Quarkonium experimental overview I

91
Quarkonium experimental overview I France-Asia Particle Physics School, Les Houches, FRANCE October 11-12, 2011 Stephen Lars Olsen Seoul National University

description

Quarkonium experimental overview I. Stephen Lars Olsen Seoul National University. France-Asia Particle Physics School, Les Houches, FRANCE October 11-12, 2011. J/ y. y ’. ϒ (1S). Outline. y ”. ϒ (4S). Lecture 1: Bound charmonium & bottomonium states and their properties. X(3872). - PowerPoint PPT Presentation

Transcript of Quarkonium experimental overview I

Page 1: Quarkonium experimental overview I

Quarkoniumexperimental overview I

France-Asia Particle Physics School, Les Houches, FRANCEOctober 11-12, 2011

Stephen Lars OlsenSeoul National University

Page 2: Quarkonium experimental overview I

Outline

’J/

Lecture 1: Bound charmonium & bottomoniumstates and their properties

ϒ(1S)

ϒ(4S)

Page 3: Quarkonium experimental overview I

Outline

X(3872)

Lecture 2: Non-quarkonium, quarkonium-likestates and the future

Y(3940)Y(4260)

Zb(10610)

Zb(10650)

Page 4: Quarkonium experimental overview I

Lecture 1

Bound charmonium & bottomoniumstates and their properties

Page 5: Quarkonium experimental overview I

5

Constituent Quark Model1964 The model was proposed independently by Gell-Mann and Zweig Three fundamental building blocks 1960’s (p,n,) 1970’s (u,d,s)

mesons are bound states of a of quark and anti-quark:Can make up "wave functions" by combining quarks:

+ = ud, - = du, o =12

(uu - d d), k+= ds, ko= ds

baryons are bound state of 3 quarks:proton = (uud), neutron = (udd), = (uds)

anti-baryons are bound states of 3 anti-quarks:

p u u d n u d d u d s

Λ= (uds)

)( ud

Page 6: Quarkonium experimental overview I

Make mesons from quark-antiquark

8133

d u

s

s_

_ d_

_

u_

us_

ud_

uu_

ds_

du_

sd_

su_

ss_dd_

Y

IZ_

YY=“hypercharge” = S+B

+1/3

-2/3

-1/2 +1/2

Page 7: Quarkonium experimental overview I

Ground state mesons (today)JP=0-

JP=1-

K*0 K*+

K*- K*0_

0- +

139 139

135548

958

498

498

494

494

896

896

892

892

776776776 783

1020

S-wave

nr=0

S-wave

nr=0

(+,0,-)=lightest(+,0,-)=lightest

Page 8: Quarkonium experimental overview I

HW:

d u

s

d u

s

d u

s

uuuduu

Construct baryon octet and decupletcombinations of three uds triplets

Finish the procedure

uus

Page 9: Quarkonium experimental overview I

Answer 2(8-tet)s + 10-plet singlet

uuduud uuddud

sdd

ddd dud

sdd sudsud suusuu

ssd ssd ssu ssu

sss

sud

10881333

Page 10: Quarkonium experimental overview I

10

Ground state Baryons

M=1672 MeV

M=1533 MeV

M=1385 MeV

M=1232 MeV

1192

1115

1189

938

1197

939

1321 1315

JP=1/2+ JP=3/2+

all S-waves

all S-wavesall nr=0

all nr=0

Page 11: Quarkonium experimental overview I

Are quarks real objects?or just mathematical mnemonics?

기억하는

Are quarks actually real objects?" Gell-Mann asked."My experimental friends are making a search for themin all sorts of places -- in high-energy cosmic ray reactionsand elsewhere. A quark, being fractionally charged,cannot decay into anything but a fractionally chargedobject because of the conservation law of electric charge.Finally, you get to the lowest state that is fractionallycharged, and it can't decay. So if real quarks exist, there isan absolutely stable quark. Therefore, if any were evermade, some are lying around the earth."But since no one has yet found a quark, Gell-Mannconcluded that we must face the likelihood that quarks arenot real.

