Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic...

52
The quest for highly enan2oselec2ve chiral hypervalent arylλ 3 iodane reagents Salinda Wijeratne CEM 958 12/7/11 Chiral arylλ 3 iodanes I OR O Me O OR O I(OAc) 2 O O OMe I(OAc) 2 O O MeO 1 O O OMe I(OAc) 2 O O MeO I OR O Me O OR O I(OAc) 2 O OR O I(OAc) 2 O O OMe I(OAc) 2 O O MeO

Transcript of Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic...

Page 1: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

The  quest  for  highly  enan2oselec2ve    chiral  hypervalent  aryl-­‐λ3-­‐iodane  reagents    

Salinda  Wijeratne  

CEM  958  

12/7/11  

Chiral  aryl-­‐λ3-­‐iodanes    

IOR

OMeO OR

OI(OAc)2

OO

OMe

I(OAc)2O

O

MeO

1  

OO

OMe

I(OAc)2O

O

MeO

IOR

OMeO OR

OI(OAc)2

O OR

OI(OAc)2

OO

OMe

I(OAc)2O

O

MeO

Page 2: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

The  versa2lity  &  demand  for  aryl-­‐λ3-­‐iodanes      

•  Chemical   proper.es   and  reac.vity:   similar   to   the   heavy  metal   reagents   such   as   Hg(III),  Ti(III),  Pb(IV)  

•  No   toxicity   and   environmental  issues  

•  Mild   reac.on   condi.ons   and  easy  handling  

•  Commercial   availability   of   key  precursors    

– e.g    PhI(OAc)2  2  

hJp://onlinelibrary.wiley.com/doi/10.1002/anie.v49:12/issuetoc  Zhdankin,  V.  V.;  Stang,  P.  J.  Chem.  Rev.  2002,  102,  2523-­‐2584  

Page 3: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

•  “Hypervalent”:  exceeding  octet  rule  

•  Aryl-­‐λ3-­‐iodanes  

−   10  valence  electrons  

−  Important  hypervalent  aryl-­‐λ3-­‐iodanes      

Hypervalent  aryl-­‐λ3-­‐iodanes    

Zhdankin,  V.  V.;  Stang,  P.  J.  Chem.  Rev.  2002,  102,  2523-­‐2584  3  

I

L

Ar

L!"

!+

!"

#3-Iodanes (10-I-3)

IOTs

OTs

Koser'sReagent

I OF3C

CH3

CH3

Togni'sReagent

ICl

Cl

(Dichloroiodo)benzeneWillgerodt, Germany, 1886

Bonding orbital

nonbonding orbital

Antibonding orbital

I LL

Three centered four electron bonding

IOTs

OTs

Koser'sReagent

I OF3C

CH3

CH3

Togni'sReagent

ICl

Cl

(Dichloroiodo)benzeneWillgerodt, Germany, 1886

IOTs

OTs

Koser'sReagent

I OF3C

CH3

CH3

Togni'sReagent

ICl

Cl

(Dichloroiodo)benzeneWillgerodt, Germany, 1886

Page 4: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

Classifica2on  &  reac2vity  of  aryl-­‐λ3-­‐iodanes    

4  Wirth,  T.  Topics  in  Current  Chemistry:  Hypervalent  Iodine  Chemistry.  Vol.  224.  Springer.  2003,  p  8-­‐9  

I

Ar

Ar

Cl

Two carbon-one heteroatom ligands systems (Ar2IL)

Pseudotrigonalbipyramid

R

O

R

O

Ar

1) base

2)Ar* I

Ar

X * Ar* I

reoxidize

I

OAc

Ar

OAc

Pseudotrigonalbipyramid

One carbon-two heteroatom ligands systems (ArIL2)

PhI

PhIOAc

OAc

R

O

I

R'

OAcPh

mCPBA

mCBA

R

OHR' R

OR'

R

OR'

OAc

Ligand exchange

Reductive elemination

OAc

(AcOH)

Page 5: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

Asymmetric  induc2ons  using  aryl-­‐λ3-­‐iodanes  

5  

O

O

O

OI

R!

R!

S!

H O

O

I

RO

O X XX

X = I, I(OAc)2

II

O

OAc

OAc

Type 1 Type 2 Type 4 Type 5

O !

