

=

dE

dt

3PN

+

32

5

µ

M

⌘2x

5

x

7/2L7/2 + x

4⇣

L4 + log(x)L4L

+ x

9/2⇣

L9/2 + log(x)L9/2L

+ x

5⇣

L5 + log(x)L5L

+ x

11/2⇣

L11/2 + log(x)L11/2L

+ x

6⇣

L6 + log(x)L6L + log

2(x)L6L2

+ x

13/2⇣

L13/2 + log(x)L13/2L

+ x

7⇣

L7 + log(x)L7L + log

2(x)L7L2

Questions?