0pt1.33emEffective theory of 3H and 3He · Effective theory of 3H and 3He Sebastian K¨onig in...

Post on 10-Aug-2019

214 views 0 download

Transcript of 0pt1.33emEffective theory of 3H and 3He · Effective theory of 3H and 3He Sebastian K¨onig in...

Effective theory of 3H and 3He

Sebastian Konigin collaboration with H.W. Grießhammer, H.-W. Hammer, and U. van Kolck

INT Program 16-1, University of Washington

Seattle, WA

April 15, 2016

SK et al., J. Phys. G 43 055106 (2016), 1508.05085 [nucl-th]

Effective theory of 3H and 3He – p. 1

Removing pions

Effective theory of 3H and 3He – p. 2

Removing pions

q2

≪ m2

π −→

Effective theory of 3H and 3He – p. 2

Removing pions

q2

≪ m2

π −→

pions are not resolved at sufficiently low energies!

Effective theory of 3H and 3He – p. 2

Motivation

scaling of Coulomb contributions

nonperturbative → perturbative

three-body forces

H(Λ) =

nd + pd︷ ︸︸ ︷

H0,0(Λ) +H0,1 (Λ) +

pd only︷ ︸︸ ︷

H(α)0,1 (Λ)

Vanasse, Egolf, Kerin, SK, Springer, PRC 89 064003 (2014)

Effective theory of 3H and 3He – p. 3

Motivation

Why pionless EFT?

conceptually clean and (reasonably) simple

allows for a fully perturbative treatment of higher orders

cutoff can be made arbitrarily large

still clearly connected to QCD!

Why talk about it here?

applied to analyze and extrapolate lattice resultsBarnea et al. PRL 114 052501 (2015)

Kirscher et al. PRC 92 054002 (2015)

lattice QCD used to extract extract pionless LECs: np → dγBeane et al. (NPLQCD) PRL 115 132001 (2015)

study general EFT questions (renormalization with Coulomb)

Effective theory of 3H and 3He – p. 4

Outline

Introduction

Coulomb effects in 3He

Divergences

A new expansion

Summary

Effective theory of 3H and 3He – p. 5

Two-body sector

Introduce dibaryon fields. . .

3S1 −→

Kaplan (1996/97), Bedaque, van Kolck (1997/98)

Effective theory of 3H and 3He – p. 6

Two-body sector

Introduce dibaryon fields. . .

3S1 −→

Kaplan (1996/97), Bedaque, van Kolck (1997/98)

. . . and resum bubble-insertions to all orders!

Full dibaryon propagators3S1 : ∆d = = + + + · · ·

1S0 : ∆t = = + + + · · ·

∆d(k) ∼ i

k cot δd︸ ︷︷ ︸

=−γd+ρd2

(k2+γ2d

)+···

− ik =k

Effective theory of 3H and 3He – p. 6

Two-body sector

Introduce dibaryon fields. . .

3S1 −→

Kaplan (1996/97), Bedaque, van Kolck (1997/98)

. . . and resum bubble-insertions to all orders!

Full dibaryon propagators3S1 : ∆d = = + + + · · ·

1S0 : ∆t = = + + + · · ·

∆d(k) ∼ i

k cot δd︸ ︷︷ ︸

=−γd+ρd2

(k2+γ2d

)+···

− ik γdρd ∼ Q/Λ/π = O(1/3)

Effective theory of 3H and 3He – p. 6

Propagator renormalization

Full dibaryon propagators3S1 : ∆d = = + + + · · ·

1S0 : ∆t = = + + + · · ·

i∆(0)d (p0,p) =

−i

σ(0)d + y2

dI0(p0,p)

I0(p0,p) = MN

∫ Λ

d3q1

MNp0 − p2/4 − q2 + iε

= −MN

(

π+

p2

4−MNp0 − iε

︸ ︷︷ ︸

→ −ik

)

+ O(1/Λ)

absorb linear divergence: σ(0)d =

π− γd

1/Λ effects are neglected (equivalent: PDS, 2Λ/π → µR)

without dibaryons: resummation of ∼ C0 = −4π/(MNσ)

Effective theory of 3H and 3He – p. 7

Three-body sector

Nucleon

spin 1/2

isospin 1/2

Deuteron

spin 1

isospin 0

→ two S-wave channels:

