Kaonic nuclear state search by kaon reaction on He target...

61
M. Iwasaki for E15 collaboration Kaonic nuclear state search by kaon reaction on 3 He target at 1 GeV/c 1 1 MIN16 - Meson in Nucleus 2016, 31 Jul - 2 Aug

Transcript of Kaonic nuclear state search by kaon reaction on He target...

  • M. Iwasaki

    for E15 collaboration

    Kaonic nuclear state search by kaon reaction on 3He

    target at 1 GeV/c

    11

    MIN16 - Meson in Nucleus 2016, 31 Jul - 2 Aug

  • - Can kaon be a member of nuclei?- Kaon properties change in nuclear media?

    ObjectivesKey questions :

    χ-condensateNon-perturbative aspects @ energy < ΛQCD Finite density → sign problem Lattice-QCD approach difficult

    Hadron masses and χ-symmetry

    2

  • Search for Kaonic nuclear states

    nuclear state search

    3He(K-, n) @ 1 GeV/c

    strongly attractive in I=0 channel

    formation of high density matter?

    K-pp• simplest system

    BK ~ 50 MeV!

    assuming Λ(1405) = K-p bound state …T. Yamazaki & Y. Akaishi, PLB 535 (2002) 70

    3

  • T.Yamaga

    ◆ Recentresults

    4

    E-indep.

    Reportsstructure /NOstructure

    ►Experiments►Theoreticalcalc.

    KNinteractionmodelE-dep./E-indep.

    J-PARC E15 1st

    ?

    3He(K-, Λp)n:

    with single pole assumption

    Kpp should be studied moreE-dep.

  • 5

    Mðp!Þ # 2255 MeV=c2 of the K$pp candidate reportedby FINUDA [16].

    The X production rate is found to be as much as the!ð1405Þð¼ !&Þ production rate, which is roughly 20% ofthe total ! production rate. Such a large formation istheoretically possible only when the p-p (or !&-p) rmsdistance in X is shorter than 1.7 fm [3,4], whereas theaverage N-N distance in ordinary nuclei is 2.2 fm. Thepp ! !& þ pþ Kþ ! Xþ Kþ reaction produces !&and p of large momenta, which can match the internalmomenta of the off-shell !& and p particles in the boundstate of X ¼ !&-p, only if X exists as a dense object. Thus,the dominance of the formation of the observed X at high

    momentum transfer (#1:6 GeV=c) gives direct evidencefor its compactness of the produced K$pp cluster.As shown in Fig. 4, the peak is located nearly at the "!

    emission threshold, below which the N"! decay is notallowed. The expected partial width of K$pp, #N"!, mustbe much smaller than the predicted value of 60 MeV [2],when we take into account the pionic emission thresholdrealistically by a Kapur-Peierls procedure (see [20]). Thus,#non-! ¼ #p! þ #N" ¼ #obs $ #N"! ( 100 MeV, whichis much larger than recently calculated nonpionic widthsfor the normal nuclear density, #non-! # 20–30 MeV[7,21]. The observed enhancement of #non-! roughly by afactor of 3 seems to be understood with the compact natureof K$pp [4].The observed mass of X corresponds to a binding energy

    BK ¼ 103) 3ðstatÞ ) 5ðsystÞ MeV for X ¼ K$pp. It islarger than the original prediction [2,8,9]. It could beaccounted for if the $KN interaction is effectively enhancedby 25%, thus suggesting additional effects to be investi-gated [4,22]. On the other hand, the theoretical claims forshallow $K binding [10–12] do not seem to be in agreementwith the observation. We emphasize that the deeply boundand compact K$pp indicated from the present study is animportant gateway toward cold and dense kaonic nuclearmatter [15,23].We are indebted to the stimulating discussion of

    Professors Y. Akaishi and R. S. Hayano. This researchwas partly supported by the DFG cluster of excellence‘‘Origin and Structure of the Universe’’ of TechnischeUniversität München and by Grant-in-Aid for ScientificResearch of Monbu-Kagakusho of Japan. One of us (T. Y.)acknowledges the support of the Alexander von HumboldtFoundation, Germany.

    [1] Y. Akaishi and T. Yamazaki, Phys. Rev. C 65, 044005(2002).

