X-, γ-ray and Neutron Production in Solar Flares · between flare-accelerated ions and 3He-rich...
Embed Size (px)
Transcript of X-, γ-ray and Neutron Production in Solar Flares · between flare-accelerated ions and 3He-rich...

chromosphere
e–: X- and γ-ray bremsstrahlung
ions: excited nuclei → prompt γ-ray line radiation
escape to space
neutrons →capture on H → 2.223 MeV γ-ray line
delayed γ-ray line emission
radioactive nuclei →e+ → γ511
π → γ (decay, e± bremsstrahlung, γ511)
coronae, p, 3He, α, C, N, O, ...
reactionproducts
X-, γ-ray and NeutronProduction in Solar Flares
R. J. Murphy, J. M. Ryan, M. Pesce-Rollins & G. H. Share

0.010.001 0.1 1 10 100
thermalbremsstrahlung
non-thermalbremsstrahlung
non-thermalbremsstrahlung
nuclear deex-citation lines
pion-decay
neutron-capture line
GOES 1–8 Å band
positron-annihilation line
1000Photon energy (MeV)
10-8
10-6
10-4
10-2
1
102
104
106Ph
oton
s M
eV–1

• What are the accelerated-ion and ambient compositions? What is the association between flare-accelerated ions and 3He-rich SEP event ions? Is FIP fractionation taking place at the chromospheric densities where flare ions are interacting?
• What is the angular distribution of interacting flare ions? What can be learned about accelerated-ion transport?
• What is the shape of the 511 keV positron annihilation-line and what can it reveal about flare conditions at the Sun?
• Can long-lived radioactive isotope deexcitation lines be observed? Can they reveal small-scale or continuous ion acceleration? What do they say about atmospheric mixing?
• What is the association of Fermi high-energy emission and SEPs? What improv-ment in PSF at 100’s of MeV will help resolve the issue?
• What unique information do observations of flare-produced neutrons provide?
• How efficient and how fast is primary flare electron acceleration? To what energies are electrons accelerated?

0 2 4
12C 16O
20Ne, 24Mg, 28Si, 56Fe
12C 16O
20Ne, 24Mg, 28Si, 56Fe
6 8Photon energy (MeV)
senil daorBsenil worraN
10 -5
10 -4
10 -3
10 -2
10 -1
Phot
ons
MeV
–1
0 2 4 6 8Photon energy (MeV)
10 -5
10 -4
10 -3
10 -2
10 -1
Phot
ons
MeV
–1
Ambient and Accelerated-Ion Composition
Interactions of flare-accelerated ions with the solar atmosphere produce gamma-ray deexcitation lines.
12C + 4He → 12C*4.439H
p + 12C → 12C*4.439α3He
Narrow line ratios are proportional to the relative abundances of the chromosphere where the ions interact
Broad line ratios are proportional to the relative abundances of the accelerated ions

Ambient Composition
Earlier analyses (Ramaty et al. 1995) found:
The ambient composition is similar to that of the corona (FIP effect).
The Ne abundance appears to be elevated (Ne/O = 0.25 vs. 0.15)
But more recent analyses (Share priv. comm.) found:
The ambient composition is consistent with the photosphere.
The Ne abundance is not elevated.
C N O Ne Mg Si Fe
Element
1
2
3
4
5Corona
6
Abun
danc
e / P
hoto
sphe
ric a
bund
ance April 27
Murphy, Ramaty, Kozlovsky & Reames 1991

Accelerated-Ion Composition
Gradual SEP(associated with shocks)
footpoint
footpoint
open field lines
chromosphere
energyrelease
SunCME
acceleratedions
Flare/CME initiated at the Sun
CME-driven shock
Ambient coronal suprathermals
Shock + Suprathermals → SEPs
Reames 2002
3He-rich impulsive SEP(associated with flares)
Gradual SEP (corona)3He-rich events
Element
0
5
10
15
20
25
30
35
Abun
danc
e re
lativ
e to
pho
tosp
here
([O
] = 1
)
C N O Ne Mg Si FeReames 1995
Reames 1994
[3He/4He]corona ≅ 4 × 10–4
Solar Energetic Particle Events

Accelerated-Ion Composition (cont.)
RHESSI spectrum of the 2005 January 20 flare(24220.000 - 25220.000 sec UT)
1000
n-capture (2.223 MeV)
e– bremsstralung
π-decayradiation
broad deex-citation lines
narrow deex-citation lines
e+ annihilation (511 keV)
10000Energy (keV)
10-5
10-4
10-3
10-2Co
unts
cm
-2s-1
keV
-1
Fitting calculated broad-line spectra to measured spectra directly determines the heavy accelerated-ion composition

Accelerated-Ion Composition (cont.)
C N O Ne Mg Si Fe
Element
0
2
4
6
8
10
Abun
danc
e (re
lativ
e to
car
bon)
April 27
Large SEP (coronal)
3He-richEarlier analyses (Murphy et al. 1991) found:
The accelerated-ion composition may resem-ble 3He-rich SEP composition.
Conclusion based primarily on the Mg and Fe results.
But more recent analyses (Share priv. comm.) found:
The accelerated-ion composition may be more consistent with a coronal composition, but with the heavy/proton ratio larger by a factor of ~2.

