Volume Holograms Kogelnik’s Coupled Wave Theory 545 spring 10/student...Conversations with...

12

Click here to load reader

Transcript of Volume Holograms Kogelnik’s Coupled Wave Theory 545 spring 10/student...Conversations with...

Page 1: Volume Holograms Kogelnik’s Coupled Wave Theory 545 spring 10/student...Conversations with Professor S. Mendez, University of Louisville. Title: Volume Holograms Kogelnik’s Coupled

Volume Holograms

Kogelnik’s Coupled Wave Theory

Physics 545

Page 2: Volume Holograms Kogelnik’s Coupled Wave Theory 545 spring 10/student...Conversations with Professor S. Mendez, University of Louisville. Title: Volume Holograms Kogelnik’s Coupled

Volume HologramGeometry, Grating Vector K ,Reading Wave R and Signal Wave 

S

Page 3: Volume Holograms Kogelnik’s Coupled Wave Theory 545 spring 10/student...Conversations with Professor S. Mendez, University of Louisville. Title: Volume Holograms Kogelnik’s Coupled

Wave EquationFrom 

Maxwell’s 

Equations 

for 

non‐magnetic 

dispersive 

material 

of 

permeability  μ

= 1 and no volume charges: 

(Del)2E –

μ0

σ(Partial E/ w.r.t t) –

μ0

ε0

ε(Partial E/ w.r.t t)2

= 0    (1)

Which 

has 

plane 

wave 

solution 

propagating 

in 

the 

direction 

and 

linear 

polarization in the y direction of the form:

E(x, z, t) = Re{ a(x, z) exp(iωt)}.                                   (2)Where a(x, z) is the complex amplitude

Inserting (2) into (1) and employing complex notation gives: 

(Del)2

a(x, z)  + k2a

= 0                                    (3)

k2

= μ0

ε0

εω2

iωμ0

σ

= (ω/c)2ε

– iωμ0

σ

(4)

Page 4: Volume Holograms Kogelnik’s Coupled Wave Theory 545 spring 10/student...Conversations with Professor S. Mendez, University of Louisville. Title: Volume Holograms Kogelnik’s Coupled

Relative Constants: ε

and σ• ε

can 

be 

considered 

to 

be 

composed 

of 

an 

average 

component  ε0

and 

sinusodially vaying component ε1

• Values vary as a cosine function in the direction of the grating vector K

• σ

will have the same properties 

• Define r(x, y, z) to be the position vector of any point within the medium 

ε

= ε0

+ ε1

cos(K . r)                                           (5)σ

= σ0

+ σ1

cos(K . r)                                          (6)

Inserting

(5) and (6) into (4) 

k2

= β2

– 2iαβ

+ 2κβ[exp(i

K . r) + exp(‐i

K . r)]              (7)

α

= μ0

cσ0

/2(ε0

)1/2

;   β

= 2π(ε0

)1/2/λ

Page 5: Volume Holograms Kogelnik’s Coupled Wave Theory 545 spring 10/student...Conversations with Professor S. Mendez, University of Louisville. Title: Volume Holograms Kogelnik’s Coupled

Coupling Constant κ

κ

= ¼[ 2πε1

/(ε0

)1/2/λ ‐ iμcσ1

/(ε0

)1/2]

• Central parameter in coupled wave theory

•Incident 

and 

diffracted 

waves 

are 

coupled 

via 

spatial 

modulations 

of 

the 

index of refraction n and/or spatial modulations of the absorption constant

• Expressing β, α

and α1 

= μcσ1

/(ε0

)1/2

in terms of the optical media 

gives 

κ

=  πn1

– iα1

/2                                    (8)

• Where n1 

is the amplitude of index of refraction modulation

• (8) was determined using the following approximations

α

« 2πn/λ

;   α1

« 2πn/λ

;     n1

« n

Page 6: Volume Holograms Kogelnik’s Coupled Wave Theory 545 spring 10/student...Conversations with Professor S. Mendez, University of Louisville. Title: Volume Holograms Kogelnik’s Coupled

Bragg Condition

Θ

= Θ0

+ ∆

Θ

= Θ0

ρ

= propagation vector of R,  σ

= propagation vector of Sσ,

ρ

and

K

are co‐planar σ

= ρ

= Θ0

(Bragg Condition)                K/2 = ρsin(Θ0

= β

= σ

Page 7: Volume Holograms Kogelnik’s Coupled Wave Theory 545 spring 10/student...Conversations with Professor S. Mendez, University of Louisville. Title: Volume Holograms Kogelnik’s Coupled

Coupled Wave Equations

solution 

to 

(3) 

is 

superposition 

of 

the 

reading 

and 

signal 

waves 

given by:

a

= R(z)exp[‐ρ.r] + S(z)exp[‐σ.r]                       (9)

