Chua Circuit Experimental Realization - csc.ucdavis.edu

Post on 18-Apr-2022

4 views 0 download

Transcript of Chua Circuit Experimental Realization - csc.ucdavis.edu

Chua Circuit

Experimental

Realization

Dany

Masante

PHY256: NCASO – Final Project

UC Davis Physics

6 June 2017

Chua’s

Circuit

1

The equations of motion

𝑑𝑉1𝑑𝑑

= 1

𝑅𝐢1( 𝑉2 βˆ’ 𝑉1 βˆ’ 𝑅 βˆ— π’ˆ(π’—πŸ)

𝑑𝑉2𝑑𝑑

= 1

𝑅𝐢2( 𝑉1 βˆ’ 𝑉1 βˆ’ 𝑅 βˆ— 𝑖𝐿)

𝑑𝑖𝐿𝑑𝑑

= 1

𝐿(βˆ’π‘£2)

Where 𝑔 π‘₯ is Chua’s Diode

(piecewise function)

" 𝒙 " β†’

" π’š " β†’

" 𝒛 " β†’

y x

z

+ +

βˆ’ βˆ’

Three Fixed Points

𝑝1,2 = Β±βˆ’πΈ(πΊπ‘βˆ’πΊπ‘Ž)(π‘ŸπΏ + 𝑅)

1 + (𝑅 + π‘ŸπΏ)𝐺𝑏,

βˆ’πΈ(πΊπ‘βˆ’πΊπ‘Ž)(π‘ŸπΏ)

1 + (𝑅 + π‘ŸπΏ)𝐺𝑏,

+𝐸(πΊπ‘βˆ’πΊπ‘Ž)(π‘ŸπΏ)

1 + (𝑅 + π‘ŸπΏ)𝐺𝑏

𝑝0 = 0 , 0, 0

EXPERIMENTAL

REALIZATION

2

Experimental Realization

Where 𝑅1 = 220 [Ξ©] 𝑅2 = 220 [Ξ©] 𝑅3 = 2.2 [π‘˜Ξ©] 𝑅4 = 22 [π‘˜Ξ©] 𝑅5 = 22 [π‘˜Ξ©] 𝑅6 = 3.3 [π‘˜Ξ©] 𝐢1 = 10 [𝑛𝐹] 𝐢2 = 100 [𝑛𝐹] 𝐿 = 18 [π‘šπ»]

And 𝑅 is a potentiometer

(variable resistor)

Chua Diode

𝑔 𝑣1 =

π‘š0𝑣1 + π‘š0 βˆ’π‘š1 𝐸1, 𝑣1 ≀ 𝐸1π‘š1𝑣1, βˆ’πΈ1 ≀ 𝑣1 ≀ 𝐸1π‘š0𝑣1 + π‘š1 βˆ’π‘š0 𝐸1, 𝑣1 β‰₯ 𝐸1

Where

π‘š0 =1

𝑅4βˆ’

1

𝑅3 , π‘š1 = βˆ’

1

𝑅3βˆ’

1

𝑅6 , 𝐸1 =

𝑅3

(𝑅2+𝑅3)πΈπ‘ π‘Žπ‘‘

+

βˆ’

-6 -4 -2 0 2 4 6-3

-2

-1

0

1

2

3x 10

-3

V1 [V]

I [A

]

Chua Diode

List of Materials Device Stock Code Quantity Description

Capacitor Mapln Sc Series 2 Metallized Polyester Film

(MKT) Capacitors

Inductor PCH45X186KLT 1 Axial Lead Power Choke

Resistor TOPCOFRLD008 6 Metal Film full range

resistor

Potentiometer B01LYHMKNN 1 Logarithmic Dual Rotary

Potentiometer

Operational

Amplifier

TI6PCSUA741CP 2 General Purpose

Operational Amplifier

All elements are Rohs complilant

Experimental Realization

NUMERICAL

3

Numerical Realization β€’ Sagemath

β€’ Dimensionless Chua Eqs.

β€’ Finite difference method

β€’ Timestep = 0.000001

β€’ Iterations = 100000

β€’ Discarded (transtients)= 10%

β€’ Initial Conditions= Aleatory negative initial conditions ( -10 to 0 )

RESULTS

4

Numerical VS Experimental

βˆ†= 𝟏𝟏. πŸ–πŸ%

𝐑 = πŸπŸŽπŸπŸ“ [𝛀] 𝐑 = πŸπŸ•πŸ•πŸ• [𝛀]

Numerical VS Experimental

βˆ†= πŸπŸ’. πŸ‘πŸ’%

𝐑 = 𝟐𝟎𝟎𝟏 [𝛀] 𝐑 = πŸπŸ•πŸπŸ’ [𝛀]

Numerical VS Experimental

βˆ†= πŸπŸ’. πŸ–πŸ”%

𝐑 = πŸπŸ—πŸ—πŸ– [𝛀] 𝐑 = πŸπŸ•πŸŽπŸ [𝛀]