1 ⊗ 1

2=

3

2

(

∼)

spin doublet →3H,3He

︷ ︸︸ ︷

1

2

(

∼ + · · ·)

Effective theory of 3H and 3He – p. 8

Three-body sector

Nucleon

spin 1/2

isospin 1/2

Deuteron

spin 1

isospin 0

→ two S-wave channels:

1 ⊗ 1

2=

3

2

(

∼)

spin doublet →3H,3He

︷ ︸︸ ︷

1

2

(

∼ + · · ·)

—quartet channel—

Effective theory of 3H and 3He – p. 8

Three-body sector

Nucleon

spin 1/2

isospin 1/2

Deuteron

spin 1

isospin 0

→ two S-wave channels:

1 ⊗ 1

2=

3

2

(

∼)

spin doublet →3H,3He

︷ ︸︸ ︷

1

2

(

∼ + · · ·)

—quartet channel—

→ solve integral equations to get phase shifts and binding energies

Effective theory of 3H and 3He – p. 8

Three-body sector

Nucleon

spin 1/2

isospin 1/2

Deuteron

spin 1

isospin 0

→ two S-wave channels:

1 ⊗ 1

2=

3

2

(

∼)

spin doublet →3H,3He

︷ ︸︸ ︷

1

2

(

∼ + · · ·)

—quartet channel— —doublet channel—

= + +

= + +

→ solve integral equations to get phase shifts and binding energies

Effective theory of 3H and 3He – p. 8

The triton

= + +

= + +

3S1

1S0

Λ

Effective theory of 3H and 3He – p. 9

The triton

= + +

= + +

3S1

1S0

Λ

10 100 1000 10000

-0.1

-0.05

0

0.05

0.1

p (MeV)

p·T(k,p)(a.u.)

Λ = 10000 MeV

Effective theory of 3H and 3He – p. 9

The triton

= + +

= + +

3S1

1S0

Λ

10 100 1000 10000

-0.1

-0.05

0

0.05

0.1

p (MeV)

p·T(k,p)(a.u.)

Λ = 10000 MeV

Λ = 20000 MeV

Effective theory of 3H and 3He – p. 9

The triton

= + +

= + +

3S1

1S0

Λ

10 100 1000 10000

-0.1

-0.05

0

0.05

0.1

p (MeV)

p·T(k,p)(a.u.)

Λ = 10000 MeV

Λ = 20000 MeV

Λ = 30000 MeV

Effective theory of 3H and 3He – p. 9

The triton

= + +

= + +

3S1

1S0

Λ

10 100 1000 10000

-0.1

-0.05

0

0.05

0.1

p (MeV)

p·T(k,p)(a.u.)

Λ = 10000 MeV

Λ = 20000 MeV

Λ = 30000 MeV

Λ = 40000 MeV

Effective theory of 3H and 3He – p. 9

The triton

= + +

= + +

3S1

1S0

Λ

10 100 1000 10000

-0.1

-0.05

0

0.05

0.1

p (MeV)

p·T(k,p)(a.u.)

Λ = 10000 MeV

Λ = 20000 MeV

Λ = 30000 MeV

Λ = 40000 MeV

Λ = 50000 MeV

Effective theory of 3H and 3He – p. 9

The triton

= + +

= + +

3S1

1S0

Λ

Bedaque et al., NPA 676 357 (2000)

amplitude has no well-defined limit!10 100 1000 10000

-0.1

-0.05

0

0.05

0.1

p (MeV)

p·T(k,p)(a.u.)

Λ = 10000 MeV

Λ = 20000 MeV

Λ = 30000 MeV

Λ = 40000 MeV

Λ = 50000 MeV

Effective theory of 3H and 3He – p. 9

The triton

= + +

= + +

3S1

1S0

Λ

Bedaque et al., NPA 676 357 (2000)

amplitude has no well-defined limit!10 100 1000 10000

-0.1

-0.05

0

0.05

0.1

p (MeV)

p·T(k,p)(a.u.)

Λ = 10000 MeV

Λ = 20000 MeV

Λ = 30000 MeV

Λ = 40000 MeV

Λ = 50000 MeV

Three-body force promotion

already at LO: → + , ∼

103

104

105

-10

-5

0

5

10

Λ (MeV)

H(Λ

)

independent of spin and isospin→ SU(4)-symmetry

coupling runs in RG limit cycle

makes amplitude cutoff-independent

Effective theory of 3H and 3He – p. 9

The triton

= + +

= + +

3S1

1S0

Λ

Bedaque et al., NPA 676 357 (2000)

amplitude has no well-defined limit!10 100 1000 10000

-0.1

-0.05

0

0.05

0.1

p (MeV)

p·T(k,p)(a.u.)

