Cosmology with the SZE - INFN · Vulcano Workshop 2010 May 24, 2010. Cosmological scenario Probe...

Post on 06-Apr-2018

218 views 1 download

Transcript of Cosmology with the SZE - INFN · Vulcano Workshop 2010 May 24, 2010. Cosmological scenario Probe...

1

Sergio Colafrancesco Sergio Colafrancesco ASI-ASDCASI-ASDC INAF- OARINAF- OAR EmailEmail: Sergio.Colafrancesco@asi.it sergio.colafrancesco@oa-roma.inaf.it

Cosmology with the SZE

News & Views

Vulcano Workshop 2010Vulcano Workshop 2010 May 24, 2010

Cosmological scenarioProbe

CMB

SN-BAOWL CLCMBSNeSNeSN-BAOCMBCL-WLCMB-CLCMB

SN-CL

Main parameters

Geometry: Ωk,0

Matter/Energy - Dark ΩDE

ΩDM

- Ordinary: Ωb

Ων

Scales: H0

Dynamics: ä/aEq. of state: wT/S ratio: rPower spec: σ8

ns

Reionization zr

Modified - Gravity

Cosmological scenarioProbe

CMB

SN-BAOWL CLCMBSNeSNeSN-BAOCMBCL-WLCMB-CLCMB

SN-CL

Main parameters

Geometry: Ωk,0

Matter/Energy - Dark ΩDE

ΩDM

- Ordinary: Ωb

Ων

Scales: H0

Dynamics: ä/aEq. of state: wT/S ratio: rPower spec: σ8

ns

Reionization zr

Modified - Gravity

SZ

The SZ Effect

thermal NR e-

relativistic e- 2

34 γ

νν ≈∆

24cm

kT

e

e≈∆ν

ν

I0(x) I(x)

Irel(x)

Thermal

Relativistic

S.Colafrancesco 2007, NewAR, 51, 394Beyond the Standard Lore of the SZ effect

y(Pe,ℓ) = Comptonization factor ğ(ν,T0,Pe) = Spectral distribution

SZE: Observational fact

This ― This

The origin of the SZ effect

1957 A.S. Kompaneets publishes his Compton scattering Fokker-Planck equation

1 Ya. B. Zel’dovich & R. Sunyaev derive the thermal SZ effect

(i.e., applied the Kompaneets eq.)

Non-coherent Compton Scattering Fall-out effect of the Cold War

(derived by A.S. Kompaneets in Soviet Union ∼ 1950 but was classified due to nuclear bomb research until 1956)

Intensity change

Spectral shape

Thermal

Relativistic

Redistribution function

Pressure

[Colafrancesco et al. 2003, A&A, 397, 27]

∫∞

=0

);()()( psPpdpfsP se

SZE: general relativistic derivation

SZE from various e- populations

SZrel

SZDM

SZkin

SZwarm

SZth

CMBKThν=

SZE amplitude:degeneracy in physical parameters

SZE spectra:sensitivity to physical parameters

∫∞

=0

);()()( psPpdpfsP se

)()()(2 2

30 xgy

hckTI thth =∆

∫= 2cmkTndy

e

eeTth σ

Physics with the SZE: thermal plasma

g (x)

2,0 eeth cbaX θθ ++≈

≡ 2cm

Tk

e

eBeθ

The best way to measure Te are:- SZE at high frequencies (> 300 GHz)- spectral slope around 220 GHz

[Colafrancesco, Prokhorov, Dogiel 2009]

Density

Temperature

Pressure

Astrophysics & Cosmology

The SZE is independent of redshiftand therefore it is an optimal toolfor Cosmological applications

Standard-rod “physical” effect

The SZE depends directly on the electron distribution in the atmospheres of cosmic structures and therefore it is an optimal tool for Astrophysical applications

X-rays

X-rays

X-rays

~n2(kT)1/2

~∫n kT

Power-law

Maxwellian

Astrophysical relevance

Thermal particlesEe ∼ 0.1 – 10 keV

WIMPsMχ ∼ 10–500 GeV 1ES0657-556

B-fieldsB-fields

Acceleration proc.Acceleration proc.