O

ORR'

I(OAc)2I

OR'

R"'

R"

Type 3

R''

One carbon-two heteroatom ligands systems

IL*

Ar*IL

Type 2Type 1

Two carbon-one heteroatom ligandsystems

A  -­‐  Iodoaryl  moiety  B  -­‐  Chiral  linker  

One  carbon-­‐two  heteroatom  ligands  systems  

Two  carbon-­‐one  heteroatom  ligands  systems  

Page 6: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

Outline  

•   Introduc.on  

•  Asymmetric  induc.on  using  chiral  aryl-­‐λ3-­‐iodane  reagents  

–  Chiral   aryl-­‐λ3-­‐iodanes   with   one   carbon   and   two  heteroatom   ligands  &   their   applica.ons   in   oxida2ve  addi2on  reac2ons  

–  Chiral   aryl-­‐λ3-­‐iodanes   with   two   carbon   and   one  heteroatom   ligands   &   their   applica.ons   in   aryla.on  reac.ons  

6  

Page 7: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

One  carbon  and  two  heteroatom  ligands  chiral  aryl-­‐λ3-­‐iodanes  

7  

O !

O

XRR'

I(OAc)2

I

OR'

R"'

R"Type 3

R''

O

O

O

OI

R!

R!

Type 1

S!

H O

O

I

RO

O

Type 2

X XX

X = I, I(OAc)2

Type 4

II

O

OAc

OAc

Type 5

R S R' R S R'

O

Oxidation of sulfide

R R'O

R R'O

OR"

! -

Oxy

gena

tion

of k

eton

es

R

R'

R

R'OR"

OR"

OH

R'

OH

R'

Nu

Dearomatization

O

O

O

OI

R"

R"

Type 1

S"

HO

O

I

RO

O

Type 2

Catalyst

Diox

ygen

atio

n &

diam

inat

ion

of a

lken

es

Flexible  

Rigid  

Page 8: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

Type  1  chiral  aryl-­‐λ3-­‐iodanes  in  oxida2on  of  sulfide  

8  

Type  2  chiral  aryl-­‐λ3-­‐iodanes  in  α-­‐oxygena2on  of  ketone  

Imamoto,  T.;  Koto,  H.  Chem.  LeD.  1886,  967-­‐968  Hatzigrigoriou,  E.;  Varvoglis,  A.;  Chris.anopoulou,  M.  Org.  Chem.  1990,  55,  315-­‐318  

O S OO

OIPh

OH

Ph

O OPh

O O

RHPh

O O

HR

O S OO

OR =

10-(+)-camphoryl

PhI

H2OMeCN, 45 min, 80 °C

(1 equiv) 5

90%, (S)-6 : (R)-6 = 1:1

4

o-CH3C6H4S CH3

O

Acetone, 3 h, r.t

O

O

t-BuCOOH

Ht-BuCOO

OO

I

o-CH3C6H4S CH3

(2 mmol) 2

75%, 53% ee,(S)-3

(1 mmol) 1

Page 9: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

R S R' R S R'

O

Oxidation of sulfide

R R'O

R R'O

OR"

! -

Oxy

gena

tion

of k

eton

es

R

R'

R

R'XR"

XR"

Diox

ygen

atio

n &

diam

inat

ion

of a

lken

es

OH

R'

OH

R'

Nu

Dearomatization

Catalyst

I

OR'

R"'

R"

O "

O

XRR'

I(OAc)2R''

Type 3

9  

O !

O

XRR'

I(OAc)2

I

OR'

R"'

R"Type 3

R''

O

O

O

OI

R!

R!

Type 1

S!

H O

O

I

RO

O

Type 2

X XX

X = I, I(OAc)2

Type 4

II

O

OAc

OAc

Type 5

One  carbon  and  two  heteroatom  ligands  chiral  aryl-­‐λ3-­‐iodanes  

Flexible  

Rigid  

Page 10: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

Type  3  aryl-­‐λ3-­‐iodanes  with  ether  moiety    

10  

O

O

O

O

I

R!

R!

S!

H O

O

I

RO

O

Chiral center faraway from reaction center

Liberation ofthe chiral ligand

Liberation ofthe chiral ligand

Type 1

Type 2

Results and Discussion

Hypervalent iodine compounds are electrophilic speciesand can attack double bonds as shown in Scheme 1. Weconfirmed this mechanism by converting either (E)- or(Z)-2-pentene with the hypervalent iodine compounds 3into syn- or anti-2,3-bis(tosyloxy)pentane selectively. Aclean SN2 type mechanism is the prerequisite for thedevelopment of asymmetric reactions with chiral hyper-valent iodine compounds. For these investigations wechose the dioxytosylation of styrene and the R-oxytosy-lation of propiophenone as test reactions (Scheme 2). Inthese reactions new stereocenters are created and theproducts of these reactions, 1,2-bis(tosyloxy)phenylethane(4) and R-(tosyloxy)propiophenone (5), are compoundscontaining asymmetric carbon atoms.

Employing chiral hypervalent iodine compounds oftype 3 as electrophilic reagents, we observe a facialselectivity upon reaction with alkenes and ketones andenantiomerically enriched products 4 and 5 are gener-ated. With compound 3a (R ) Et, R! ) Me, R!! ) H) wereported asymmetric reactions yielding 4 and 5 with 21%ee and 15% ee, respectively.10 Because of the lowstereoselectivities we tried to optimize the chiral hyper-valent iodine compounds of type 3. First we focused ourinterest on the substituents R and R! in the chiral moietyof 3. In a second step we then varied the substituent R!!to understand its influence on the electronic propertiesof the reagent. A further target was the optimization ofthe reaction conditions to obtain better yields and ste-reoselectivities.