    [2] T. Yamazaki and Y. Akaishi, Phys. Lett. B 535, 70 (2002).[3] T. Yamazaki and Y. Akaishi, Proc. Jpn. Acad. Ser. B 83,

    144 (2007); arXiv:0706.3651v2.[4] T. Yamazaki and Y. Akaishi, Phys. Rev. C 76, 045201

    (2007).[5] T. Yamazaki et al., Hyperfine Interact. 193, 181 (2009).[6] M. Maggiora et al., Nucl. Phys. A835, 43 (2010).[7] M. Faber, A. N. Ivanov, P. Kienle, J. Marton, and M.

    Pitschmann, arXiv:0912.2084v1.[8] N. V. Shevchenko, A. Gal, and J. Mares, Phys. Rev. Lett.

    98, 082301 (2007); N.V. Shevchenko, A. Gal, J. Mares,and J. Révai, Phys. Rev. C 76, 044004 (2007).

    [9] Y. Ikeda and T. Sato, Phys. Rev. C 76, 035203 (2007).[10] D. Jido, J. A. Oller, E. Oset, A. Ramos, and U.-G.

    Meissner, Nucl. Phys. A725, 181 (2003); V. K. Magas,E. Oset, and A. Ramos, Phys. Rev. Lett. 95, 052301(2005).

    [11] T. Hyodo and W. Weise, Phys. Rev. C 77, 035204 (2008).[12] A. Doté, T. Hyodo, and W. Weise, Phys. Rev. C 79,

    014003 (2009).

    0

    0.5

    1.0

    1.5

    2.0

    2.5

    2150 2200 2250 2300 2350 2400 2450

    2150 2200 2250 2300 2350 2400 2450

    200 100 0

    0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    (a) large-angle proton: high-P (p)

    (b) small-angle proton: low-P (p)

    Γ = 118 (8)

    M = 2267 (2)

    M = 2267 (2)

    Missing Mass ∆M(K) [MeV/c ]2

    Missing Mass ∆M(K) [MeV/c ]2

    M(Λ

    *+p)

    = 2

    345

    M(Λ

    *+p)

    = 2

    345

    M(K

    +p+p

    ) = 2

    370

    M(K

    +p+p

    ) = 2

    370

    M(Σ

    +π+p

    ) =

    2267

    M(Σ

    +π+p

    ) = 2

    267

    Dev

    iatio

    nU

    NC

    /SIM

    (arb

    . sca

    le)

    Dev

    iatio

    nU

    NC

    /SIM

    (arb

    . sca

    le)

    B (K pp) [MeV]-

    T

    T

    FIG. 4 (color online). (a) Observed DEV spectra of %MðKþÞof events with LAP emission [j cos"cmðpÞj< 0:6] and (b) withSAP emission [j cos"cmðpÞj> 0:6]. Both selected with large-angle Kþ emission [$ 0:2< cos"cmðKþÞ< 0:4].

    PRL 104, 132502 (2010) P HY S I CA L R EV I EW LE T T E R Sweek ending2 APRIL 2010

    132502-4

    DISTO

    present “Kpp" candidates @ BK~100 MeVhyper deep ??

    Many objections exist, though…

    J-PARK E27

    M(Σ+π+p)

    why no threshold (Σπp) effect seen?why no quasi-elastic K seen?

    …p + p → p + N+(1710) → p + (Λ +K+)

    → (p + Λ) + K+ ??

    M(K+p+p)

  • PublishedE151stdata

    3He(K-,n)—semi-inclusive

    3He(K-,Λp)n—exclusive

    Only3days!(suspendedbytheearthquake)

    6

  • PublishedE151stdata

    3He(K-,n)—semi-inclusive

    3He(K-,Λp)n—exclusive

    Only3days!(suspendedbytheearthquake)

    6withnewdata!

  • qK ~ 200 MeV/c

  • qK ~ 200 MeV/c

    analyzedonlykinematically

  • AssumingaBreit-Wigner

    8

    • χ2-testwithpole&3NA(Ypn)– S-waveBreit-Wignerpole– w/Gaussianform-factor

    B(X) ~ 15 MeVΓ(X) ~ 110 MeVQ(X) ~ 400 MeV/c

    MΛp→

    qΛp

  • 9

    Lorentzinvariantphase-space

    Breit-Wigner

    – introducesimplestassumptionS-wavepole&Breit-Wignerformula&Gaussianform-factor

    form-factor2

    stickingprobabilitytoharmonicoscillator

    Assumingsinglepole(Breit-Wigner)

    B(X) ~ 15 MeV, Γ(X) ~ 110 MeV, Q(X) ~ 400 MeV/c

  • ImprovingstatisticsviaE152nddataWhatisthestructurefoundinE151stdata?