Gell-Mann

NobelPrize1969

助记符

Page 12: Quarkonium experimental overview I

A prediction of the quark model:

R -

e+

e-

+

h a d ro n s-e

e+

q-

q

f la v o rc o lo r

= Qf2

lowestorder 3

22

312

312

32

Page 13: Quarkonium experimental overview I

Mark I detectorAt SLAC’s “SPEAR” e+e- collider

tracking chamber

muon identifier

~3GeVe+ e-

Page 14: Quarkonium experimental overview I

R data in June 1974

Compilation by: L. Paoluzi Acta Physica Polonica B5, 829 (1974)

2/3Not even close to 2/3

Big data fluctuations

around 3.0 GeV

Ecme+

e-

Ecm

hadrons

R

Page 15: Quarkonium experimental overview I

after a fine energy scan near 3 GeV:

10

J.J. Aubert et al., PRL 33, 1404 (1974)

J.E. Augustine et al., PRL 33, 1406 (1974)

J

Also seen in pNe+e-Xat Brookhaven

A huge, narrow peak near 3.1 GeV

R=2.2>>2/3

The “J/” meson

M(e+e-)

Page 16: Quarkonium experimental overview I

Another peak near 3.69 GeV

G.S. Abrams et al., PRL 33, 1453 (1974)

About 2 weeks later

Page 17: Quarkonium experimental overview I

Why J/?

’+- J/ e+e-

Mark-I detector

Event in Mark I Group leader of theBrookhaven expt

Samuel C.C. Ting

Chinese character for Ting:

Page 18: Quarkonium experimental overview I

Interpretation of J/ and ’

charmed quark q= +2/3 partner of the s-quark

c c c c

nr=0M=3.097 GeV

nr=1M=3.686 GeV

S-waveS-wave

charmed-quark anticharmed-quark mesons

A q=+2/3rds partnerof the s quark had been suggested bymany theorists

31

31

32 ?

sd

u

31

32

31

32

s

c

d

ubefore 1974after 1974

Page 19: Quarkonium experimental overview I

Charmonium

r

mesons formed from c- and c-quarks

c-quarks are heavy: mc ~ 1.5 GeV 2mp

velocities small: v/c~1/4

non-relativistic, undergraduate-level QM applies

c c

Page 20: Quarkonium experimental overview I

QM of cc mesons

ErVmr

)(2

22

c cr

What is V(r) ??

“derive” from QCD

Page 21: Quarkonium experimental overview I

“Cornell” potential

~0.1 fm

linear “confining”long distancecomponentslope~1GeV/fm

1/r “coulombic”short distance

component

c cr

V(r)

2 parameters:slope & intercept

r

Page 22: Quarkonium experimental overview I

Charmonium (cc) Positronium (e+e-)_

J/

Page 23: Quarkonium experimental overview I

The “ABC’s” of charmonium mesons

S=1 triplet of stateS=0 singlet

Parity (x,y,z) ↔ (-x,-y,-z)

C-Parity quark ↔ antiquark

JPC quantum numbers

Xe+

e-

J/ (’)

photon:JPC = 1- -

J/(’):JPC = 1- -

c

c c

rS 1

rL

rS 2

rS =

r S 1 +

r S 2

r J =

r L +

r S

P = (−1)L +1

C = (−1)L +S

Page 24: Quarkonium experimental overview I

n

(2S+1)LJ

n=radial quant. nmbr

S= spin (0 or 1)

L= S, P, D, F, …

J= total ang. mom.

J/ = 13S1

’ = 23S1

ABC’s part II spectroscopic notation

c

c c

rS 1

rL

rS 2

rS =

r S 1 +

r S 2

r J =

r L +

r S

c = 11S0

c = 21S0’

0, 1, 2, 3, …

Page 25: Quarkonium experimental overview I

ABC’s part III “wave function at the origin”

cc

e+

e-

In J/ decay, the c and c quarkshave to annihilate each other

_

This only can happen when theyare very near each other:

Many J/ processes are |(0)|2,the “wave function at the origin,”

or, in the case of states with (0)=0, derivatives of (0), which are

usually small.

n=1

n=2

n=3

S-wave

S-wave

P-wave

S-wave

P-waveD-wave

(r →0) ∝ r

(r →0) ∝ r2

Page 26: Quarkonium experimental overview I

Immediate questions:

•Can the other meson states be found?