We chose to synthesize the most simple compound 3bwith R ) R! ) Me and R!! ) H. The synthesis of thiscompound starts with an ortho-deprotonation of (S)-1-phenylethanol (6) with n-BuLi followed by introductionof iodine yielding compound 7a. The hydroxy group wasmethylated, and the precursor 7b was oxidized withsodium perborate in glacial acetic acid.12 Subsequenttreatment with p-toluenesulfonic acid monohydrate leadsto the hypervalent iodine compound 3b. An alternativeway to obtain 3b is chiral reduction13 of 2-bromoac-etophenone (8) followed by methylation. After the bro-mine-iodine exchange compound 7b can be oxidized asdescribed above. Because of the inefficent ortho-depro-

tonation of 6, the second route leads to a higher overallyield of 3b (43%) (Scheme 3).

The hypervalent iodine compound 3b can be purifiedonly by recrystallization. The X-ray structural analysisshows a strong interaction between the oxygen of themethoxy group and the iodine (Figure 1). The distancebetween these two atoms (2.47 Å) is much less than thedistance from the iodine to the oxygen of the tosyloxygroup (2.82 Å). Because the hydroxy group is tightlybound to the iodine (1.94 Å), we prefer writing thestructures of these hypervalent iodine compounds as saltsof p-toluenesulfonic acid.

Compound 3b shows a similar T-shaped structure likethe Koser reagent.14 Interestingly, the oxygen of themethoxy group is now replacing the tosylate leading toan oxygen-iodine-oxygen angle of 166° (Koser reagent:179°).14 Compared with the X-ray structural analysis of3a, the hypervalent iodine compound 3b shows a verysimilar geometry at the iodine atom. With 3b theproducts 4 and 5 were obtained with 33% ee and 15%ee, respectively.

Compared to 3a, the smaller substituent R ) Me in3b shows a higher enantiomeric excess in the product 4.If R! is changed into a larger substituent in 3c (R ) Me,R! ) Et), the product 4 is obtained with only 21% ee.

With the optimized chiral moiety in 3b (R ) R! ) Me),we started to synthesize derivatives with methoxy groups(R!! ) OMe) in the ortho-, meta-, and para-positions withrespect to iodine.

Two synthetic routes to the chiral hypervalent iodinecompound 3d with an ortho-methoxy substituent have

(12) McKillop, A.; Kemp, D. Tetrahedron 1989, 45, 3299-3306.(13) Resnick, S. M.; Torok, D. S.; Gibson, D. T. J. Org. Chem. 1995,

60, 3546-3549.(14) Koser, G. F.; Wettach, R. H.; Troup, J. M.; Frenz, B. A. J. Org.

Chem. 1976, 41, 3609-3611.

Chart 1

Scheme 2

Scheme 3a

a Key: (a) N,N,N!,N!-TMEDA, n-BuLi, I2, 22%; (b) NaH, MeI,72%; (c) (-)-Ipc2BCl, 92%; (d) NaH, MeI, 92%; (e) t-BuLi, I2, 74%;(f) (i) NaBO3‚4H2O, AcOH, 73%, (ii) p-TsOH‚H2O, 95%.

Figure 1. X-ray structure of 3b.

Chiral Hypervalent Iodine Compounds J. Org. Chem., Vol. 63, No. 22, 1998 7675

Stabilizing interaction

n !*

O

IY

Orbital overlap for I---O interaction

Wirth,  T.;  Hirt,  U.  H.  Tetrahedron  Asymm.  1997,  8,  23  

I+

OR'

-OTs

OH

R

Type 3 with ether moiety

Crystal  structure  of  compound  (S)-­‐2    

2.47  Å  

I

EtOMe

OH

-OTs I

MeOMe

OH

-OTs

(S)-1 (S)-2

Page 11: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

11  

Type  3  chiral  aryl-­‐λ3-­‐iodanes  in  α-­‐oxygena2on  of  ketones    

Ph

O

CH2Cl2, 0 °C Ph

O

OTsI

EtOMe

OH

(0.5 mmol) (S)-2 or 4(0.6 mmol) p-TsOH

(1.2 mmol) 1

-OTs

3(S)-2 =>10% ee(S)-4 =>15% ee

I

MeOMe

OH

-OTs

(S)-2 (S)-4

Hirt,  U.  H.;  Spingler,  B.;  Wirth,  T.  J.  Org.  Chem.  1998,  63,  7674.  