    ~30timesmoredataforΛpnfinalstate

    ~6timesmoredataforforwardneutron

    3days→3weeksw/higherprioritytoΛpinCDSE151st E152nd

    MΛp→

    Very Preliminary

  • 11]2 [GeV/cM Λpinv.2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

    0

    5

    10

    15

    20

    Cou

    nts

    per 2

    0 MeV

    /c2

    data

    sum

    Multi-NA sum (w/o pole)

    Λp invariant massM(K-+p+p)M(

    M(Σ+π)Λ(1405)+p)

    (x5)

    E151standE152ndspectraconsistent?

    MΛp→

  • ]2 [GeV/cM Λpinv.2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 30

    5

    10

    15

    20

    Cou

    nts

    per 2

    0 MeV

    /c2

    Λp invariant massM(K-+p+p)M(

    M(Σ+π)Λ(1405)+p)

    E15 1st

    12

    E151standE152ndspectraconsistent?

    MΛp→

  • 200

    Cou

    nts

    per 1

    0 MeV

    /c2 E15 2nd

    0

    100

    300

    ]2 [GeV/cM Λpinv.2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

    Λp invariant massM(K-+p+p)M(

    M(Σ+π)Λ(1405)+p)

    E15 1st

    13

    Very Preliminary

    YES!Theyareconsistent!

    E151standE152ndspectraconsistent?

    MΛp→

  • 14

    200

    Cou

    nts

    per 1

    0 MeV

    /c2 E15 2nd

    0

    100

    300

    ]2 [GeV/cM Λpinv.2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

    Λp invariant massM(K-+p+p)M(

    M(Σ+π)Λ(1405)+p)

    E15 1st

    E152ndspectrumdoesnotallowsinglepoleassumptionlooks like trapezoidal??

    E151standE152ndspectraconsistent?YES!Theyareconsistent!

    need further study

    Very PreliminaryMΛp→

  • T.Yamaga

    MENU2016@Kyoto

    Inefficientregion Inefficientregion

    15

    KinematicalLimit

    kinematical limitK-pp formation

    ns

    ps 2NA processwith spectatorns / ps

    flat for point-like 3NACM

    Is 3He point-like?

  • T.Yamaga

    MENU2016@Kyoto

    16

    2NA

    structure(s?)

    PRELIMINARY

    K- +“pp+ns”→Λp+ns

    Λp invariant massVery Preliminary

    MΛp→

  • 3He(K-, Λp)n: Angular Dependence of n in CM

  • 3He(K-, Λp)n: Angular Dependence

    0.0

    0.5

    1.0

    ccoossnnθθ(CM)

    2.0 2.2 2.4 2.6 2.8 3.0[GeV/c2]ΛΛp.Minv

    forward n only

    Very PreliminaryqΛp→

    MΛp→

  • 3He(K-, Λp)n: Angular Dependence

    0.0

    0.5

    1.0

    ccoossnnθθ(CM)

    2.0 2.2 2.4 2.6 2.8 3.0[GeV/c2]ΛΛp.Minv

    countsper20MeV/c2

    2.0 2.2 2.4 2.6 2.8 3.0[GeV/c2]ΛΛp.Minv

    0

    20

    40

    60

    80

    100

  • 3He(K-, Λp)n: Angular Dependence

    0.0

    0.5

    1.0

    ccoossnnθθ(CM)

    2.0 2.2 2.4 2.6 2.8 3.0[GeV/c2]ΛΛp.Minv

    countsper20MeV/c2

    2.0 2.2 2.4 2.6 2.8 3.0[GeV/c2]ΛΛp.Minv

    0

    20

    40

    60

    80

    100

  • 0.0

    0.5

    1.0

    ccoossnnθθ(CM)

    2.0 2.2 2.4 2.6 2.8 3.0[GeV/c2]ΛΛp.Minv

    M(

    ++p

    )

    M(K

    +p+p

    )

    2.0 2.2 2.4 2.6 2.8 3.0[GeV/c 2]p.Minv

    0

    50

    100

    150

    200

    250 !"!#$%%&%$'(!"!)*+

    coun

    ts p

    er 2

    0 M

    eV/c

    2

    nwindow = 0.85 - 1.03 GeV/c 2

    (CM)

    countsper20MeV/c2

    2.0 2.2 2.4 2.6 2.8 3.0[GeV/c2]ΛΛp.Minv

    0

    20

    40

    60

    80

    100

  • 3He(K-, Λp)n: Angular Dependence of n in CM

    in more detailas a clue to understand

  • 3He(K-, Λp)n: Angular Dependence

    0.0

    0.5

    1.0

    ccoossnnθθ(CM)