•Why are the J/ and ’ so narrow?

Page 27: Quarkonium experimental overview I

Finding other states

J/ = 13S1

’ = 23S1

These states havebeen identified

What about these?

c

c c

rL = 0

c

c c

rL =1

c2 = 13P2

c0 = 13P0

c1 = 13P1

Page 28: Quarkonium experimental overview I

The Crystal Ball Detector

Page 29: Quarkonium experimental overview I

E-dipole transitions to 13P0,1,2

e-

J

24.

E. Eichten et al., PRL 34, 369(1975)

2

23

3

1 2 ifE rdc

E

QM textbook formula:

24. 29. 26.313.239.114.

’e+e-

Page 30: Quarkonium experimental overview I

Crystal ball results

’e+

e-

J

E

’ X

“smoking gun” evidence thatquarks are real spin=1/2 objects

Crystal Ball expt: Phys.Rev.D34:711,1986.

Page 31: Quarkonium experimental overview I

’c0 radiative transition

BESII PRD 70, 092004 (2004)

Expect 1+cos2

Page 32: Quarkonium experimental overview I

Discovery of the P-wavestates (c0,1,2) convinced everyone

quarks were reale-

J

Crystal Ball expt: Phys.Rev.D34:711,1986.

E

Page 33: Quarkonium experimental overview I

Immediate questions:

•Can the other meson states be found?

•Why are the J/ and ’ so narrow?

Done!

Page 34: Quarkonium experimental overview I

Problems with the quark model:

• Individual quarks are not seen

• why only qqq and qq combinations?

• violation of spin-statistics theorem?

Page 35: Quarkonium experimental overview I

s-1/3

s-1/3

s-1/3

three s-quarksin the same

quantum state

Das ist verboten!!

Page 36: Quarkonium experimental overview I

The strong interaction “charge” of each quark comes in 3 different

varietiesY. Nambu

M.-Y. Han

s-1/3

s-1/3

s-1/3

the 3 s-1/3 quarks in the- have different strongcharges & evade Pauli

-

1 2

3

Page 37: Quarkonium experimental overview I

Attractive configurations

ijk eiejek

i ≠ j ≠ kij ei ej

same as the rules for combining colors to get white:

add 3 primary colors -or- add color+complementary color

antiquarks: anticolor charges

quarks: eiejek color charges

ejei ek

i

k

j ij

Baryons: Mesons:

ijk eiejek

ij ei ej

Page 38: Quarkonium experimental overview I

Quantum Chromodynamics

ei

ej

gijsinglephoton

eight“gluons”

QED sNon-Abelian extension of QED

+ i e A

QED gauge transform

1 vectorfield

(photon)

QED: scalar charge e

+ i i Gi

QCD gauge transform

eight 3x3 SU(3) matrices

8 vectorfields

(gluons)

QCD triplet charge: er

eb

eg

Page 39: Quarkonium experimental overview I

Vacuum polarization QED vs QCD

2nf

11CA

in QCD: CA=3, & this dominatess increases with distance

QED

QCD

Page 40: Quarkonium experimental overview I

QED: photons have no chargecoupling decreases at large

distances

QCD: gluons carry color chargesgluons interact with each other

coupling increases at large distances

Coupling strengths

distance

Page 41: Quarkonium experimental overview I

Test QCD with 3-jet events(& deep inelastic scattering)

rate for 3-jet events should decrease with Ecm

gluons

Page 42: Quarkonium experimental overview I

“running” s

Large distance

shortdistance

MJ/

s~1/4

Page 43: Quarkonium experimental overview I

Color explains the discrepancy in R

R -

e+

e-

+

h a d ro n s-e

e+

q-

q

f la v o rc o lo r

= Qf2

lowestorder 23 2

312

312

32

Each quark has 3 colors

& color

Page 44: Quarkonium experimental overview I

10

J

R=2.2 >>2/3

2.23 2

312

312

32 R

Page 45: Quarkonium experimental overview I

why are the J/ and ’ so narrow?