I

MeOMe

OH

-OTs

(S)-3

MeO

I

MeOMe

OH

-OTs

(S)-4

Et

Ph Ph OTsOTs

CH2Cl2, -30 °C

0.6 mmol 1

(0.5 mmol) 2,3 or 4, (0.6 mmol) p-TsOH

(R)-5(S)-2 =>33% ee(S)-3 =>53% ee(S)-4 =>55% ee

I

MeOMe

OH

-OTs

(S)-2

Page 12: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

12  

Op2miza2on  of  condi2ons  for  high  enan2oselec2vity    

1.  Steric  influence  of  chiral  moiety    

Results and Discussion

Hypervalent iodine compounds are electrophilic speciesand can attack double bonds as shown in Scheme 1. Weconfirmed this mechanism by converting either (E)- or(Z)-2-pentene with the hypervalent iodine compounds 3into syn- or anti-2,3-bis(tosyloxy)pentane selectively. Aclean SN2 type mechanism is the prerequisite for thedevelopment of asymmetric reactions with chiral hyper-valent iodine compounds. For these investigations wechose the dioxytosylation of styrene and the R-oxytosy-lation of propiophenone as test reactions (Scheme 2). Inthese reactions new stereocenters are created and theproducts of these reactions, 1,2-bis(tosyloxy)phenylethane(4) and R-(tosyloxy)propiophenone (5), are compoundscontaining asymmetric carbon atoms.

Employing chiral hypervalent iodine compounds oftype 3 as electrophilic reagents, we observe a facialselectivity upon reaction with alkenes and ketones andenantiomerically enriched products 4 and 5 are gener-ated. With compound 3a (R ) Et, R! ) Me, R!! ) H) wereported asymmetric reactions yielding 4 and 5 with 21%ee and 15% ee, respectively.10 Because of the lowstereoselectivities we tried to optimize the chiral hyper-valent iodine compounds of type 3. First we focused ourinterest on the substituents R and R! in the chiral moietyof 3. In a second step we then varied the substituent R!!to understand its influence on the electronic propertiesof the reagent. A further target was the optimization ofthe reaction conditions to obtain better yields and ste-reoselectivities.

We chose to synthesize the most simple compound 3bwith R ) R! ) Me and R!! ) H. The synthesis of thiscompound starts with an ortho-deprotonation of (S)-1-phenylethanol (6) with n-BuLi followed by introductionof iodine yielding compound 7a. The hydroxy group wasmethylated, and the precursor 7b was oxidized withsodium perborate in glacial acetic acid.12 Subsequenttreatment with p-toluenesulfonic acid monohydrate leadsto the hypervalent iodine compound 3b. An alternativeway to obtain 3b is chiral reduction13 of 2-bromoac-etophenone (8) followed by methylation. After the bro-mine-iodine exchange compound 7b can be oxidized asdescribed above. Because of the inefficent ortho-depro-

tonation of 6, the second route leads to a higher overallyield of 3b (43%) (Scheme 3).

The hypervalent iodine compound 3b can be purifiedonly by recrystallization. The X-ray structural analysisshows a strong interaction between the oxygen of themethoxy group and the iodine (Figure 1). The distancebetween these two atoms (2.47 Å) is much less than thedistance from the iodine to the oxygen of the tosyloxygroup (2.82 Å). Because the hydroxy group is tightlybound to the iodine (1.94 Å), we prefer writing thestructures of these hypervalent iodine compounds as saltsof p-toluenesulfonic acid.

Compound 3b shows a similar T-shaped structure likethe Koser reagent.14 Interestingly, the oxygen of themethoxy group is now replacing the tosylate leading toan oxygen-iodine-oxygen angle of 166° (Koser reagent:179°).14 Compared with the X-ray structural analysis of3a, the hypervalent iodine compound 3b shows a verysimilar geometry at the iodine atom. With 3b theproducts 4 and 5 were obtained with 33% ee and 15%ee, respectively.

Compared to 3a, the smaller substituent R ) Me in3b shows a higher enantiomeric excess in the product 4.If R! is changed into a larger substituent in 3c (R ) Me,R! ) Et), the product 4 is obtained with only 21% ee.

With the optimized chiral moiety in 3b (R ) R! ) Me),we started to synthesize derivatives with methoxy groups(R!! ) OMe) in the ortho-, meta-, and para-positions withrespect to iodine.

Two synthetic routes to the chiral hypervalent iodinecompound 3d with an ortho-methoxy substituent have

(12) McKillop, A.; Kemp, D. Tetrahedron 1989, 45, 3299-3306.(13) Resnick, S. M.; Torok, D. S.; Gibson, D. T. J. Org. Chem. 1995,

60, 3546-3549.(14) Koser, G. F.; Wettach, R. H.; Troup, J. M.; Frenz, B. A. J. Org.

Chem. 1976, 41, 3609-3611.

