EE241 - Lecture 2 - Cho, Jun Dong ??? Sungkyunkwan...

Post on 27-Mar-2018

219 views 3 download

Transcript of EE241 - Lecture 2 - Cho, Jun Dong ??? Sungkyunkwan...

Jan M. RabaeyUC Berkeley EE241

EE241 - Lecture 2

Technology Scaling

Jan M. RabaeyUC Berkeley EE241

Digital GateBasic Properties

• ∆ Swing• Noise Margins⇒ Robustness• tPLH, t PHL• Power Consumption⇒ Power-Delay-Product• Area⇒ Density

Jan M. RabaeyUC Berkeley EE241

Basic CMOS Gate

CL

OutIn

Ip

In

Properties• Output levels determined by supply• Large noise margins• ∆Qin/∆Vin is small• Performance loss at low voltages

Jan M. RabaeyUC Berkeley EE241

CMOS Performance

Jan M. RabaeyUC Berkeley EE241

Power Dissipation

Jan M. RabaeyUC Berkeley EE241

Scaling Models

α: technology scaling factorε: electrical field scaling factor

Jan M. RabaeyUC Berkeley EE241

Scaling Models

Jan M. RabaeyUC Berkeley EE241

Current Scaling Scenario

[Davari95]

Note: Delays scale similarly if wp, wn and Cwire scale in the same way.

Jan M. RabaeyUC Berkeley EE241

Issues in Scaling• Reliability!

Break down, hot electron effects• Cost• Density, Speed, Power

Two Scenario’s are emerging• High speed scenario• Low power scenario

different voltage scaling trajectories

Note: Voltage cannot be scaled indiscriminately!

Jan M. RabaeyUC Berkeley EE241

High-Speed versus Low-Power Scenario’s

[Davari95]

Jan M. RabaeyUC Berkeley EE241

Scaling Guidelines for Next Decade

Jan M. RabaeyUC Berkeley EE241

More in depth ...

Jan M. RabaeyUC Berkeley EE241

Current Equationsfor Long Devices

Jan M. RabaeyUC Berkeley EE241

Limitations of Scaling Model

Mobility degradation

VelocitySaturation

Jan M. RabaeyUC Berkeley EE241

Short-Channel MOS Model

Jan M. RabaeyUC Berkeley EE241

Effect of Velocity Saturation

Jan M. RabaeyUC Berkeley EE241

Source and Drain Resistance

The High-SpeedScenario

Source and drain resistances become comparable to channel resistance

Jan M. RabaeyUC Berkeley EE241

Effect of RS

Jan M. RabaeyUC Berkeley EE241

Mean Reasons for RSD Increases

Jan M. RabaeyUC Berkeley EE241

Lightly Doped Drain (LDD) Solution

n++n+n+

n++ As

P

ProLow peak fieldalso reduces junction leakage

ConIncreased series S and D resistance

Tradeoff between performance and reliability

Jan M. RabaeyUC Berkeley EE241

Performance versus Reliability

[Davari95]

Techniques to improveS/D junctions more abrupt - reduces spreadingsilicide S/D regions

Jan M. RabaeyUC Berkeley EE241

Related: Oxide Conduction andBreakdown

Jan M. RabaeyUC Berkeley EE241

The Low-Power Scenario

Reducing VT improves performance (at lower voltages)

0.25µm CMOS delay versus threshold voltage [Davari95]

Jan M. RabaeyUC Berkeley EE241

Issues in Thresholds

Jan M. RabaeyUC Berkeley EE241

Weak Inversion - Tail Current

Jan M. RabaeyUC Berkeley EE241

Example

Jan M. RabaeyUC Berkeley EE241

Sub-threshold SlopeAs a function of channel length

Jan M. RabaeyUC Berkeley EE241

Impact of sub-threshold currents

Jan M. RabaeyUC Berkeley EE241

Threshold Variations

Jan M. RabaeyUC Berkeley EE241

Impact of Channel-Length on VT

Reason : Depletion region extends

under gate

Solution: Non-uniform channel

doping profile

[Davari95]

Jan M. RabaeyUC Berkeley EE241

Threshold Control

Solutions:multiple thresholds on a chipback gate biasing reduce subthreshold current

Delay variations due to threshold

voltage shift [Sakurai&Kuroda]

Jan M. RabaeyUC Berkeley EE241

Reducing Sub-threshold Currents

Jan M. RabaeyUC Berkeley EE241

Impact of Technology

Jan M. RabaeyUC Berkeley EE241

Bulk CMOS versus SOI

Jan M. RabaeyUC Berkeley EE241

A Rosy Future?

Jan M. RabaeyUC Berkeley EE241

Interconnect

Jan M. RabaeyUC Berkeley EE241

Scaling of Wire Properties

CV2 x3 x2 yx2

CV2/RC x3 x4 x4/y

Jan M. RabaeyUC Berkeley EE241

Advanced Wiring Scheme

Example of wiring scheme needed by future high-performance processorsto minimize delays due to wire resistance [Davari95]

Jan M. RabaeyUC Berkeley EE241

Example: Intel 0.25 micron Process

5 metal layersTi/Al - Cu/Ti/TiNPolysilicon dielectric