    2.0 2.2 2.4 2.6 2.8 3.0[GeV/c2]ΛΛp.Minv

    coun

    ts p

    er 2

    0 M

    eV/c

    2

    0

    20

    40

    60

    80

    100

    120

    140 !"!#$%$%#!"!'()

    M(K

    +p+p

    )

    M(

    ++p

    )

    *

    2.0 2.2 2.4 2.6 2.8 3.0[GeV/c 2]p.Minv

    (CM)

    nwindow = 0.85 - 1.03 GeV/c 2

    Very Preliminary

  • 3He(K-, Λp)n: Angular Dependence

    0.0

    0.5

    1.0

    ccoossnnθθ(CM)

    2.0 2.2 2.4 2.6 2.8 3.0[GeV/c2]ΛΛp.Minv

    coun

    ts p

    er 2

    0 M

    eV/c

    2

    0

    20

    40

    60

    80

    100

    120

    140 !"!#$%##$&'!"!()*

    M(K

    +p+p

    )

    M(

    ++p

    )

    +

    2.0 2.2 2.4 2.6 2.8 3.0[GeV/c 2]p.Minv

    (CM)

    nwindow = 0.85 - 1.03 GeV/c 2

    Very Preliminary

  • 3He(K-, Λp)n: Angular Dependence

    0.0

    0.5

    1.0

    ccoossnnθθ(CM)

    2.0 2.2 2.4 2.6 2.8 3.0[GeV/c2]ΛΛp.Minv

    coun

    ts p

    er 2

    0 M

    eV/c

    2

    0

    20

    40

    60

    80

    100

    120

    140 !"!#$%$%#!"!'()

    M(K

    +p+p

    )

    M(

    ++p

    )

    *

    2.0 2.2 2.4 2.6 2.8 3.0[GeV/c 2]p.Minv

    (CM)

    nwindow = 0.85 - 1.03 GeV/c 2

    Very Preliminary

  • 3He(K-, Λp)n: Angular Dependence

    0.0

    0.5

    1.0

    ccoossnnθθ(CM)

    2.0 2.2 2.4 2.6 2.8 3.0[GeV/c2]ΛΛp.Minv

    coun

    ts p

    er 2

    0 M

    eV/c

    2

    0

    20

    40

    60

    80

    100

    120

    140 !"!#$%##$&'!"!()*

    M(K

    +p+p

    )

    M(

    ++p

    )

    +

    2.0 2.2 2.4 2.6 2.8 3.0[GeV/c 2]p.Minv

    (CM)

    nwindow = 0.85 - 1.03 GeV/c 2

    Very Preliminary

  • 3He(K-, Λp)n: Angular Dependence

    0.0

    0.5

    1.0

    ccoossnnθθ(CM)

    2.0 2.2 2.4 2.6 2.8 3.0[GeV/c2]ΛΛp.Minv

    coun

    ts p

    er 2

    0 M

    eV/c

    2

    0

    20

    40

    60

    80

    100

    120

    140 !"!#$%$%#!"!'()

    M(K

    +p+p

    )

    M(

    ++p

    )

    *

    2.0 2.2 2.4 2.6 2.8 3.0[GeV/c 2]p.Minv

    (CM)

    nwindow = 0.85 - 1.03 GeV/c 2

    Very Preliminary

  • 3He(K-, Λp)n: Angular Dependence

    0.0

    0.5

    1.0

    ccoossnnθθ(CM)

    2.0 2.2 2.4 2.6 2.8 3.0[GeV/c2]ΛΛp.Minv

    coun

    ts p

    er 2

    0 M

    eV/c

    2

    0

    20

    40

    60

    80

    100

    120

    140 !"!#$%%%$&'!"!()*

    M(K

    +p+p

    )

    M(

    ++p

    )

    +

    2.0 2.2 2.4 2.6 2.8 3.0[GeV/c 2]p.Minv

    (CM)

    nwindow = 0.85 - 1.03 GeV/c 2

    Very Preliminary

  • typical momentum transfer QK 400MeV/c~

    3He(K-, Λp)n: Angular Dependence of n in CM

    two components exist?

    bound region : forward peaking

    weakly depend to cosθS-wave would be OK

    unbound region :

    very forward peaking

    lower QK preferredbit strongly depend to cosθ

    if that is the case,

  • Structure can be explained with quasi-elastic K scattering?