Inserting (9) into (3) gives two coupled equations for R(z) and S(z):

R’’ – 2iρz

R’

ρ2R + β2R – 2iαβR + 2κβS = 0      (10)  

S’’ – 2iσz

S’

σ2S + β2S – 2iαβS + 2κβR = 0        (11)

Third & fourth terms in (10) sum to 0(Bragg Condition)

Sum of  

third & fourth terms in (11) can be expressed in terms of small 

deviations ∆

from the Bragg Condition and  Γ

= β∆

sin(2Θ0

β2‐ σ2

2β2∆sin(2Θ0

) ≈

2βΓ

Page 8: Volume Holograms Kogelnik’s Coupled Wave Theory 545 spring 10/student...Conversations with Professor S. Mendez, University of Louisville. Title: Volume Holograms Kogelnik’s Coupled

Nicer Version

Ignoring the R’’

and S’’,  since R and S change slowly (10) and (11) become:

CR

R’

+ αR = ‐iκS                  CR

= ρz

Cs

S’

+ (α

+ iΓ)S = ‐iκR         Cs

= σz

R’’

+ (α/CR

+α/ Cs + iΓ/ Cs

)R’

+ (α2

+ iΓα

+ κ2)R/ CR

Cs 

= 0

Which has a solution of the form R(z) = exp[Υz]

Solving for Υ

Υ1,2

= ‐1/2(α/CR

+α/ Cs

+ iΓ/ Cs

) ± ½[( α/CR

‐ α/ Cs ‐

iΓ/ Cs

)2

4κ2/ CR

Cs 

]1/2

R(z) = R1

exp[Υ1

z] + R2

exp[Υ2

z] and S(z) = S1

exp[Υ1

z] + S2

exp[Υ2

z]

Page 9: Volume Holograms Kogelnik’s Coupled Wave Theory 545 spring 10/student...Conversations with Professor S. Mendez, University of Louisville. Title: Volume Holograms Kogelnik’s Coupled

Boundary Conditions & Analysis

Reading wave R has unit amplitude (normalized)

Signal wave S(0) = 0   as does  S’(0) =0

R(0) = R1

+ R2

= 1;  S(0) = S1

+ S2

= 0;  S’(0) = Υ1

S1

+ Υ2

S2

S(d) = iκ/[Cs 

(Υ2

Υ1

)][ exp[Υ2

d] ‐

exp[Υ1

d] 

Phase Grating: α1

= α

= 0 Diffraction from spatial modulation of n

Define two parameters for the analysis

ν

=κd/cos(Θ0

) = πn1

d/λ

cos(Θ0

) and ζ

= ∆βdsin(Θ0

) = Γd/(2cos(Θ0

))

S(d) = ‐i[exp[‐iζ]sin((ζ2

ν2)1/2)]/(1 + ζ2/ ν2)

Page 10: Volume Holograms Kogelnik’s Coupled Wave Theory 545 spring 10/student...Conversations with Professor S. Mendez, University of Louisville. Title: Volume Holograms Kogelnik’s Coupled

K

σρ

Θ0Θ0

z = 0  z = d

Θ

= Θ0

and ζ

= 0

S(d) = ‐isin(ν)

|S(d)|2  

= 1 

ν

=

π/2

πn1

d/λ

cos(Θ0

) = π/2

n1

d/ cos(Θ0

) = λ/2

When the optical path length of the 

incident wave  changes by λ/2 100% efficiency is obtainable 

100% efficiency is not obtainable 

when  the angle of incidence differs 

from the Bragg angle

Page 11: Volume Holograms Kogelnik’s Coupled Wave Theory 545 spring 10/student...Conversations with Professor S. Mendez, University of Louisville. Title: Volume Holograms Kogelnik’s Coupled

General Results: η

= |S(d)|2/ |R(0)|2

= |S(d)|2

ζ ≠ 0

Page 12: Volume Holograms Kogelnik’s Coupled Wave Theory 545 spring 10/student...Conversations with Professor S. Mendez, University of Louisville. Title: Volume Holograms Kogelnik’s Coupled

References

1.

Coupled 

Wave 

Theory 

for 

Thick 

Hologram 

Gratings, 

Kogelnik, 

H. The Bell System Technical Journal, May 23, 19692.

Optical Holography, Collier, R., Burckhardt, C., Lin, L. Academic 

Press, 1971  pgs 228 –

264

3.Fundamentals of Photonics 2nd

Edition, Saleh,B., Teich, M. Wiley 

Interscience

2007

4.Electromagnetic 

Fields 

2nd

Edition, 

Wangness, 

R., 

John 

Wiley 

and Sons 1986 5. Conversations with Professor S. Mendez, University of Louisville