Λ = 10000 MeV

Λ = 20000 MeV

Λ = 30000 MeV

Λ = 40000 MeV

Λ = 50000 MeV

Three-body force promotion

already at LO: → + , ∼

103

104

105

-10

-5

0

5

10

Λ (MeV)

H(Λ

)

independent of spin and isospin→ SU(4)-symmetry

coupling runs in RG limit cycle

makes amplitude cutoff-independent

Effective theory of 3H and 3He – p. 9

Universality

Braaten, Hammer

Phys. Rept. 428 259 (2006)

largescattering

length

Effective theory of 3H and 3He – p. 10

Universality

Braaten, Hammer

Phys. Rept. 428 259 (2006)

halo EFT

nucleus by Cam-Ann, Wikimedia Commons

van Kolck, NPA 645, 273 (1999)

Bertulani et al., NPA 712, 37 (2002)...

Zhang et al., 1507.07239 [nucl-th]

largescattering

length

Effective theory of 3H and 3He – p. 10

Universality

Braaten, Hammer

Phys. Rept. 428 259 (2006)

halo EFT

nucleus by Cam-Ann, Wikimedia Commons

van Kolck, NPA 645, 273 (1999)

Bertulani et al., NPA 712, 37 (2002)...

Zhang et al., 1507.07239 [nucl-th]

largescattering

length

Effective theory of 3H and 3He – p. 10

Universality

Braaten, Hammer

Phys. Rept. 428 259 (2006)

halo EFT

nucleus by Cam-Ann, Wikimedia Commons

van Kolck, NPA 645, 273 (1999)

Bertulani et al., NPA 712, 37 (2002)...

Zhang et al., 1507.07239 [nucl-th]

largescattering

length

cold atoms

tunable scattering length!

Efimov effect!

Effective theory of 3H and 3He – p. 10

Coulomb contributions

Coulomb photons: ∼ (ie)i

q2(ie) −→ (ie)

i

q2+λ2(ie)

O(α) diagrams

k p

Effective theory of 3H and 3He – p. 11

Coulomb contributions

Coulomb photons: ∼ (ie)i

q2(ie) −→ (ie)

i

q2+λ2(ie)

O(α) diagrams

k p

only generated by dibaryon kinetic term!

→ higher-order correction ∼ ρd

Effective theory of 3H and 3He – p. 11

Coulomb subtraction

Coulomb photons: ∼ (ie)i

q2(ie) −→ (ie)

i

q2+λ2(ie)

long (infinite) range → very strong at small momentum transfer

Coulomb nonperturbative for η ∼ 1

important for p-d scattering length!→ SK, Hammer, PRC 90 034005 (2014)

C2η k cot δdiff(k) + αµh(η) = − 1

ap-d+ · · ·

(modified ERE)

Effective theory of 3H and 3He – p. 12

Coulomb subtraction

Coulomb photons: ∼ (ie)i

q2(ie) −→ (ie)

i

q2+λ2(ie)

long (infinite) range → very strong at small momentum transfer

Coulomb nonperturbative for η ∼ 1

important for p-d scattering length!→ SK, Hammer, PRC 90 034005 (2014)

C2η k cot δdiff(k) + αµh(η) = − 1

ap-d+ · · ·

(modified ERE)

2 2.5 3 3.5 4-3000

-2500

-2000

-1500

-1000

-500

0

k (MeV)

k·cotδ d

iff(k)(fm

−1)

×

2 2.5 3 3.5 40

0.001

0.002

0.003

0.004

0.005

0.006

0.007

k (MeV)

C2 η(k)

C2η =

2πη

e2πη − 1

= finite value

Effective theory of 3H and 3He – p. 12

The helion and the counterterm

Effective theory of 3H and 3He – p. 13

He-3 binding energy

bound-state ↔ pole! ∼

E + EB

+ regular terms

→ calculate 3He binding energy!