    3He(K-, Λp)n:Not like semi-inclusive spectrum,

    “quasi-free K” excluded by the final state: Λpn,

    but still need to ask …

    through uncorrelated Λ(1405)p channelSekihara Oset Ramos

  • 3He(K-, Λp)n:

    0.0

    0.5

    1.0

    ccoossnnθθ(CM)

    2.0 2.2 2.4 2.6 2.8 3.0[GeV/c2]ΛΛp.Minv

    M(

    ++p

    )

    M(K

    +p+p

    )

    2.0 2.2 2.4 2.6 2.8 3.0[GeV/c 2]p.Minv

    0

    50

    100

    150

    200

    250 !"!#$%%&%$'(!"!)*+

    coun

    ts p

    er 2

    0 M

    eV/c

    2

    nwindow = 0.85 - 1.03 GeV/c 2

    (CM)

    countsper20MeV/c2

    2.0 2.2 2.4 2.6 2.8 3.0[GeV/c2]ΛΛp.Minv

    0

    20

    40

    60

    80

    100

  • 0.0

    0.5

    1.0

    ccoossnnθθ(CM)

    2.0 2.2 2.4 2.6 2.8 3.0[GeV/c2]ΛΛp.Minv

    3He(K-, Λp)n: Quasi-elastic?

    simple QE?M

    (+

    +p)

    M(K

    +p+p

    )

    2.0 2.2 2.4 2.6 2.8 3.0[GeV/c 2]p.Minv

    0

    50

    100

    150

    200

    250 !"!#$%%&%$'(!"!)*+

    coun

    ts p

    er 2

    0 M

    eV/c

    2

    nwindow = 0.85 - 1.03 GeV/c 2

    (CM)

    A: Watson App.

    Sekihara Oset Ramosuncorr. (1405) p

    Very Preliminaryassuming uncorrelated Λ*p channel do not interfere with flat dist.

  • 0.0

    0.5

    1.0

    ccoossnnθθ(CM)

    2.0 2.2 2.4 2.6 2.8 3.0[GeV/c2]ΛΛp.Minv

    3He(K-, Λp)n: Quasi-elastic?

    M(

    ++p

    )

    M(K

    +p+p

    )

    2.0 2.2 2.4 2.6 2.8 3.0[GeV/c 2]p.Minv

    0

    50

    100

    150

    200

    250 !"!#$%%&%$'(!"!)*+

    coun

    ts p

    er 2

    0 M

    eV/c

    2

    nwindow = 0.85 - 1.03 GeV/c 2

    (CM)

    B: Faddeev App.

    Sekihara Oset Ramosuncorr. (1405) p

    simple QE?

    Very Preliminaryassuming uncorrelated Λ*p channel do not interfere with flat dist.

  • Structure can be explained with “quasi-elastic K scattering” ? ➡ NO!

    3He(K-, Λp)n:

    Need deeper strength!

    K multiple scattering = “Kpp”

    Sekihara Oset Ramos

  • M(

    ++p

    )

    M(K

    +p+p

    )

    2.0 2.2 2.4 2.6 2.8 3.0[GeV/c 2]p.Minv

    0

    50

    100

    150

    200

    250 !"!#$%%&%$'(!"!)*+

    coun

    ts p

    er 2

    0 M

    eV/c

    2

    nwindow = 0.85 - 1.03 GeV/c 2

    (CM)

    A: Kpp+Watson App. Sekihara Oset Ramos

    3He(K-, Λp)n: comparison with SOR

    0.0

    0.5

    1.0

    ccoossnnθθ(CM)

    2.0 2.2 2.4 2.6 2.8 3.0[GeV/c2]ΛΛp.Minv

    arXiv:1607.02058v1 [hep-ph] 7 Jul 2016

    Very Preliminary

    forward n only

    QE + “Kpp”K multiple scattering

  • M(

    ++p

    )

    M(K

    +p+p

    )

    2.0 2.2 2.4 2.6 2.8 3.0[GeV/c 2]p.Minv

    0

    50

    100

    150

    200

    250 !"!#$%%&%$'(!"!)*+

    coun

    ts p

    er 2

    0 M

    eV/c

    2

    nwindow = 0.85 - 1.03 GeV/c 2

    (CM)

    B: Kpp+Faddeev App.