Galaxy clusters AGN jets/cavities DM nature Plasma physics

Cosmic raysEe∼16GeV Bµ

1/2(νGHz)1/2

Cluster CavitiesMS0735+7421 (Chandra)

Radio Galaxy Lobes3C432 (Chandra)

SZE

Cosmological relevanceGalaxy clusters AGN jets/cavities DM nature Plasma physics

Hubble diagramHubble diagram

Cluster countsCluster counts

TT CMBCMB(z)(z) SUSY DMSUSY DM

Light DMLight DM

Baryon fractionBaryon fraction

WHIMWHIM

Excluded by SZE in Coma

Excluded by BBN

Excluded by WMAP

Excluded by WMAP

2/)1(min

)1(min

3)(

−−−−

⋅×

∝∆

ααγ X

CMBIC

E

kTF

T

ΩDM ΩDE

3C432

TT CMBCMB(z)(z)

C RG

CR fractionCR fraction

WMAP (95%)Ex

clud

ed b

y B

BN

Bremsstrahlung

in-flight annihilation

SNe

e- anomalous magnetic moment

Excl

uded

by

BB

N

A few exemplary cases (Cosmology)Cosmological scenario

ΛCDM model: cosmological parametersExtended-G model: ModG scales

TCMB(z) Galaxy clusters (thermal SZE)RGs (non-thermal SZE)

DM natureSZDM effect

Relevant Cosmic Parameters

15

Clusters: cosmological probesClusters are excellentCosmo-evolu-meters

Understand their physics M proxy → YSZ (DM, baryons, Galaxy feedback, CRs, B-field) Y~∫n•T

Derive their total gravitational mass YSZ → Mtot

Collect large, unbiased catalogues N(YSZ,z) → N(M,z)

N(M

,z) [

#/M

V]

SZE: Cosmology

Sensitivity to theDE equation of state

Good DE probeif Mtot well sampled

ΛCDMmodel

DE model

SZE

SZE Clusters and DE probes

SZE optimal tool

DE

prob

es

SZE from space

SZE in galaxy clusterseliminates weaknesses& systematics

SZE spectroscopy will allow to derive spatially resolved T-profiles for nearby clusters out to large distances:

Perseus

SZE spectroscopy: T-profiles

X-rays

Lensing(total mass)

[Colafrancesco & Marchegiani 2009]

T profile with uncertainties similar to those of X-ray observations

T profile uniquely sampled in the outer parts of the cluster

Determination of temperature and density profiles from SZE observations will allow to estimate the total mass of the cluster, including the outer regions.

Unbiased probes for Cosmology

Inversion Technique SZE → T, τ, Vp, TCMB

SZE X-Ray

SZE

SZE: modified GHilbert-Einstein action in f(R) models

[Capozziello, Colafrancesco, DeLaurentis, Milano 2010]

Modified-G potential

Modified-G mass assemblyModG1ModG2

Variance Increaseat high-M

Mod-G vs DE: SZ Clusters + SNe

Mod-G (DGP)

SNe Clusters (SZE)

SNe + SZ clusters can distinguish ModG from DE models → Need ~200 clusters in bins of width ∆z = 0.1 [Tang et al. 2006]

CMB temperature

TCMB(z)

(From Lima et al. 2000)

Clusters: TCMB(z) from SZE spectra

)(zkThx

CMB

ν= 2cmkT

e

ee =θ

Four unknown

• TCMB(z)• Vr

• τ• Te

Full SZE spectrum

∼ 90-500 GHz

[Colafrancesco et al. 2010]

RGs: TCMB(z) from SZE + X-rays

2/)1(min

)1(min

3)( −−−−− ⋅×∝∆ ααγ XCMBIC

SZ EkTFT

TCMB(z)measure

[Colafrancesco 2008]

IC emissionfrom lobes

AGN central source

3C432

SZE and TCMB(z)

Probe energy release mechanisms at high-z with the SZE (Colafrancesco et al. 2010)

Clusters RGs

SZE and Dark Matter nature

1ES0657-556Hot gasDark Matter

SZDM from 1ES0657-556

Isolating SZDM at ∼223 GHzFr

eque

ncy

(M

χ= 2

0 G

eV)

Neu

tral

ino

mas

s (

ν=22

3 G

Hz)

[S.C. et al. 2007]

Cosmology vs. Astrophysics

SZ & Cosmology: astrophysical caveatsX-ray gas models overpredict SZE

• X-ray gas modeling• Gas clumpiness• Non-thermal phenomena

[Diego & Partridge 2009; Bonamente et al. 2007]

Gas pressure ≠ gas emissivity

ATCA+ROSAT

[Malu et al. 2010; Massardi et al. 2010]

ATCA+Chandra

Lack of detailed knowledge of cluster physics is a limitation to the use of SZE for cosmologyObsv.

Estd.