10.1 10 100Projectile energy (MeV nucleon–1)
1
10
100
1000
Cro
ss s
ectio
n (m
b)
solid: 14N(p,pʹ)14N*dotted: 14N(α,αʹ)14N*dot-dot-dashed: 14N(3He,3Heʹ)14N*solid green: 16O(3He,3p2n)14N*
dot-dashed: 12C(α,“d”)14N*dotted grn: 16O(p,x)14N*dashed grn: 16O(α,x)14N*
Eγ = 2.313 MeV
solid red: 12C(3He,p)14N*
2 4 6 8 10
0.1
1
10
φ6.129 / φ1.634 ratio 00.010.11
3He/α
Ion power-law Index
Rat
io
2 4 6 8 10Ion power-law Index
Rat
io
0.1
1
10
φ2.3 / φ4.4 ratio
3He/α = 0
3He/α = 0.01
3He/α = 0.1
3He/α = 1
s = 4, 3He/α = 1, Np(>30 MeV) = 1
2.0 2.2 2.4 2.6
29Si 31P 28Si20Ne13C
32S (2.229)14N
24Mg
2.8
neutron-capture (2.223)
3.0Photon energy (MeV)
10-5
10-4
10-3
10-2
Phot
ons/
MeV
black: total
red: proton & alpha onlygreen: 3He only
Accelerated-Ion Composition (cont.)
2.313 MeV line of 14N
Direct determination of the accelerated 3He abundance via 3He deexcitation lines

Sunheliocentric angle θobs
isotropicdownward beam θobs = 0º
0.000
0.001
0.002
0.003
0.004
Phot
ons
MeV
–1
4.439 MeV 12C line
4.0 4.2
θobs = 73º
4.4
isotropicdownward beam
RHESSI rear GeSMM/GRS NaI
4.6 4.8Photon energy (MeV)
0.000
0.001
0.002
0.003
0.004
0.005
Phot
ons
MeV
–1
Interacting Accelerated-Ion Angular Distribution
Provides information about ion trans-port in the flare magnetic loop

Interacting Accelerated-Ion Angular Distribution (cont.)
-1.0 1.0-0.5 0.0 0.5µ
δ0.000.100.20
0.00
0.05
0.10
0.15
0.20
dN/d
Ω (s
r−1 )
0.00
0.05
0.10
0.15
0.20
dN/d
Ω (s
r−1 )
PASnoneλ = 300saturated
θ
µ = cos(θ)µ > 0 ⇒ upwardµ < 0 ⇒ downward
no PAS
(δ = 0.2)
4.364.34
4.38
4.40
4.42
4.44
4.46
4.48s = 4
6.00
6.05
6.10
6.15
6.20
16O (6.129 MeV)
12C (4.439 MeV)
1.60
1.59–0.2 0.0 0.2 0.4 0.6 0.8 1.0
1.61
1.62
1.63
1.64
1.65
20Ne (1.634 MeV)
Ener
gy (M
eV)
cos θobs
downward isotropic
isotropic
downward isotropic
isotropic
downward isotropic
isotropic
SMM observations (Share, priv. comm.)

Positron Production and Annihilation
p + p p + αp + 12C → 11C + X α → π+ → µ+ + ν
e+ + ν + ν
τ (sec)
Radioactive positron emitters
Positron Production
Positron Annihilation
Pions
16O 9.6 × 10–11 11C 1800τ (sec)
π+ 3.8 × 10–8 µ+ 2.1 × 10–6
τ
τπ
τµ11B + ν + e+
Two possible Ps spin configurations1Ps → 2 511keV photons (a line) 3Ps → 3 <511 keV photons (continuum)
1. Direct annihilation with free electrons (daf) or bound electrons (dab) yields two 0.511 MeV photons in rest frame producing a line
2. Positronium (Ps) formation via radiative combination with free electrons (rc) or charge exchange with H and He (ce)
Positron Production and Annihilation

e+of
1 MeV
radiative combination
charge exchange
Ps13Ps
direct annihilation with free electrons
direct annihilation with bound electrons
energy loss∗
thermalization
in-flight
spin
flip2γ
3γ 2γ
2γ
break up
>~
∗ energy loss via Coulomb interaction with ambient electrons and via excitation and ionization of ambient atoms
Positron Production and Annihilation (cont.)
The annihilation path depends on the ambient den-sity, temperature and ionization fraction