Chart 1

Scheme 2

Scheme 3a

a Key: (a) N,N,N!,N!-TMEDA, n-BuLi, I2, 22%; (b) NaH, MeI,72%; (c) (-)-Ipc2BCl, 92%; (d) NaH, MeI, 92%; (e) t-BuLi, I2, 74%;(f) (i) NaBO3‚4H2O, AcOH, 73%, (ii) p-TsOH‚H2O, 95%.

Figure 1. X-ray structure of 3b.

Chiral Hypervalent Iodine Compounds J. Org. Chem., Vol. 63, No. 22, 1998 7675

Ph

O

CH2Cl2, 0 °C Ph

O

OTsI

EtOMe

OH

(0.5 mmol) (S)-2 or 4(0.6 mmol) p-TsOH

(1.2 mmol) 1

-OTs

3(S)-2 =>10% ee(S)-4 =>15% ee

I

MeOMe

OH

-OTs

(S)-2 (S)-4

Hirt,  U.  H.;  Spingler,  B.;  Wirth,  T.  J.  Org.  Chem.  1998,  63,  7674.  

Crystal  structure  of  compound  (S)-­‐4    

I

MeOMe

OH

-OTs

(S)-3

MeO

I

MeOMe

OH

-OTs

(S)-4

Et

Ph Ph OTsOTs

CH2Cl2, -30 °C

0.6 mmol 1

(0.5 mmol) 2,3 or 4, (0.6 mmol) p-TsOH

(R)-5(S)-2 =>33% ee(S)-3 =>53% ee(S)-4 =>55% ee

I

MeOMe

OH

-OTs

(S)-2

I

MeOMe

OH

-OTs

(S)-3

MeO

I

MeOMe

OH

-OTs

(S)-4

Et

Ph Ph OTsOTs

CH2Cl2, -30 °C

0.6 mmol 1

(0.5 mmol) 2,3 or 4, (0.6 mmol) p-TsOH

(R)-5(S)-2 =>33% ee(S)-3 =>53% ee(S)-4 =>55% ee

I

MeOMe

OH

-OTs

(S)-2

Page 13: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

13  

Op2miza2on  of  condi2ons  for  high  enan2oselec2vity    

1.  Steric  influence  of  chiral  moiety    

Hirt,  U.  H.;  Spingler,  B.;  Wirth,  T.  J.  Org.  Chem.  1998,  63,  7674.  