Numerical VS Experimental

βˆ†= πŸπŸ“. πŸ–πŸ“%

𝐑 = πŸπŸ—πŸ—πŸ‘ [𝛀] 𝐑 = πŸπŸ”πŸ•πŸ• [𝛀]

Numerical VS Experimental

βˆ†= πŸπŸ”. 𝟐𝟏%

𝐑 = πŸπŸ—πŸ—πŸ [𝛀] 𝐑 = πŸπŸ”πŸ”πŸ— [𝛀]

Numerical VS Experimental

βˆ†= πŸπŸ”. πŸ’πŸ%

𝐑 = πŸπŸ—πŸ•πŸ’ [𝛀] 𝐑 = πŸπŸ”πŸ“πŸŽ [𝛀]

Numerical VS Experimental

βˆ†= πŸπŸ•. πŸŽπŸ‘%

𝐑 = πŸπŸ—πŸ”πŸ [𝛀] 𝐑 = πŸπŸ”πŸπŸ• [𝛀]

Numerical VS Experimental

βˆ†= πŸπŸ•. πŸ’πŸ’%

𝐑 = πŸπŸ—πŸ“πŸ“ [𝛀] 𝐑 = πŸπŸ”πŸπŸ’ [𝛀]

(𝑡𝒐𝒕 𝒕𝒉𝒆 π’”π’‚π’Žπ’† π’π’Šπ’Žπ’Šπ’• π’„π’šπ’„π’π’†β€¦ )

Numerical VS Experimental

βˆ†= πŸπŸ‘. πŸπŸ–%

𝐑 = πŸπŸ–πŸ“πŸ [𝛀] 𝐑 = πŸπŸ”πŸŽπŸ• [𝛀]

Numerical VS Experimental

βˆ†= πŸπŸ’. πŸŽπŸ•%

𝐑 = πŸπŸ•πŸ–πŸ‘ [𝛀] 𝐑 = πŸπŸ“πŸ‘πŸ [𝛀]

Numerical VS Experimental

βˆ†= πŸπŸ”. πŸ‘πŸ“%

𝐑 = πŸπŸ•πŸŽπŸ” [𝛀] 𝐑 = πŸπŸ’πŸπŸ• [𝛀]

Numerical VS Experimental

βˆ†= πŸπŸ–. πŸ–πŸ% 𝐑 = πŸπŸ”πŸπŸŽ [𝛀] 𝐑 = πŸπŸ‘πŸŽπŸ• [𝛀]

Numerical VS Experimental

The outmost limit cycle

Experimental: Dancing around

the outmost limit cycle

Synchronization

5

Bidirectional Chua’s Circuit

Experimental Realization

Chua 1 Chua 2

Synchronization Resistor

Bidirectional Chua’s Circuit

Bidirectional Chua’s Circuit

List of Sources [1] E. Lorenz, The essence of chaos. Seattle: University of Washington Press, 1995.

[2] L. O. Chua, β€œChua’s circuit 10 years later,” International Journal of Circuit Theory and Applications, vol. 22, no. 4, pp. 279–305, 1994.

[3] Jakob LavrΓΆd, β€œThe Anatomy of a Chua Circuit”, Bachelor Thesis Equivalent to 15 ECTS. Division of Mathematical Physics. Lunds Universitet.

[4] K. G. Andersson and L.-C. BΓΆiers, OrdinΓ€ra differentialekvationer / Karl Gustav Andersson, Lars-Christer BΓΆiers. Lund : Studentlitteratur, 1992 ; (Lund : Studentlitteratur), 1992.

[5] G. Baker, Chaotic dynamics : an introduction. Cambridge New York: Cambridge University Press, 1996.

[6] R. van der Steen, Numerical and experimental analysis of multiple Chua circuits. Eindhoven University of Technology, 2006.

[7] Leonov, G.A., D.V. Ponomarenko and V.B. Smirnova, Frequency methods for nonlinear analysis. Theory and applications. World Scientific. Singapore, 1996.

[8] M. P. Kennedy, β€œRobust op amp realization of chua’s circuit,” Frequenz, vol. 46, pp. 66–80, 1992.

[9] Pecora, L.M. and T.L. Carroll, Synchronization in chaotic systems. Physical Review Letters 64(8), 821–824. 1990.

[10] Dedieu, H., M.P. Kennedy and M. Hasler, Chaos shift keying: Modulation and demodulation of a chaotic carrier using self-synchronizing Chua’s circuits. IEEE Transactions on Circuits and Systems II 40(10), 634–642. 1993.

[11] Heagy, J.F., T.L. Carroll and L.M. Pecora. Synchronous chaos in coupled oscillator systems. Physical Review E 50(3), 1874–1886. 1994

[12] Christine A. Skarda & Walter J. Freeman. How brains make chaos in order to make sense of the world. Behavioral and Brain Sciences 10. 1987

[13] Garfinkel A. A mathematics for physiology. Am J Physiol. 1983