T = 1×106 KFWHM = 11.2 keV
T = 1×104 KFWHM = 1.1 keV
495 500 505
rc
daf
510 515 520 525Photon energy (keV)
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
Phot
ons
keV–1
495 500 505
nH = 1013 cm–3 ,100% ionized T = 5000 K, 100% neutral
510 515 520 5250.0
0.2
0.4
0.6
0.8
Phot
ons
keV–1
total
total
daf
rc3γ continuum
3γ continuum
495 500 505 510 515 520 5250.0
0.2
0.4
0.6
0.8
1.0nH = 1017 cm–3
FWHM = 1.6 keV
Photon energy (keV)
The line shape is NOT Gaussian!
Phot
ons
keV–1
495 500 505 510
ifce
dab (H)
515 520 5250.00
0.05
0.10
0.15nH = 109 cm–3
FWHM = 2.2 keV
Phot
ons
keV–1
total
total
ifce
2g-ifce
dab (He)thermal ce
dab (He)
3γ continuum
dab (H)
thermal ce
Positron Production and Annihilation (cont.)

500 505 510 515 520Energy (keV)
0.000
0.002
0.004
0.006
0.008
0.010
0.012
Cts
/sec
/keV
/cm
2
Solar
Bremss.Nuclear2.223 MeV
11/2/2003 – 62160.000 - 62760.000 sec UT
0.00
0.01
0.02
0.03
0.04
Cts
/sec
/keV
/cm
2
background
total
flare
Positron Production and Annihilation (cont.)
RHESSI observations

11:08:00 11:12:00 11:16:00 11:20:00 11:24:00 11:28:00 11:32:00
Time, UT on 28 Oct 2003
0.0
2.5
5.0
7.5
10.0
Wid
th, k
eV
Annihilation line width (FWHM)
0.000
0.005
0.010
0.015
0.020
0.025
0.030
Cou
nts
cm-2s-1
keV-1
Vernazza 6000KGaussian
FWHM ≅ 6.5 keV
500 505
5000K, 1015 cm–3, XH+ = 0.2Gaussian
510 515 520Energy (keV)
0.000
0.002
0.004
0.006
0.008
FWHM ≅ 1 keV
Positron Production and Annihilation (cont.)
Share et al. 2003; 2004
Broad line: dense, warm, ionizedNarrow line: cool, highly ionized
Neither are consistent with standard atmo-spheric models.
RHESSI observations

Long-lived Deexcitation Lines
0.511 MeV positron-annihilation line is strongest
Tatischeff et al. 2006
p + 12C → 11C → 11B + ν + e+ → γ511τ = 1800 s
p + 56Fe → 52Mn → 52Cr* → γ1434τ = 21 m

Radioactive X- and Gamma-Ray Line Emitters Ordered by Lifetime
Isotope Half-Life Photon Energy (keV ) and Intensity (%)
52Mnm ................ 21.1 m 1434 (99.8)60Cu................... 23.7 m 7.47 (2.5), 826.4 (21.7), 1332 (88.0), 1792 (45.4)34Clm.................. 32.00 m 146.4 (40.5), 1177 (14.1), 2127 (42.8), 3304 (12.3)63Zn ................... 38.47 m 8.04 (2.5)49Cr.................... 42.3 m 4.95 (2.5), 62.3 (16.4), 90.6 (53.2), 152.9 (30.3)56Mn ................ 2.5789 h 846.8 (98.9), 1811 (27.2), 2113 (14.3)45Ti ...................... 184.8 m 4.09 (2.3)61Cu.................. 3.333 h 7.47 (12.6), 283.0 (12.2), 656.0 (10.8)43Sc................... 3.891 h 372.9 (22.5)44Sc................... 3.97 h 1157 (99.9)52Fe................... 8.275 h 5.90 (11.2), 168.7 (99.2)58Com................ 9.04 h 6.92 (23.8)24Na ................... 14.9590 h 1369 (100), 2754 (99.9)55Co................... 17.53 h 6.40 (6.5), 477.2 (20.2), 931.1 (75.0), 1408 (16.9)57Ni.................... 35.60 h 6.92 (16.7), 127.2 (16.7), 1378 (81.7), 1920 (12.3)52Mng............... 5.591 d 5.41 (15.5), 744.2 (90.0), 935.5 (94.5), 1434 (100)48V..................... 15.9735 d 4.51 (8.6), 983.5 (100), 1312 (97.5)7Be..................... 53.22 d 477.6 (10.4)58Cog ................. 70.86 d 6.40 (23.0), 810.8 (99.4)56Co................... 77.233 d 6.40 (21.8), 846.8 (99.9), 1038 (14.2),
1238 (66.9), 1771 (15.5), 2598 (17.3)
Long-lived Deexcitation Lines (cont.)
Tatischeff et al. 2006
Tatischeff et al. 2006
Delayed X- and Gamma-Ray Line Fluxes at 3 Hours
Line Flux(photons cm 2 s 1)
Energy(keV) Parent Nucleus
511............. 18F, 11C, 55Co. . . 6.44 × 10 3
6.92............ 58Com, 57Ni 1.59 × 10 4
931.1.......... 55Co 1.07 × 10 4
1369........... 24Na 6.98 × 10 5
2754........... 24Na 6.97 × 10 5
846.8.......... 56Co, 56Mn 4.31 × 10 5
1434........... 52Mnm, 52Mng 2.97 × 10 5
477.2.......... 55Co 2.89 × 10 5
1408........... 55Co 2.42 × 10 5
1378........... 57Ni 2.20 × 10 5
6.40............ 55Co, 56Co, 58Cog 1.59 × 10 5
1238........... 56Co 1.51 × 10 5
935.5.......... 52Mng 1.40 × 10 5
744.2.......... 52Mng 1.33 × 10 5
7.47............ 61Cu, 60Cu 1.11 × 10 5
283............. 61Cu 1.06 × 10 5
f4.4+6.1 = 300 ph cm-2 s-1
s = 3.5