2.  Steric  influence  at  ortho  posi2on  

Ph

O

CH2Cl2, 0 °C Ph

O

OTsI

MeOMe

OH

(0.5 mmol) (S)-5,6 or 7(0.6 mmol) p-TsOH

(1.2 mmol) 1

-OTs

3(S)-5 =>10% ee(S)-6 =>40% ee(S)-7 =>0% ee

I

MeOMe

OH

-OTs

(S)-5 (S)-6

I

MeOMe

OH

-OTs

(S)-7

Me Et i-Pr

Ph

O

CH2Cl2, 0 °C Ph

O

OTsI

EtOMe

OH

(0.5 mmol) (S)-2 or 4(0.6 mmol) p-TsOH

(1.2 mmol) 1

-OTs

3(S)-2 =>10% ee(S)-4 =>15% ee

I

MeOMe

OH

-OTs

(S)-2 (S)-4

I

MeOMe

OH

-OTs

(S)-3

MeO

I

MeOMe

OH

-OTs

(S)-4

Et

Ph Ph OTsOTs

CH2Cl2, -30 °C

0.6 mmol 1

(0.5 mmol) 2,3 or 4, (0.6 mmol) p-TsOH

(R)-5(S)-2 =>33% ee(S)-3 =>53% ee(S)-4 =>55% ee

I

MeOMe

OH

-OTs

(S)-2

I

MeOMe

OH

-OTs

(S)-3

MeO

I

MeOMe

OH

-OTs

(S)-4

Et

Ph Ph OTsOTs

CH2Cl2, -30 °C

0.6 mmol 1

(0.5 mmol) 2,3 or 4, (0.6 mmol) p-TsOH

(R)-5(S)-2 =>33% ee(S)-3 =>53% ee(S)-4 =>55% ee

I

MeOMe

OH

-OTs

(S)-2

I

MeOMe

OH

-OTs

(S)-3

MeO

I

MeOMe

OH

-OTs

(S)-4

Et

Ph Ph OTsOTs

CH2Cl2, -30 °C

0.6 mmol 1

(0.5 mmol) 2,3 or 4, (0.6 mmol) p-TsOH

(R)-5(S)-2 =>33% ee(S)-3 =>53% ee(S)-4 =>55% ee

I

MeOMe

OH

-OTs

(S)-2

I

MeOMe

OH

-OTs

(S)-3

MeO

I

MeOMe

OH

-OTs

(S)-4

Et

Ph Ph OTsOTs

CH2Cl2, -30 °C

0.6 mmol 1

(0.5 mmol) 2,3 or 4, (0.6 mmol) p-TsOH

(R)-5(S)-2 =>33% ee(S)-3 =>53% ee(S)-4 =>55% ee

I

MeOMe

OH

-OTs

(S)-2

I

MeOMe

OH

-OTs

(S)-3

MeO

I

MeOMe

OH

-OTs

(S)-4

Et

Ph Ph OTsOTs

CH2Cl2, -30 °C

0.6 mmol 1

(0.5 mmol) 2,3 or 4, (0.6 mmol) p-TsOH

(R)-5(S)-2 =>33% ee(S)-3 =>53% ee(S)-4 =>55% ee

I

MeOMe

OH

-OTs

(S)-2

Page 14: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

Type  3  chiral  aryl-­‐λ3-­‐iodanes  in  dioxygena2on  of  alkenes  

14  

Proposed  mechanism  for  dioxygena2on  of  styrene  

H

Ph H

H H

Ph H

H

IAr!

HO

OTsH

Ph H

HOTs

IHO Ar

!

H

Ph H

HTsOOTs OTs

Ar*I(OH)OTs =

I

OR'

OTs

OH

RAr*I(OH)OTs2 OTs -IAr

-OH

R''1

3 4 (R)-3

I

MeOMe

OH

-OTs

(S)-3

MeO

I

MeOMe

OH

-OTs

(S)-4

Et

Ph Ph OTsOTs

CH2Cl2, -30 °C

0.6 mmol 1

(0.5 mmol) 2,3 or 4, (0.6 mmol) p-TsOH

(R)-5(S)-2 =>33% ee(S)-3 =>53% ee(S)-4 =>55% ee

I

MeOMe

OH

-OTs

(S)-2

 Hirt,  U.  H.;  Schuster,  M.  F.  H.;  French,  A.  N.;  Wiest,  O.  G.;  Wirth,  T.  Eur.  J.  Org.  Chem.  2001,  1569  

I

MeOMe

OH

-OTs

(S)-3

MeO

I

MeOMe

OH

-OTs

(S)-4

Et

Ph Ph OTsOTs

CH2Cl2, -30 °C

0.6 mmol 1

(0.5 mmol) 2,3 or 4, (0.6 mmol) p-TsOH

(R)-5(S)-2 =>33% ee(S)-3 =>53% ee(S)-4 =>55% ee

I

MeOMe

OH

-OTs

(S)-2

I

MeOMe

OH

-OTs

(S)-3

MeO

I

MeOMe

OH

-OTs

(S)-4

Et

Ph Ph OTsOTs

CH2Cl2, -30 °C

0.6 mmol 1

(0.5 mmol) 2,3 or 4, (0.6 mmol) p-TsOH

(R)-5(S)-2 =>33% ee(S)-3 =>53% ee(S)-4 =>55% ee

I

MeOMe

OH

-OTs

(S)-2

I

MeOMe

OH

-OTs

(S)-3

MeO

I

MeOMe

OH

-OTs

(S)-4

Et

Ph Ph OTsOTs

CH2Cl2, -30 °C

0.6 mmol 1

(0.5 mmol) 2,3 or 4, (0.6 mmol) p-TsOH

(R)-5(S)-2 =>33% ee(S)-3 =>53% ee(S)-4 =>55% ee

I

MeOMe

OH

-OTs

(S)-2

Page 15: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

15  

Why  R-­‐configura2on  ?  

PhA

B

A face addition

of Ar*I(OH)OTs

B face addition

of Ar*I(OH)OTs

OMe

MeI

HHH Ph

OMe

MeI

HHPh H

TsOH

TsOH

H

Ph

TsO(R)-3

H

H

OTs

3a+

3b+

H

H

TsO(S)-3

H

Ph

OTs

1

 Hirt,  U.  H.;  Schuster,  M.  F.  H.;  French,  A.  N.;  Wiest,  O.  G.;  Wirth,  T.  Eur.  J.  Org.  Chem.  2001,  1569  

Page 16: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

Ra2onale  for  Stereoselec2vity  

16  

H

Ph

HO

SeAr!

(R)-2

CF3SO3H

MeOH

OH

EtSe

HHPh H H

Ph

OMe

SeAr!

(R)-3

H

Ph

HO

ArSe!

(S)-2

CF3SO3H

MeOH

OH

EtSe

HHH Ph H

Ph

MeO

ArSe!

(S)-3

H

Ph

OMe

SeAr!

(R)-3

Ph

A face addition

B face addition

3a+

3b+

1

Se)2

OH

Et

Br2

Se

OH

Et

TfO

Ph

MeOHAgOTfH

Ph

OMe

SeAr!