2 3 4 Ecm

Page 46: Quarkonium experimental overview I

How does the J/ (’) decay?

cgij

s

c

c

gij

s

c

s

gkl

c

gij

s

c

gkl

s

s

gmn

violates color symmetryviolates C parity

Lowest-orderallowed QCD process:

suppressed by s3

This is called “OZI”*suppression

*Okubo-Zweig-Iizuka

C=-

C=-

C=-

Page 47: Quarkonium experimental overview I

How wide is the J/ (& ’)?

’J/

The observed widths of these peaksare due entirely to experimental resolution,which is typically a few MeV

Page 48: Quarkonium experimental overview I

Determining the J/ (& ’) widths

tot

XeeX m

JdE

2

2 )12(2

ee XX

cross section for e+e- J/X

X=hadrons

X=+-

X=e+e-

Mark-I PRL 34, 1357 (1975)

J/ ’

tot 93±2 keV 309±9 keV

ee 5.55±0.14 keV 5.1±0.5 keV

2009 values

e+

e- €

eeΓX

Γtot

=m2 σ X∫ dE

2π 2(2J +1)

eeΓμμ

Γtot

=m2 σ μμ∫ dE

2π 2(2J +1)

ee2

Γtot

=m2 σ ee∫ dE

2π 2(2J +1)

tot = Γee + Γμμ + ΓX

4 eqns, 4 unknowns

Page 49: Quarkonium experimental overview I

e+e- hadrons at higher Ecm: a 3rd peak: the ” ((3770))

2009 values

LGW PRL 39, 526 (1977)

tot ~150x bigger

ee ~20x smaller

J/ ’ ”

tot 93 keV 209 keV 27.3+1.0 MeV

ee 5.55 keV 5.1 keV 0.26+0.02 keV

Page 50: Quarkonium experimental overview I

Why is tot (”) much bigger?

cc

New decay channel is available: ”DD

D

D

cq

qc

q (=u or d)

D0 or D+

D0 or D-

2mD+=3739 MeV

2mD0 =3729 MeV

“charmed” mesons

2mD “open charm”

threshold

(M’=3686 MeV )

(M”=3775 MeV )

no “OZI” suppression

“Fall apart”Decay modes

Page 51: Quarkonium experimental overview I

does ” fit in the cc spectrum?must be JPC = 1- -

here?or here?

(1D)

2mD

_

Page 52: Quarkonium experimental overview I

ee (”) considerations

2

2

21

3 )0(

9

16)(

ccee M

S

cc

e+

e-

J/ ’ ”(S-wave) ”(D-wave)

ee(Theory) 12.13 5.03 3.5 0.056

ee(expt) 5.55±0.14 5.1±0.5 0.26±0.02 0.26±0.02

all in keVee = too small fo

r the ” to be the (3S) state

& too big for it t

o be the (1D)

S-wave

ee (3D1) =50

9

α 2

Mcc 2

∂ 2Ψ(0)

∂r2

2

D-wave

Page 53: Quarkonium experimental overview I

’ and ” = 23S1 – 13D1 mixtures

(1D)

mixmix

mixmix

SD

DS

sin)2(cos)1(

sin)1(cos)2(

13

13

13

13

mixing oomix 3.16.10

“preferred”value

This mixing was predicted by Eichten et al, PRL 34, 369 (1975)-- before the ” was discovered --

Page 54: Quarkonium experimental overview I

Finding other charmonium mesons

Look for the c

via ’c

or J/c

~700MeV

~100MeV

Page 55: Quarkonium experimental overview I

Xtal-ball: J/’c, c inclusive

Mc=2978±9 MeV

<20 MeV

Xtal-Ball PRL 45, 1150 (1980)

???

’ + anything J/ + anything

Page 56: Quarkonium experimental overview I

Mark II ’c, cexclusive

good ’s

poor ’s

bkg subtracted Mc=2980±8 MeV

<40 MeV

Mark II PRL 45, 1146 (1980)

Page 57: Quarkonium experimental overview I

The c in 2010 (30 years later)

M & still not well measured!

However, see recentpapers by BES III,Belle & BaBar

Page 58: Quarkonium experimental overview I

Search for the c’

Page 59: Quarkonium experimental overview I

’ c’ in the Crystal Ball?

100 MeV 1000 MeV

Xtal-Ball PRL 48, 70 (1982)

Mc=3592±5 MeV

<8 MeV

Never Confirmed???