= + + + ×

(

+ +)

+ ×

(

+)

+ ×

(

+)

= + + ×

(

+)

+ ×

(

+ +)

+ ×

(

+)

= + + ×

(

+)

+ ×

(

+)

cf. Kok et al., Groningen Reports (1979/81)

Ando+Birse (2010)

Effective theory of 3H and 3He – p. 14

Coulomb effects in the proton–proton channel

Coulomb-dressed propagator

= + + + · · ·

= + + + · · ·∆t,pp(p) ∼ 1

−1/ap–p − αMNH(η), η = αMN/

(2i√

p2/4 −MNp0 − iε)

Kong, Ravndal (1999)

→ Coulomb-modified effective range expansion Bethe (1949)

cf. Ando, Birse (2010)

Effective theory of 3H and 3He – p. 15

Coulomb effects in the proton–proton channel

Coulomb-dressed propagator

= + + + · · ·

= + + + · · ·∆t,pp(p) ∼ 1

−1/ap–p − αMNH(η), η = αMN/

(2i√

p2/4 −MNp0 − iε)

Kong, Ravndal (1999)

→ Coulomb-modified effective range expansion Bethe (1949)

cf. Ando, Birse (2010)

∆t,pp(p0,p) =−i

σt,pp − 2Λ

π+ αMN

(

log2Λ

αMN− CE

)

︸ ︷︷ ︸

=1/aC

− αMNH(η)

Note: two divergences absorbed into a single parameter!

Effective theory of 3H and 3He – p. 15

He-3 binding energy

bound-state ↔ pole! ∼

E + EB

+ regular terms

→ calculate 3He binding energy!

= + + + ×

(

+ +)

+ ×

(

+)

+ ×

(

+)

= + + ×

(

+)

+ ×

(

+ +)

+ ×

(

+)

= + + ×

(

+)

+ ×

(

+)

cf. Kok et al., Groningen Reports (1979/81)

Ando+Birse (2010)

Effective theory of 3H and 3He – p. 16

He-3 beyond leading order

100 1000 10000

7.2

7.6

8

8.4

8.8

9.2

9.6

10

Λ (MeV)

EB(M

eV)

LO

exp. EB(3He)

exp. EB(3H)

Effective theory of 3H and 3He – p. 17

He-3 beyond leading order

100 1000 10000

7.2

7.6

8

8.4

8.8

9.2

9.6

10

Λ (MeV)

EB(M

eV)

LO

NLO part. resum.

NLO fully. pert.

exp. EB(3He)

exp. EB(3H)

NLO corrections

effective ranges

∼ ρd, ∼ r0t

dibaryon-photon coupling

∼ αρd

Effective theory of 3H and 3He – p. 17

He-3 beyond leading order

100 1000 10000

7.2

7.6

8

8.4

8.8

9.2

9.6

10

Λ (MeV)

EB(M

eV)

LO

NLO part. resum.

NLO fully. pert.

exp. EB(3He)

exp. EB(3H)

NLO corrections

effective ranges

∼ ρd, ∼ r0t

dibaryon-photon coupling

∼ αρd

NLO result is not cutoff stable → incomplete renormalization!

refitting the three-body force to EB(3He) gives stable p-d phase shifts!SK, Ph.D. thesis (2013)

SK et al., JPG 42 045101 (2015)

form of new p-d specific counterterm can be derived analytically!

three body-force H(Λ) = H0,0(Λ) +H0,1(Λ) +H(α)0,1 (Λ)

Vanasse, Egolf, Kerin, SK, Springer, PRC 89 064003 (2014)

Effective theory of 3H and 3He – p. 17

Counterterm controversy

A recent paper does not find a new counterterm at NLO!Kirscher+Gazit, PLB 755 (2016) 253, 1510.00118 [nucl-th]

7.55

7.6

7.65

7.7

7.75

800 Λ rit.

∼ 1230 1600 1800 2000 2200 2400

B(3

H

e

)

[

M

e

V

Λ [MeV℄

exp

LO

NLO

LO, DΛ∗

NLO, DΛ∗

Effective theory of 3H and 3He – p. 18

Counterterm controversy

A recent paper does not find a new counterterm at NLO!Kirscher+Gazit, PLB 755 (2016) 253, 1510.00118 [nucl-th]

7.55

7.6

7.65

7.7

7.75

800 Λ rit.