    Sekihara Oset Ramos

    3He(K-, Λp)n: comparison with SOR

    0.0

    0.5

    1.0

    ccoossnnθθ(CM)

    2.0 2.2 2.4 2.6 2.8 3.0[GeV/c2]ΛΛp.Minv

    arXiv:1607.02058v1 [hep-ph] 7 Jul 2016

    Very Preliminary

    forward n only

    QE + “Kpp”K multiple scattering

  • M(

    ++p

    )

    M(K

    +p+p

    )

    2.0 2.2 2.4 2.6 2.8 3.0[GeV/c 2]p.Minv

    0

    50

    100

    150

    200

    250 !"!#$%%&%$'(!"!)*+

    coun

    ts p

    er 2

    0 M

    eV/c

    2

    nwindow = 0.85 - 1.03 GeV/c 2

    (CM)

    A: Kpp+Watson App. B: Kpp+Faddeev App.

    Sekihara Oset Ramos

    3He(K-, Λp)n: comparison with SOR

    0.0

    0.5

    1.0

    ccoossnnθθ(CM)

    2.0 2.2 2.4 2.6 2.8 3.0[GeV/c2]ΛΛp.Minv

    arXiv:1607.02058v1 [hep-ph] 7 Jul 2016Qualitatively

    in good agreement!

    calculated without knowing E15 2nd spectrum

    forward n only

    Very Preliminary

  • Structure can be explained with quasi-elastic K scattering & Kpp @ -UM?

    3He(K-, Λp)n:

    Need even deeper strength!

    How to understand whole structure?

    χ

    qualitatively YES! but …

  • K-+d n+Λ(1405)

    37

    E31:K-+d n+Λ(1405)

    Λ(1405) Σ±π ±

    1.51.41.3[GeV/c 2].Minv

    E31

    yiel

    d charge mode average

    Very Preliminary

    Λ(1405) Σ±π ±

    Very Preliminary

  • K-+d n+Λ(1405)

    37

    E31:K-+d n+Λ(1405)

    Λ(1405) Σ±π ±

    1.51.41.3[GeV/c 2].Minv

    E31

    yiel

    d charge mode average

    Very Preliminary

    Λ(1405) Σ±π ± coun

    ts p

    er 2

    0 M

    eV/c

    2

    0

    20

    40

    60

    80

    100

    120

    140!"!#$%%%$&'!"!()* +

    (CM)

    2.2 2.4 2.6[GeV/c 2]p.Minv

    E31

    Note: very forward n only

    E15

    Very Preliminary

  • K-+d n+Λ(1405)

    37

    E31:K-+d n+Λ(1405)

    Λ(1405) Σ±π ±

    1.51.41.3[GeV/c 2].Minv

    E31

    yiel

    d charge mode average

    Very Preliminary

    Λ(1405) Σ±π ± coun

    ts p

    er 2

    0 M

    eV/c

    2

    0

    20

    40

    60

    80

    100

    120

    140!"!#$%%%$&'!"!()* +

    (CM)

    2.2 2.4 2.6[GeV/c 2]p.Minv

    E31

    Note: very forward n only

    E15

    Very Preliminary

    larger Fermi-motion?

    “Kp” → “Kpp”?

  • 0.0

    0.5

    1.0

    ccoossnnθθ(CM)

    2.0 2.2 2.4 2.6 2.8 3.0[GeV/c2]ΛΛp.Minv

    M(

    ++p

    )

    M(K

    +p+p

    )

    2.0 2.2 2.4 2.6 2.8 3.0[GeV/c 2]p.Minv

    0

    50

    100

    150

    200

    250 !"!#$%%&%$'(!"!)*+

    coun

    ts p

    er 2

    0 M

    eV/c

    2

    nwindow = 0.85 - 1.03 GeV/c 2

    (CM)

    Very Preliminary

    How to understand whole structure?

    from the shape of deeper region

    (sharp drop), the structure in bound

    region must be narrow ( 60MeV)~

    3He(K-, Λp)n:

  • 0.0

    0.5

    1.0

    ccoossnnθθ(CM)

    2.0 2.2 2.4 2.6 2.8 3.0[GeV/c2]ΛΛp.Minv

    3He(K-, Λp)n: QE + ?

    M(

    ++p

    )

    M(K

    +p+p

    )

    2.0 2.2 2.4 2.6 2.8 3.0[GeV/c 2]p.Minv

    0

    50

    100

    150

    200

    250 !"!#$%%&%$'(!"!)*+

    coun

    ts p

    er 2

    0 M

    eV/c

    2

    nwindow = 0.85 - 1.03 GeV/c 2

    (CM)

    B: Faddeev App.