Fermi/LAT Observations
00:00 04:00 08:00 12:00 16:00 20:00 00:00 Time (Start at 06-Mar-12 23:00:00)
10-5
10-4
10-3
LAT >100 MeVINTEGRAL/SPI
(renormalized)
2012 March 7 flareAckermann, et al. 2014G. Share (priv. comm.)
00:00 00:30 01:00 01:30 02:00 02:30 03:00Time (Start at 07-Mar-12 00:00:00)
0.000
0.001
0.002
0.003
0.004
0.005
<> < >
B
C
M
X
Flux
, γ c
m-2
s-1
Flu
x, γ
cm
-2 s
-1
Ajello et al. 2014
Pion-decay emission from >300 MeV protons

Fermi/LAT pion-decay emission from a flare located beyond the solar limb. (Pesce-Rollins 2015)

Fermi/LAT Observations (cont.)
Cou
nts
s–1 c
m–2
MeV
–1
Energy (MeV)103
10–5
10–6
10–7
10–8
10–9
10–10102
bremsstrahlungpion-decay – PL (s = 3.5)pion-decay – PL/exponential (s = 2, E0 = 1.3 GeV)
10 102 103 10
s = 2
3
4
56
4 105
Photon energy (MeV)
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
Phot
ons
MeV
–1
RHESSI spectrum of the 2005 January 20 flare(24220.000 - 25220.000 sec UT)
1000
n-capture (2.223 MeV)
e– bremsstralung
π-decayradiation
broad deex-citation lines
narrow deex-citation lines
e+ annihilation (511 keV)
10000Energy (keV)
10-5
10-4
10-3
10-2
Coun
ts c
m-2
s-1ke
V-1
Observations up to only 20 MeV can provide the number of interacting >300 MeV protons but not the spectral shape
Provides both the shape of >300 protons and their number

Neutron Observations
1 10 100 1000 10000
O*6.13Ne*1.64
neutrons
Projectile Energy (MeV nucleon–1)
Production cross sections
1
10
100
1000
Cros
s se
ctio
n (m
b)
π +π 0
10-36
10-34
10-32
10-30
10-28
10-35
10-33
10-31
10-29
0.1 1 10 100 1000Neutron energy (MeV)
Neu
trons
MeV
–1 c
m–2
s = 4θobs = 0°n
Np(>30 MeV) = 1
Dn10 Rs
0.5 AU
1 AU
0 50 100 150
Dγ-ray = 1 AU
1 AU
20010-3
10-2
10-1
1
10
102
103
104
s = 2s = 4s = 6s = 8
Dn, distance to neutron detector (Rs)
R
θobs = θobs = 60°n 2.223
R =f1–10 neutrons(Dn)
f2.223 MeV(D=1 AU)

Electron Bremsstrahlung
10 102 103
Energy (MeV)
10-8
10-7
10-6
10-5
10-4
10-3
coun
ts s
-1 c
m-2
MeV
-1
24-Sep-2011 09:36:20.651 to 09:36:50.651
template pi_s75_b300_nh1e15template + 1pow

Performance parameter Goal valueField-of-view (FWHM, deg)
Angular resolution (FWHM)
~5 arc min~0.5 arc min for foot pts
~1°
Spectral resolution (∆E/E @ Energy) 1 – 2% at 5 MeV
Line sensitivity (@ Energy) (cm-2.s-1, 3 σ , 1 Ms) ~10-6 at 1 MeV
Timing performance ~1 ms
10% in 10 sPolarimetric capability (Minimum Polarization Fraction)