∼ 1230 1600 1800 2000 2200 2400

B(3

H

e

)

[

M

e

V

Λ [MeV℄

exp

LO

NLO

LO, DΛ∗

NLO, DΛ∗

Vanasse et al.

momentum-space formalism

sharp cutoff (non-local)

can take Λ arbitrarily large

Kirscher and Gazit

configuration-space (R)RGM

Gaussian regulators (local)

limited cutoff range

Effective theory of 3H and 3He – p. 18

Counterterm controversy

A recent paper does not find a new counterterm at NLO!Kirscher+Gazit, PLB 755 (2016) 253, 1510.00118 [nucl-th]

7.55

7.6

7.65

7.7

7.75

800 Λ rit.

∼ 1230 1600 1800 2000 2200 2400

B(3

H

e

)

[

M

e

V

Λ [MeV℄

exp

LO

NLO

LO, DΛ∗

NLO, DΛ∗

Vanasse et al.

momentum-space formalism

sharp cutoff (non-local)

can take Λ arbitrarily large

Kirscher and Gazit

configuration-space (R)RGM

Gaussian regulators (local)

limited cutoff range

power counting ↔ regulators?Effective theory of 3H and 3He – p. 18

Coulomb corrections for nuclei

How much Coulomb should we really iterate?

Coulomb regimes

trinucleon binding momentum ∼ 80 MeV . . .

→ should Coulomb not be a small perturbative correction?

Effective theory of 3H and 3He – p. 19

Nonperturbative vs. perturbative and helium

= + + + ×

(

+ +)

+ ×

(

+)

+ ×

(

+)

= + + ×

(

+)

+ ×

(

+ +)

+ ×

(

+)

= + + ×

(

+)

+ ×

(

+)

iterate O(α) diagrams. . .

get 3He pole directly

Effective theory of 3H and 3He – p. 20

Nonperturbative vs. perturbative and helium

= + + + ×

(

+ +)

+ ×

(

+)

+ ×

(

+)

= + + ×

(

+)

+ ×

(

+ +)

+ ×

(

+)

= + + ×

(

+)

+ ×

(

+)

iterate O(α) diagrams. . .

get 3He pole directly

Effective theory of 3H and 3He – p. 20

Nonperturbative vs. perturbative and helium

= + + + ×

(

+ +)

+ ×

(

+)

+ ×

(

+)

= + + ×

(

+)

+ ×

(

+ +)

+ ×

(

+)

= + + ×

(

+)

+ ×

(

+)

iterate O(α) diagrams. . .

get 3He pole directly

= + +

= + +

SK, Grießhammer, Hammer, J. Phys. G 42 045101 (2015)

use trinucleon wavefunctions

fully perturbative in α!

∆E : −

∆E = 〈ψ|VC |ψ〉

Effective theory of 3H and 3He – p. 20

Coulomb bubble divergence

an additional diagram is logarithmically divergent. . .

. . . but this divergence comes from the photon-bubblesubdiagram!

Effective theory of 3H and 3He – p. 21

Coulomb bubble divergence

an additional diagram is logarithmically divergent. . .

. . . but this divergence comes from the photon-bubblesubdiagram!

StrategySK, Grießhammer, Hammer, van Kolck, JPG 43 055106 (2016), 1508.05085 [nucl-th]

1 isolate divergence:

2 take the leading-order 1S0 in the unitarity limit!

a1S0= −23.7 ≈ ∞ 1/a1S0

≈ 0

3 include divergent diagram together with finite a1S0

+ = finite

Effective theory of 3H and 3He – p. 21

Coulomb bubble divergence

an additional diagram is logarithmically divergent. . .

. . . but this divergence comes from the photon-bubblesubdiagram!

→ as before: determine counterterm from p–p scattering!

∆t,pp(p0,p) =−i

σt,pp − 2Λ

π+ αMN

(

log2Λ

αMN− CE

)

︸ ︷︷ ︸

=1/aC

−αMNH(η) cf. Kong, Ravndal (1999)

Effective theory of 3H and 3He – p. 21

Coulomb bubble divergence

an additional diagram is logarithmically divergent. . .

. . . but this divergence comes from the photon-bubblesubdiagram!

→ as before: determine counterterm from p–p scattering!

∆t,pp(p0,p) =−i

σt,pp − 2Λ

π+ αMN

(

log2Λ

αMN− CE

)

︸ ︷︷ ︸

=1/aC

−αMNH(η) cf. Kong, Ravndal (1999)

Important to isolate divergence for consistent renormalization!