    Sekihara Oset Ramosuncorr. (1405) p

    simple QE+?

    Very PreliminaryIs there No interference?

  • 0.0

    0.5

    1.0

    ccoossnnθθ(CM)

    2.0 2.2 2.4 2.6 2.8 3.0[GeV/c2]ΛΛp.Minv

    3He(K-, Λp)n: QE + Kpp

    if we can neglect interference

    rather deep &narrow in width

    K-pp?

    2.0 2.2 2.4 2.6 2.8 3.0[GeV/c 2]p.Minv

    0

    50

    100

    150

    200

    250 !"!#$%%&%$'(!"!)*+

    coun

    ts p

    er 2

    0 M

    eV/c

    2

    nwindow = 0.85 - 1.03 GeV/c 2

    (CM)

    K elastic?B: Faddeev App.

    Sekihara Oset Ramosuncorr. (1405) psimple QE

    +Kpp?

    K quasi-elastic?

    Very Preliminary

  • 3He(K-, Λp)n:

    countsper20MeV/c2

    2.0 2.2 2.4 2.6 2.8 3.0[GeV/c2]ΛΛp.Minv

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

  • 3He(K-, Λp)n:

    if we can neglect interference

    rather deep &narrow in width

    could be OK

    0.0

    0.5

    1.0

    ccoossnnθθ(CM)

    2.0 2.2 2.4 2.6 2.8 3.0[GeV/c2]ΛΛp.Minv

    coun

    ts p

    er 2

    0 M

    eV/c

    2

    2.0 2.2 2.4 2.6 2.8 3.0[GeV/c 2]p.Minv

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200!"!#$%$'&!"!()* +

    (CM)

    nwindow = 0.85 - 1.03 GeV/c 2

    K-pp?

    K elastic?B: Faddeev App.

    Sekihara Oset Ramosuncorr. (1405) p

    Very Preliminary

    K quasi-elastic?

  • T.Yamaga

    ◆ Recentresults

    43

    E-indep.

    Reportsstructure /NOstructure

    ►Experiments►Theoreticalcalc.

    KNinteractionmodelE-dep./E-indep.

    J-PARC E15 1st

    J-PARC E15 2nd??

    ?

    3He(K-, Λp)n:

    could be the first convincing data… after a long journey …

    with single pole assumption

    with double structuresVery Preliminary

    E-dep.

  • Summary

    first convincing Kpp signal

    finish analysis, including

    probably, BK ~ 100 MeV would be excluded

    low qK is key for the formation

    cf. arXiv:1607.02058 → MΛp = 2354 − 36i MeV B(K) ~ 15 MeVΓ(K) ~ 70 MeV

    compact system ?QK ~ 400 MeV/c → ~ 0.5 fm?

    44

    deeper than -UM ? χ

    what needed to be finalize?

    examine other possibilities: uncorrelated Σ* p?

    full kinematical refit / angular distributions …further theoretical inputs?

    what is flat dist. over Dalitz?Λpn

    E31?

    JP?

  • THANKS

  • 46

    backups

  • 47

    15m

    E15

    J-PARC47

  • 0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    1800 2.0 2.2 2.4 2.6 2.8 3.0

    0

    500

    1000

    1500

    2000

    2500

    [GeV/c

    2 ]M(Xmiss)

    [GeV/c 2]p.Minv48

    K- + 3He → ? → Λ + p + n

    Y (=K-pp) → Λ + p K- + 3He → Y + n

    n-window

    nγ m

    iss.

    (n p

    Σ0 )

    n miss.

    (n p Λ

    )

    invariant mass of(Λ p) system

    mass of missing particle

    M(K

    +p+p

    )

    M(Σ

    +π+p

    )

    nπ m

    iss.

    (n p Λπ

    )

    M(Λ p)

    M(X

    mis)K- + 3He → Λ + p + Xmis (Xmis=n)

    48

    Very Preliminary

  • 49

  • T.Yamaga

    MENU2016@Kyoto

    2016.07.2650

    2NAprocess

    Structure

    CMframe

    Beam

    PRELIMINARYK-+3He:K- +“pp+ns”→Λp+ns

    backwardVery Preliminary

  • kinematically forbidden

    qX dependence

    twocomponents?

    with different qX?

    Very Preliminary

    51

    M(K

    +p+p

    )

    smaller QX?

    larger QX?