(R)-3

Wirth,  T.;  Fragale,  G.;  Spichty,  M.  J.  Am.  Chem.  Soc.  1998,  120,  3376    

Page 17: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

Ra2onale  for  Stereoselec2vity  

17  

Se)2

OH

Et

Br2

Se

OH

Et

TfO

Ph

MeOHAgOTfH

Ph

OMe

SeAr!

(R)-3

H

Ph

HO

SeAr!

(R)-2

CF3SO3H

MeOH

OH

EtSe

HHPh H H

Ph

OMe

SeAr!

(R)-3

H

Ph

HO

ArSe!

(S)-2

CF3SO3H

MeOH

OH

EtSe

HHH Ph H

Ph

MeO

ArSe!

(S)-3

3a+

3b+

Ph+ ArSe

!

Wirth,  T.;  Fragale,  G.;  Spichty,  M.  J.  Am.  Chem.  Soc.  1998,  120,  3376    

Page 18: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

Ra2onale  for  Stereoselec2vity:  Stability  of  transi2on  states  

18  

OH

MeSe

HHPh H

OH

MeSe

PhHH H

OH

MeSe

HPhH H

OH

MeSe

HHH Ph

3a+0.0 kcal/mol

3b+2.8 kcal/mol

3c+5.4 kcal/mol

3d+7.4 kcal/mol

bipyramidal structure resulting from an selenium-oxygenin-teraction can alternatively also be obtained by the conformationshown in 21+. Due to the strong steric interaction between themethyl group and the alkene, we focused our investigations onthe conformations of the diastereoisomers 20a+-20d+.The optimized geometries of the seleniranium ions 20a+-

20d+ are shown in Scheme 9. In all structures the alkene isbonded slightly asymmetrically to the selenium atom reflectingthe asymmetry of the highest occupied molecular orbital(HOMO) of styrene which is involved in the selenium-alkenebonding. The bond lengths vary from 2.03 to 2.10 Å for theshorter Se-C2 bond and from 2.13 to 2.17 Å for the Se-C1bond (Table 1). These bonds are longer than the selenium-aryl bond (Se-Caryl), which varies between 1.93 and 1.97 Å.There is a remarkable correlation between the Se-O distance

and the O-Se-alkene angle (see Table 1). In the structures20c+ and 20d+ the alkene and the oxygen are arranged in analmost T-shaped manner with an O-Se-alkene angle close to180°. This facilitates the interaction of the oxygen lone pairwith the antibonding molecular orbital of the selenium-alkene

bonding. Therefore stronger selenium-oxygen interactions andweaker selenium-alkene bondings are found for 20c+ and 20d+than for 20a+ and 20b+. That is expressed in the respectivebond lengths shown in Scheme 9 and Table 1.The natural population analysis (NPA) predicts a higher

charge of about 0.25 for atom C1 than for atom C2 in alldiastereomers (Table 1). This confirms the preference of carbonatom C1 over carbon atom C2 for a nucleophilic attack. Thisfact was also observed in all our methoxyselenenylationexperiments. For the structures 20c+ and 20d+, the charge ofthe selenium is less positive than for 20a+ and 20b+. This isin agreement with the stronger selenium-oxygen interactionin the diastereoisomers 20c+ and 20d+.Due to the reversibility of the seleniranium formation from

the selenium electrophile and the alkene, the stereoselectivityshould be influenced by the relative stabilities of the selenira-nium ions 20a+-20d+. The lowest energy is found for thediastereoisomer 20a+, which corresponds to the re attack ofthe selenium electrophile to styrene leading to the methoxyse-lenenylated product with the (R)-configuration at the newstereocenter. Diastereoisomer 20b+ is yielding the methoxy-selenenylated product with opposite configuration and is foundto be more than 2.5 kcal/mol (see Scheme 9) higher in energy.For the diastereoisomers 20c+ and 20d+ which cannot gain from!-stacking, energy differences of 5.4 and 7.4 kcal/mol arecalculated.

Conclusions

The asymmetric methoxyselenenylation reaction has beeninvestigated in detail. It was shown that the formation of theseleniranium ion intermediates is reversible. For the first timethe diastereomeric seleniranium ions, which are the intermediatesin the addition of chiral selenium electrophiles to alkenes, havebeen prepared independently. Therefore it was possible to detailby experiment the different stabilities of the seleniranium ionsinvolved in the asymmetric methoxyselenenylation. Further-

Scheme 9

Table 1. Geometry Parameters for the MP2/3-21G*-OptimizedSeleniranium Ions 20a+-20d+a

20a+ 20b+ 20c+ 20d+

Se-C1 2.13 2.13 2.15 2.17Se-C2 2.06 2.03 2.08 2.10Se-O 2.66 2.71 2.54 2.46Se-Caryl 1.94 1.93 1.96 1.97!O-Se-alkeneb 130.6 120.0 156.8 175.2!Caryl-Se-alkeneb 96.5 98.8 98.7 98.5atomic chargesSe +0.883 +0.904 +0.839 +0.813C1 -0.269 -0.306 -0.248 -0.255C2 -0.550 -0.523 -0.533 -0.505a Distances are in angstroms; angles are in degrees. The atomic

charges were determined by NPA using the MP2/6-31G*//MP2/3-21G*density. b Se-alkene stands for the bisector of the angle C1-Se-C2.