Dressed bubble integral

J0(k)= GC(k2/MN ; 0,0)

= +

= + + · · ·

GC = G(+)0 + G

(+)0 VC GC = G

(+)0 + G

(+)0 TC G

(+)0

TC = VC + VC G(+)0 TC

Effective theory of 3H and 3He – p. 21

Coulomb bubble divergence

an additional diagram is logarithmically divergent. . .

. . . but this divergence comes from the photon-bubblesubdiagram!

→ as before: determine counterterm from p–p scattering!

∆t,pp(p0,p) =−i

σt,pp − 2Λ

π+ αMN

(

log2Λ

αMN− CE

)

︸ ︷︷ ︸

=1/aC

−αMNH(η) cf. Kong, Ravndal (1999)

Important to isolate divergence for consistent renormalization!

Dressed bubble integral

J0(k)= GC(k2/MN ; 0,0)

= +

= + + · · ·

GC = G(+)0 + G

(+)0 VC GC = G

(+)0 + G

(+)0 TC G

(+)0

TC = VC + VC G(+)0 TC

Effective theory of 3H and 3He – p. 21

Coulomb bubble divergence

an additional diagram is logarithmically divergent. . .

. . . but this divergence comes from the photon-bubblesubdiagram!

→ as before: determine counterterm from p–p scattering!

∆t,pp(p0,p) =−i

σt,pp − 2Λ

π+ αMN

(

log2Λ

αMN− CE

)

︸ ︷︷ ︸

=1/aC

−αMNH(η) cf. Kong, Ravndal (1999)

Important to isolate divergence for consistent renormalization!

Dressed bubble integral

J0(k)= GC(k2/MN ; 0,0)

= +

= + + · · ·

GC = G(+)0 + G

(+)0 VC GC = G

(+)0 + G

(+)0 TC G

(+)0

TC = VC + VC G(+)0 TC

Effective theory of 3H and 3He – p. 21

A new expansion

Take the leading-order singlet channel in the unitarity limit!

at = −23.4 ≈ ∞ !

σt = σ(0)t + σ

(1)t

σ(0)t − 2Λ/π = 0

i∆(0)t (p0,p)

−i

σt + y2t I0(p0,p)

→ −i√

p2

4 −MNp0 − iε

Effective theory of 3H and 3He – p. 22

A new expansion

Take the leading-order singlet channel in the unitarity limit!

at = −23.4 ≈ ∞ !

σt = σ(0)t + σ

(1)t

σ(0)t − 2Λ/π = 0

NLO corrections

scattering length: σ(1)t ∼ −1/at

effective range: c(1)t =

MNr0t

2

∼ −iσ(1)t(,pp) ∼ −ic

(1)t

i∆(1)t (p0, p) = i∆

(0)t (p0, p) ×

[

−iσ(1)t − ic

(1)t

(

p0 −

p2

4MN

)]

× i∆(0)t (p0, p)

Effective theory of 3H and 3He – p. 22

A new expansion

Take the leading-order singlet channel in the unitarity limit!

at = −23.4 ≈ ∞ !

σt = σ(0)t + σ

(1)t

σ(0)t − 2Λ/π = 0

NLO corrections

scattering length: σ(1)t ∼ −1/at

effective range: c(1)t =

MNr0t

2

∼ −iσ(1)t(,pp) ∼ −ic

(1)t

i∆(1)t (p0, p) = i∆

(0)t (p0, p) ×

[

−iσ(1)t − ic

(1)t

(

p0 −

p2

4MN

)]

× i∆(0)t (p0, p)

new 1S0 LO is isospin-symmetric and parameter-free

allows matching between perturbative and non-perturbative Coulomb regimes

Effective theory of 3H and 3He – p. 22

Phillips line

-0.4 0 0.4 0.8 1.2 1.6 26

7

8

9

10

11

_

0.6 0.65 0.7

8.0

8.1

8.2

EB(3H)(M

eV)

LO aphys.t = −23.7 fm

LO at = ∞

exp. EB(3H)

exp. 2an–d

2an–d (fm)

Effective theory of 3H and 3He – p. 23

Phillips line

-0.4 0 0.4 0.8 1.2 1.6 2

6

7

8

9

10

11

0.6 0.65 0.7

8.0

8.1

8.2

EB(3H)(M

eV)

LO aphys.t = −23.7 fm

LO at = ∞

LO at = ∞ + NLO aphys.t

exp. EB(3H)

exp. 2an–d

2an–d (fm)