  • kinematically forbidden

    kinematically forbidden

    kinematically forbidden kinematically

    forbidden

    (40 MeV bin)slice =

    0.1 GeV/c

    Very Preliminary52

  • 3He(K-, Λp)n T. Hashimoto et al., PTEP (2015) 061D01.B(X) ~ 15 MeVΓ(X) ~ 110 MeVQ(X) ~ 400 MeV/c

    E151st

    E152ndB(X) ~ 50 ?? MeVΓ(X) ~ 60 ?? MeVQ(X) ~ 400 ?? MeV/c

    two structures & Kpp for deeper one!!… very deep

    … very compact ( < 0.5 fm ? )

    remaining mystery “point like reaction in Λpn final state”

    53

    Λpn : single-pole?Y. Sada et al., PTEP (2016) 051D01.

    n : semi-inclusive

    (not hyper deep, though)

    … rather narrow

    Very Preliminary

  • ❖ Mass :❖ Width :❖ Binding Energy

    ΣN cusp + 
ΣN→ΛN conversion

    �⇤p�⌃0p

    = 0.92+0.16�0.14(stat)+0.60�0.42(syst)

    Prelimin

    ary

    PTEP 2015, 021D01 Y. Ichikawa et al.

    (a) (b) (c)

    Fig. 3. Missing-mass square spectra of X obtained in two-proton coincidence events in thed(π+, K + pp)X reaction. Each spectrum shows the mass square of X for a different MMd region: theleft (a) shows the QF" region (MMd < 2.22 GeV/c2), the center (b) shows the “K − pp”-like structureregion (2.22 < MMd < 2.35 GeV/c2), and the right (c) shows the QFY ∗ region (MMd > 2.35 GeV/c2). Thespectra were fitted with three components of #p (dashed line), "0 p (dot-dashed line), and Yπp (dotted line)decay modes.

    two-proton coincidence events of the "0 p final state (ii) with the acceptance correction. According tothe simulation, the contribution of the "0 p → "0 p rescattering background is negligible because ofthe two high-momentum proton coincidence. The spectrum was fitted with a relativistic Breit–Wignerfunction:

    f (MMd) =(2/π)MMdm0$(q)

    (m20 − MM2d)2 + (m0$(q))2. (2)

    The mass-dependent width was $(q) = $0(q/q0), in which q (q0) is the momentum of the"0 and proton in the "0 p rest frame at mass MMd (m0). The obtained mass and width are2275 +17−18 (stat.)

    +21−30 (syst.) MeV/c

    2 and 162 +87−45 (stat.)+66−78 (syst.) MeV, respectively. This cor-

    responds to the binding energy of the K − pp system of 95 +18−17 (stat.)+30−21 (syst.) MeV and the

    production cross section of the “K − pp”-like structure decaying to "0 p of dσ/d&K − pp→"0 p =3.0 ± 0.3 (stat.) +0.7−1.1 (syst.) µb/sr. The systematic errors of these values were estimated taking intoaccount uncertainties in the fitting ranges, the binning of the missing-mass spectrum, the detec-tion efficiency of two protons in the RCA, and the Breit–Wigner shape by changing the Lorentzianfunction folded with the missing-mass resolution. The differential cross section of the “K − pp”-like structure of the #p decay mode (i) was also estimated from the fitting assuming the samedistribution of MMd . Thus, a branching fraction of the “K − pp”-like structure was obtained as$#p/$"0 p = 0.92 +0.16−0.14 (stat.)

    +0.60−0.42 (syst.). This ratio was discussed from a theoretical point of

    view and predicted to be 1.2 using the chiral unitary model in Ref. [27].Next, we try to understand the ratio histogram (Fig. 2(c)) with the obtained K − pp mass distribution

    of f (M Md). By using the mass distribution for the “K − pp”-like structure and the double-differentialcross section of the inclusive (π+, K +) process d

    2σd&d M Md

    (M Md)inclusive, we can obtain the ratio

    6/8

    at Library of Research Reactor Institute, Kyoto U

    niversity on February 25, 2015http://ptep.oxfordjournals.org/

    Dow

    nloaded from

    162+87�45(stat.)+66�78(syst.) MeV

    2275+17�18(stat.)+21�30(syst.) MeV/c

    2Λp/Σ0pK-pp-like structure in Σ0p

    Σ0pΛp

    T. Nagae

    Mthr.(Σπp)

    Mthr.(Kpp)

    Nothresholdeffectseen?!54

  • 55