Twin Solenoid Study

13
Twin Solenoid Study Infinite and Short Models

description

Twin Solenoid Study. Infinite and Short Models. Infinitive Twin Solenoid. Induction in the Detector area B d = µ 0 (i d - i a ) with radius R d Induction in the Anticoil ( Muon ) area B a = µ 0 i a with radius R a where “ I” is linear current density. - PowerPoint PPT Presentation

Transcript of Twin Solenoid Study

Page 1: Twin Solenoid Study

Twin Solenoid Study

Infinite and Short Models

Page 2: Twin Solenoid Study

Infinitive Twin SolenoidInduction in the Detector area Bd = µ0 (id-ia) with radius Rd

Induction in the Anticoil (Muon) area Ba = µ0 ia with radius Ra

where “I” is linear current density

Page 3: Twin Solenoid Study

Some Results of Infinite Solenoid

If the flux is returned: Bd π Rd2= Ba π (Ra

2 -Rd2)

With α=Ra2 / Rd

2 >1

Current id = Bd /µ0 α /(α -1) is of course > id without Anticoil

But force is always lower!

fd= (Bd-Ba) id Rd = Bd2 / µ0 Rd (α2 -2 α)/ (α2 -2a+1) < fd without Anticoil

Page 4: Twin Solenoid Study

Dimensions of double solenoid system with the x-axis as the axis of symmetry (300 mm inner and 100 mm outer)

0

1

2

3

4

5

6

-5 -4 -3 -2 -1 0 1 2 3 4 5

Coil dimenstions

Inner solenoid

Outer solenoid

Page 5: Twin Solenoid Study

Current densities for different lengths of outer solenoid

Free gap between solenoids Free gap between solenoids Free gap between solenoids 1m 1,5m 2m

Length outer

solenoid (m)

Current density inner

solenoid (A/mm2)

Current density outer

solenoid (A/mm2)

Current density inner

solenoid (A/mm2)

Current density outer

solenoid (A/mm2)

Current density inner

solenoid (A/mm2)

Current density outer

solenoid (A/mm2)

6 26,80 -26,92 26,60 -28,1 26,40 -29,186.5 26,80 -25,42 26,60 -26,44 26,40 -27,47 26,80 -24,16 26,60 -25,06 26,40 -25,9

7.5 26,80 -23,09 26,60 -23,88 26,40 -24,638 26,80 -22,18 26,60 -22,87 26,40 -23,53

8.5 26,80 -21,32 26,60 -22 26,40 -22,59

9 26,80 -20,71 26,60 -21,25 26,40 -21,76

Page 6: Twin Solenoid Study

Magnetic field B vs radius. Outer solenoid is 8m long, free gap between solenoids is 1,5m

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

B vs r for various z positionsB for z = 0

B for z = 3

Page 7: Twin Solenoid Study

Ratios of flux of the inner and outer solenoid in the z=0 plane

Free gap Free gap Free gap

1m 1,5m 2m

Length outer solenoid (m) Flux ratio Flux ratio Flux ratio

6 0,809 1,068 1,031

6,5 0,792 1,044 1,013

7 0,776 1,024 0,996

7,5 0,763 1,007 0,981

8 0,752 0,991 0,968

8,5 0,742 0,978 0,957

9 0,734 0,966 0,946

Page 8: Twin Solenoid Study

Comparison of stray fields. Range B-field: 0.05-0.5T. Left 1,5m free gap, right 2m free gap.

Length outer solenoid 8,5m

Page 9: Twin Solenoid Study

Magnetic field at an axial distance of 15m from the centre of the system

6 6.5 7 7.5 8 8.5 90

50

100

150

200

250

300

350

Length of outer solenoid (m)

Mag

netic

fiel

d (G

auss

)Magnetic field at 15m axial distance from centre

Gap = 1mGap = 1,5mGap = 2m

Page 10: Twin Solenoid Study

Stress results for a free gap of 1,5m. Axial and radial stresses have been split in compressive and tensile

columns

Stress results on both solenoids for a free gap of 1,5m Inner radi us inner solenoid = 3.2m

Centra l fi eld in a l l cases i s 5T Inner radi us outer solenoid = 5.45m

length outer solenoid (m)

Hoop stress (MPa)

Radial Stress (MPa)

Axial stress (MPa)

Peak hoop stress (MPa)

Peak positive

radial stress (MPa)

Peak negative

radial stress (MPa)

Peak positive

axial stress (MPa)

Peak negative

axial stress (MPa)

6 94 -9 -105 257 0,6 -1,5 NA -24

6,5 96 -9 -108 240 0,5 -1,4 NA -17

7 98 -9 -112 227 0,5 -1,2 1,8 -13

7,5 101 -9 -114 215 0,5 -1,2 6,5 -12

8 102 -9 -116 205 0,5 -1,2 11 -10

8,5 104 -9 -118 197 0,5 -1,2 14 -8

9 106 -9 -119 196 2,5 -1,2 33 -7195 185

188 205

192 194

182 231

185 217

Von Mises stress (MPa)

Von Mises stress (MPa)

172 269

177 248

Stresses on inner solenoid Stresses on outer solenoid

Page 11: Twin Solenoid Study

Von Mises stresses on inner and outer solenoid with increasing length of outer solenoid

6 6.5 7 7.5 8 8.5 9160

180

200

220

240

260

280

Length of outer solenoid (m)

Von

Mis

es s

tress

(MP

a)Von Mises stress on inner and outer solenoid

Inner solenoid

Outer solenoid

Gap = 1mGap = 1,5mGap = 2m

Page 12: Twin Solenoid Study

Axial stress on inner solenoid

6 6.5 7 7.5 8 8.5 9-122

-120

-118

-116

-114

-112

-110

-108

-106

-104

-102

Length of outer solenoid (m)

Axi

al s

tress

in in

ner s

olen

oid

(MP

a)Axial stress in inner solenoid

Gap = 1mGap = 1,5mGap = 2m

Page 13: Twin Solenoid Study

Conclusions• With stresses on the solenoids as the most important means of

selection, the system with a 1m gap is not realizable due to high tensile axial stresses in the outer solenoid which would pull the windings of the solenoid apart. Free gaps of 1,5m and 2m are realizable, with an outer solenoid with a length between 8m and 8,5m for a 1,5m gap, and a length of 8-9m for a 2m gap.

• Von Mises stresses on both solenoids will be 200±15 MPa. On the inner solenoid, hoop stresses will be 106±4 MPa, axial stresses will be solely compressive with a range of -107±2 MPa, and the compressive radial stresses peak at -9 MPa. The outer solenoid will have hoop stresses within a range of 190±15 MPa, axial compressive stresses of -11±4 MPa, axial tensile ranging from 3 to 14 MPa.