Effective theory of 3H and 3He – p. 23

Phillips line

-0.4 0 0.4 0.8 1.2 1.6 2

6

7

8

9

10

11

0.6 0.65 0.7

8.0

8.1

8.2

EB(3H)(M

eV)

LO aphys.t = −23.7 fm

LO aphys.t + NLO rt

LO at = ∞

LO at = ∞ + NLO aphys.t

LO at = ∞ + NLO aphys.t , rt

exp. EB(3H)

exp. 2an–d

2an–d (fm)

Effective theory of 3H and 3He – p. 23

Doublet-channel phase shift

0 10 20 30 40 50

-30

-25

-20

-15

-10

-5

0

40 42 44 46 48 50-22

-20

-18

-16

k (MeV)

δ(deg)

LO aphys.t = −23.7 fm

LO aphys.t + NLO rt

LO at = ∞

LO at = ∞ + NLO aphys.t

LO at = ∞ + NLO aphys.t , rt

Effective theory of 3H and 3He – p. 24

New perturbative scheme

Leading order

standard NN spin-triplet (pionless) amplitude (parameter γd)

unitary NN spin-singlet amplitude (parameter-free)

contact three-body force (parameter Λ∗ → EB(3H) or 2an−d)

Effective theory of 3H and 3He – p. 25

New perturbative scheme

Leading order

standard NN spin-triplet (pionless) amplitude (parameter γd)

unitary NN spin-singlet amplitude (parameter-free)

contact three-body force (parameter Λ∗ → EB(3H) or 2an−d)

Next-to-leading order

effective range in the NN spin-triplet channel (parameter ρd)

isospin-symmetric range in the NN spin-singlet channel(parameter rt)

scattering-length correction to unitarity in the NN spin-singletnp and nn channels (parameter at),

scattering-length correction to unitarity in the NN pp channel(parameter ap–p)

one-photon exchange (parameter α = 1/137)

Effective theory of 3H and 3He – p. 25

Two-body sector

Consider two regimes in the p–p sector:

1 Q ∼ αMN → Coulomb non-perturbative! = + + · · ·

2 αMN . 1/ap–p ≪ Q ≪ Λ/π → Coulomb perturbative!

determine counterterm in non-pert. regime (match to modified ERE)

important to use consistent regularization scheme!

Effective theory of 3H and 3He – p. 26

Two-body sector

Consider two regimes in the p–p sector:

1 Q ∼ αMN → Coulomb non-perturbative! = + + · · ·

2 αMN . 1/ap–p ≪ Q ≪ Λ/π → Coulomb perturbative!

determine counterterm in non-pert. regime (match to modified ERE)

important to use consistent regularization scheme!

Coulomb regularization

single photon︷ ︸︸ ︷

two and more︷ ︸︸ ︷

δI0(k) ∼[

log2Λ

αMN− Cζ + log iη

]

, δJ0(k) ∼ −[

ψ(iη) +1

2iη︸ ︷︷ ︸

H(η)

+C∆

]

+MN

4πik

Effective theory of 3H and 3He – p. 26

Coulomb bubble divergence

an additional diagram is logarithmically divergent. . .

. . . but this divergence comes from the photon-bubblesubdiagram!

→ as before: determine counterterm from p–p scattering!

∆t,pp(p0,p) =−i

σt,pp − 2Λ

π+ αMN

(

log2Λ

αMN− CE

)

︸ ︷︷ ︸

=1/aC

−αMNH(η) cf. Kong, Ravndal (1999)

Important to isolate divergence for consistent renormalization!

Dressed bubble integral

J0(k)= GC(k2/MN ; 0,0)

= +

= + + · · ·

δI0(k)

δJ0(k)

GC = G(+)0 + G

(+)0 VC GC = G

(+)0 + G

(+)0 TC G

(+)0

TC = VC + VC G(+)0 TC

Effective theory of 3H and 3He – p. 27

Two-body sector

Consider two regimes in the p–p sector:

1 Q ∼ αMN → Coulomb non-perturbative! = + + · · ·

2 αMN . 1/ap–p ≪ Q ≪ Λ/π → Coulomb perturbative!

determine counterterm in non-pert. regime (match to modified ERE)

important to use consistent regularization scheme!