Page 60: Quarkonium experimental overview I

M=3592 MeV c’ not seen elsewhere

ppc’ (@ Fermilab)_

E835 PRD 64, 052003 (2001)

c’hadron (@ LEP)

DELPHI PL B441, 479 (1998)

Page 61: Quarkonium experimental overview I

The Belle experiment at KEK

~10GeVe+ e-

Page 62: Quarkonium experimental overview I

Belle in 2002 (20 yrs later)

cc_ c (c’ ??) KSK+-

M(KSK+-)

c

c’sq_ K

Mc=3654±10 MeV

<55 MeV

Belle PRL 89, 102001 (2002)

B meson

M(KSK+π −) = (EKS

+ EK + + Eπ −)2 − (

r p KS

+r p

K + +r p

π = )2

“invariant mass”

Page 63: Quarkonium experimental overview I

Confirmed by other measurements

PDG 2009

χc0

χc0χc0

χc2

χc2

χc2ηc’ ηc’ ηc’

Belle: 3(+-) K+K-2(+-) KSK++--

M(3(+-)) M(K+K-2(+-)) KSK++--)

Belle: e+e- J/ + X

M(X)

ηc’

Belle PRL 98, 082001 (2007)

Belle: 2010 (preliminary)

3592

MeV

Page 64: Quarkonium experimental overview I

Search for the hc

Page 65: Quarkonium experimental overview I

Strategy

JPC(’):= 1- -

JPC (hc) = 1+-

’ hc not allowed

hc

c

’ 0 hc allowed but suppressed

expected branching fraction ≈ 10-3

preferred hc decay mode is hcc

expected branching fraction ≈ 0.4

Expected mass = “center-of-gravity” of M(c0,1,2)

=[M(c0) + 3 M(c1) +5 M(c2)]/9 = 3.525 MeV

Page 66: Quarkonium experimental overview I

CLEO detector at Cornell Univ

Page 67: Quarkonium experimental overview I

hc: CLEO 2005 (exclusive)

clean hc c signal

Exclusive analysis:

M(π 0 recoil) = (Ecm − Eπ 0 )2 −

r p

π 0

2

Page 68: Quarkonium experimental overview I

Recoil mass (or “Missing mass”}

’’0hc

undetected detected

Eψ ' = Eπ 0 + Ehc ⇒ Ehc = Eψ ' − E

π 0

4-momentum conservation

rp ψ ' =

r p hc

+r p

π 0 ⇒r p hc

=r p ψ ' −

r p

π 0

In the cm:

rp ψ ' = 0

⇒ Mhc=" M(π 0 recoil)"= (Ecm − E

π 0 )2 −r p

π 0

2

recoilingor “missing”

Page 69: Quarkonium experimental overview I

Recoil mass (or “missing mass”

Page 70: Quarkonium experimental overview I

hc: CLEO 2005 (semi-inclusive)

hc c signal

Inclusive analysis:

undetected

detect the 0 & the from hcc

Mass recoiling from the 0

CLEO PRL 95,102003 (2005)

Page 71: Quarkonium experimental overview I

BESIII experiment at IHEP(Beijing)

Page 72: Quarkonium experimental overview I

hc: BES III 2010 (fully inclusive)

Semi-inclusive: ’ 0 hc

cDetect: 0 &

Measures: Bf(’0 hc)xBf(hcc) Measures: Bf(’0 hc)

Fully inclusive: ’ 0 hc

cDetect: 0 only

BES III PRL 104,132002 (2010)

Page 73: Quarkonium experimental overview I

hc: BES III results

results: Bf(’0 hc) = (8.4 ± 1.3)x10-4

Bf(hcc) = (54.3 ± 6.7)%

M(hc) = 3525.4 ± 0.22 MeV (hc) = 0.73±0.53 (< 1.44) MeV

agree with theoryYP Kuang PRD 65 094024

Mcog(c0,1,2)=3525.3 MeV

BES III PRL 104,132002 (2010)

Page 74: Quarkonium experimental overview I

All states below “open charm” threshold are identified

2mD0

Page 75: Quarkonium experimental overview I

JPC = 1- - states produce peaks in Rhad

These are widebecause decaysto charmed mesonsare allowed

BES II PL B660, 315 (2008)