SZE @ mm frequencyHerschel SPIRE view of Bullet cluster

[Zemkov et al. 2010]

250 µm

350 µm

500 µm

Large impact of pointsources at mm frequency

Spatially resolved spectroscopic SZE RXJ1347-1145

Spatially resolved spectroscopic SZE

Multi-T gas

Single-T gas

AGN non-th

RXJ1347-1145

News and Views

New ideas

New technology

SZE probe in cluster atmospheres

SZrel

SZDM

SZkin

SZwarm

CMBKThν=

Continuous spectroscopy

)(00 ePxx =)(00 ePxx =

xxiSlope

∆∆= )(

Wide ν-band spectroscopyHigh-ν spectroscopy

Degenerate w.r.t.Vp, ECR, MDM, PWHICM

Unbiased probe at ~x0

[Colafrancesco, Prokhorov, Dogiel 2009]

SZth

Observational requirements

3) A high-ν band to determine the electron temperature T from the shape of the SZ spectrum(→ highly sensitive to T)

2) A medium-ν band to determinethe crossover of the spectrum thatallows to obtain information on- electron pressure Pe

- TCMB(z)- Vpec

4) Very high-ν band to monitor the foregrounds (Galaxy, Point-like Sources)

Thermal SZE spectra

1 2 3 4Bands:

1) A low-ν band to determine the overall amplitude of the SZE that isproportional to y = ∫dl n∙Tmainly depending on τ = σT ∫dl n(→ insensitive to T)

Observational requirements1) A low-ν band to determine the overall amplitude of the SZE that isproportional to y = ∫dl n∙Tmainly depending on τ = σT ∫dl n(→ insensitive to T)

3) A high-ν band to determine the electron temperature T from the shape of the SZ spectrum(→ highly sensitive to T)

2) A medium-ν band to determinethe crossover of the spectrum thatallows to obtain information on- electron pressure Pe

- TCMB(z)- Vpec

4) Very high-ν band to monitor the foregrounds (Galaxy, Point-like Sources)

Thermal SZE spectra

1 2 3 4Bands:

Batm>10K

State of the Art … so farSPT

Deep integrations, high resolution, ~103 deg2 survey. - No access to positive peak of SZE (ν>300 GHz)- No spectroscopy.

SZ + LABOCA150-215 345 GHz

- No spectroscopy- Different instruments

In contrast, we would need

PLANCK PLANCK Full sky, but shallow survey. A few thousand clusters with low-moderate S/N ratio. Low-Moderate spatial resolution

• Spectroscopic capabilities first time• Wider & continuous frequency coverage first time• Better calibration (no multi-band, no atmosphere)• Better knowledge of foregrounds first time• Deeper integrations on selected targets/fields first time

SZE in Space

MILLIMETRON

12m dish12 m dishActive cooling (4 K)Θ< 0.1-1.0 arcminNoise<0.1 mJy/√HzSpectroscopyPolarimetrySuper VLBI

MILLIMETRON 12m

3 m dishPassive cooling (50 K)Θ= 0.7-4.2 arcminNoise=18 mJy/√HzSpectroscopy

Millimetron 3m

Large-survey modePointed mode

Observatory modeSmall-survey mode

3m dish

OLIMPOPLANCK

SZE spectroscopy: precision

MILLIMETRON (3m)10 min. exposureR=20

CMBkThx /ν≡

MITOWMAPOVRO

COMA in SZE: Current data(Battistelli et al. 2003, ApJ 598, L75)

[Colafrancesco 2004]

MILLIMETRON (12m)10 min. exposureR=100

SZE spectroscopy: physics

Spectroscopic capabilities will allow to separate the cluster parameters:

ne Te Vp TCMB

- the main physical quantities of the cluster thermal plasma (density ne, temperature Te)

- the cluster peculiar velocity Vp

- the value of the CMB temperature TCMB(z) at the cluster redshift z

All with good precision(independent derivation !)

ne Te Vp TCMB

Low-resolution space spectrometer vs. ground based multiband (3-BP)

3-BPMillimetron (3 m.)

Millimetron (12 m.)

SZE: resolving cluster atmospheres

150 GHz

350 GHz

3 m. 12 m.X-ray

MS0735150 GHz

350 GHz

R=100Millimetron

SZE: spectro-polarimetryPolarizations arises as a natural outcome of electron-radiation scattering

→ various polarizations

Polarization due to transverse motion of clusters

Polarization in galaxy clusters due to transverse motions of plasma within the cluster

Polarization in galaxy clusters due to multiple scattering γ-e within the cluster

τβ 21.0 t≈

201.0 τβ t≈

2201.0 τ

cmkT

e

Other polarization effects …

SZE polarization: general formalism

τβ 2t∝

22 τ

mckT

2τβ t∝

Polarization due to galaxy clusters transverse motion

Polarization due to transverse motions of plasma within the cluster

Polarization due to multiple scattering γ-e within the cluster

SZE: spectro-polarimetry

SZth

tpSZ

SZkin

kpSZ

[Sazonov & Sunyaev 1999][Colafrancesco et al. 2010]

Qpf(x)

x

QpkpSZ

tpSZ tpSZ

Cosmology & Astrophysics @ mm’s

LSS BH SFRSZEDEDM

PA

← 100 GHz5 THz

ModG

THANKS

for your attention