Coulomb regularization

single photon︷ ︸︸ ︷

two and more︷ ︸︸ ︷

δI0(k) ∼[

log2Λ

αMN− Cζ + log iη

]

, δJ0(k) ∼ −[

ψ(iη) +1

2iη︸ ︷︷ ︸

H(η)

+C∆

]

+MN

4πik

Effective theory of 3H and 3He – p. 28

Two-body sector

Consider two regimes in the p–p sector:

1 Q ∼ αMN → Coulomb non-perturbative! = + + · · ·

2 αMN . 1/ap–p ≪ Q ≪ Λ/π → Coulomb perturbative!

determine counterterm in non-pert. regime (match to modified ERE)

important to use consistent regularization scheme!

Coulomb regularization

single photon︷ ︸︸ ︷

two and more︷ ︸︸ ︷

δI0(k) ∼[

log2Λ

αMN− Cζ + log iη

]

, δJ0(k) ∼ −[

ψ(iη) +1

2iη︸ ︷︷ ︸

H(η)

+C∆

]

+MN

4πik

perturbative prediction for p–p phase shift:

k cot δt,pp(k) = − 1

ap–p+ αMNC∆ +

rt

2k2 + αMN log

(αMN

2k

)

+ · · ·

Effective theory of 3H and 3He – p. 28

Three-body sector: perturbative 3He

New expansion ensures renormalized NLO result for 3He!

1000 10000

6.4

6.8

7.2

7.6

8

8.4

Λ (MeV)

EB(M

eV)

pert. (incomplete)

nonpert. calc.

exp. EB(3He)

exp. EB(3H)

+ +

Effective theory of 3H and 3He – p. 29

Three-body sector: perturbative 3He

New expansion ensures renormalized NLO result for 3He!

1000 10000

6.4

6.8

7.2

7.6

8

8.4

Λ (MeV)

EB(M

eV)

pert. (incomplete)

pert. (full, unit. LO)

nonpert. calc.

exp. EB(3He)

exp. EB(3H)

+ +

+ +

∆E = (−0.86 ± 0.17) MeV

Effective theory of 3H and 3He – p. 29

Three-body sector: perturbative 3He

New expansion ensures renormalized NLO result for 3He!

1000 10000

6.4

6.8

7.2

7.6

8

8.4

Λ (MeV)

EB(M

eV)

pert. (incomplete)

pert. (full, unit. LO)

nonpert. calc.

exp. EB(3He)

exp. EB(3H)

+ +

+ +

∆E = (−0.86 ± 0.17) MeV

Coulomb indeed perturbative in 3He ✦

consistent renormalization crucial to achieve this!

Effective theory of 3H and 3He – p. 29

Divergence dissection

Vanasse, Egolf, Kerin, SK, Springer, PRC 89 064003 (2014)

Look at structure of p-d three-body force:

H(α)0,1 (Λ) = h

(α)I (Λ) + h(α)

κ (Λ)

h(α)I (Λ) = −3π(1 + s2

0)

16

{

1

12(rp–p − rt)Λ

[

1 − · · ·]

+ various terms ∼ log Λ, all ∝ (rp–p − rt) or ∝ (γp–p − γt)

}

/ sin2 (· · · )

h(α)κ = −

√3κπ(1 + s2

0)

48

{

various terms ∼ log Λ

that do not vanish in the isospin limit + Ψ(Λ)}

/ sin2 (· · · )

,

pieces associated with rp–p 6= rt and αρd, αrt

these have been relagated to a higher order in the new scheme!

but an otherwise remaining log-divergence is absent!

Effective theory of 3H and 3He – p. 30

Lessons learned and open questions

1 Coulomb perturbative in 3He ✦

2 consistent renormalization crucial to achieve this!

3 1S0 NN channel can be expanded around unitarity limit

4 unnecessary iteration can cause spurious divergences

5 one-photon exchange generates logarithmic divergences:

∼ log Λ , just like !

Effective theory of 3H and 3He – p. 31

Lessons learned and open questions

1 Coulomb perturbative in 3He ✦

2 consistent renormalization crucial to achieve this!

3 1S0 NN channel can be expanded around unitarity limit

4 unnecessary iteration can cause spurious divergences

5 one-photon exchange generates logarithmic divergences:

∼ log Λ , just like !

Questions

reason for discrepancy with Kirscher and Gazit?(more generally: regulator dependence?)

how much Coulomb has to be iterated in low-energy p-dscattering? (yet another counting above d-breakup threshold?)

Effective theory of 3H and 3He – p. 31