R = 3 23( )

2+ 1

3( )2

+ 13( )

2+ 2

3( )2

[ ] = 3.3

Page 76: Quarkonium experimental overview I

All 1- - states below 4500 MeV are identified

2mD0

Page 77: Quarkonium experimental overview I

c2 discovered by Belle‘

c2DD‘_

M(DD)_

|cos|

results: M(c2) = 3929 ± 5 MeV (c2) = 29 ± 10 MeV

“two-photon”collisions

Page 78: Quarkonium experimental overview I

Charmonium spectrum today

”2mD0

’c2

Masses in pretty good agreement with theoretical expectations-- biggest discrepancies ~ 50 MeV --

Page 79: Quarkonium experimental overview I

Transitions

e-

Th. Expt

24 27 ± 4 29 27 ± 3 26 27 ± 3313 426 ± 51239 291 ± 48114 110 + 19

E1 transitions

0

M1 transitions ((keV))

J/ c 2.4 1.6 ± 0.4’ c 4.6 1.1 ± 0.2

Th. Expt

Page 80: Quarkonium experimental overview I

Hadronic transitions

0

’ J/ +hadrons

0

J/

exp(keV)

‘ J/ 88 ± 7’ J 9 ± 1 ’ 0J/0.4±0.1

Ispin violation:’0J/’J/ ~1/200

Page 81: Quarkonium experimental overview I

Predictions & measurements for the ”

e-

0

exp(keV)

th. Expt ” J/ ~80 55 ± 15” c1 77 70 ± 17 ” c0172 ±30

Page 82: Quarkonium experimental overview I

Bottomonium: history repeats itself

3 narrow states near 10 GeV

Plus broad states athigher masses

Page 83: Quarkonium experimental overview I

Same potential works

~0.1 fm

linear “confining”long distancecomponentslope~1GeV/fm

1/r “coulombic”short distance

component

b br

V(r)

2 parameters:slope & intercept

r

Page 84: Quarkonium experimental overview I

Bottomonium spectrum

2MB = 10.56 GeV

More states below “open bottom” threshold

Page 85: Quarkonium experimental overview I

“Fall apart” decays to “B” mesons

bb

B

B

bq

qb

q (=u or d)

B0 or B-

B0 or B+

ϒ(4S)

2mB=10.56 GeV

2mB “open bottom”

threshold

(Mϒ’(3S)=10.36 GeV )

no “OZI” suppression

(Mϒ’(4S)=10.58 GeV )

Page 86: Quarkonium experimental overview I

Bottomonium spectrum 2011

2MB = 10.56 MeV

Most of the states below “open bottom” threshold

have been identified

established

recentlydiscovered

still notdiscovered

Page 87: Quarkonium experimental overview I

Summary (lecture 1)•The quarkonium spectra are strong evidence that hadrons are composed of spin=1/2 constituent particles

•All of the charmonium states below the M=2mD “open charm” threshold have been found -most of the bottomonium states below M=2mB have been identified

•Above the threshold, most of the 1- - states, but only one of the others (the c2’) have been discovered.

•The masses of the assigned states match theory predictions-variations are less than ~50 MeV

•Transitions between quarkonium states are in reasonably good agreement with theoretical expectations

Page 88: Quarkonium experimental overview I

General comments

• The charmed and bottom “quarkonium systems” are relatively simple and reasonably well understood.• The “hydrogen atoms” of QCD.

• Let’s try to use them to search for new and unpredicted phenomena.

• The subject of lecture 2

Page 89: Quarkonium experimental overview I

Thank You

謝謝

Merci

どもぅ ありがとぅ

감사합니다

Page 90: Quarkonium experimental overview I

Quarkoniumexperimental overview I

Stephen Lars OlsenSeoul National University

France-Asia Particle Physics School, Les Houches, FRANCEOctober 11-12, 2011

+

-

+

- -+e-

e+

’+- J/ +- (e+e-)

in the BESIII detector

Page 91: Quarkonium experimental overview I

outline

Lecture1: The bound charmonium & bottomonium states and their properties

Lecture 2: The non-quarkonium, quarkonium-like states & the future