Asymmetric Methoxyselenenylation Reaction J. Am. Chem. Soc., Vol. 120, No. 14, 1998 3379

bipyramidal structure resulting from an selenium-oxygenin-teraction can alternatively also be obtained by the conformationshown in 21+. Due to the strong steric interaction between themethyl group and the alkene, we focused our investigations onthe conformations of the diastereoisomers 20a+-20d+.The optimized geometries of the seleniranium ions 20a+-

20d+ are shown in Scheme 9. In all structures the alkene isbonded slightly asymmetrically to the selenium atom reflectingthe asymmetry of the highest occupied molecular orbital(HOMO) of styrene which is involved in the selenium-alkenebonding. The bond lengths vary from 2.03 to 2.10 Å for theshorter Se-C2 bond and from 2.13 to 2.17 Å for the Se-C1bond (Table 1). These bonds are longer than the selenium-aryl bond (Se-Caryl), which varies between 1.93 and 1.97 Å.There is a remarkable correlation between the Se-O distance

and the O-Se-alkene angle (see Table 1). In the structures20c+ and 20d+ the alkene and the oxygen are arranged in analmost T-shaped manner with an O-Se-alkene angle close to180°. This facilitates the interaction of the oxygen lone pairwith the antibonding molecular orbital of the selenium-alkene

bonding. Therefore stronger selenium-oxygen interactions andweaker selenium-alkene bondings are found for 20c+ and 20d+than for 20a+ and 20b+. That is expressed in the respectivebond lengths shown in Scheme 9 and Table 1.The natural population analysis (NPA) predicts a higher

charge of about 0.25 for atom C1 than for atom C2 in alldiastereomers (Table 1). This confirms the preference of carbonatom C1 over carbon atom C2 for a nucleophilic attack. Thisfact was also observed in all our methoxyselenenylationexperiments. For the structures 20c+ and 20d+, the charge ofthe selenium is less positive than for 20a+ and 20b+. This isin agreement with the stronger selenium-oxygen interactionin the diastereoisomers 20c+ and 20d+.Due to the reversibility of the seleniranium formation from

the selenium electrophile and the alkene, the stereoselectivityshould be influenced by the relative stabilities of the selenira-nium ions 20a+-20d+. The lowest energy is found for thediastereoisomer 20a+, which corresponds to the re attack ofthe selenium electrophile to styrene leading to the methoxyse-lenenylated product with the (R)-configuration at the newstereocenter. Diastereoisomer 20b+ is yielding the methoxy-selenenylated product with opposite configuration and is foundto be more than 2.5 kcal/mol (see Scheme 9) higher in energy.For the diastereoisomers 20c+ and 20d+ which cannot gain from!-stacking, energy differences of 5.4 and 7.4 kcal/mol arecalculated.

Conclusions

The asymmetric methoxyselenenylation reaction has beeninvestigated in detail. It was shown that the formation of theseleniranium ion intermediates is reversible. For the first timethe diastereomeric seleniranium ions, which are the intermediatesin the addition of chiral selenium electrophiles to alkenes, havebeen prepared independently. Therefore it was possible to detailby experiment the different stabilities of the seleniranium ionsinvolved in the asymmetric methoxyselenenylation. Further-

Scheme 9

Table 1. Geometry Parameters for the MP2/3-21G*-OptimizedSeleniranium Ions 20a+-20d+a

20a+ 20b+ 20c+ 20d+

Se-C1 2.13 2.13 2.15 2.17Se-C2 2.06 2.03 2.08 2.10Se-O 2.66 2.71 2.54 2.46Se-Caryl 1.94 1.93 1.96 1.97!O-Se-alkeneb 130.6 120.0 156.8 175.2!Caryl-Se-alkeneb 96.5 98.8 98.7 98.5atomic chargesSe +0.883 +0.904 +0.839 +0.813C1 -0.269 -0.306 -0.248 -0.255C2 -0.550 -0.523 -0.533 -0.505a Distances are in angstroms; angles are in degrees. The atomic

charges were determined by NPA using the MP2/6-31G*//MP2/3-21G*density. b Se-alkene stands for the bisector of the angle C1-Se-C2.

Asymmetric Methoxyselenenylation Reaction J. Am. Chem. Soc., Vol. 120, No. 14, 1998 3379

bipyramidal structure resulting from an selenium-oxygenin-teraction can alternatively also be obtained by the conformationshown in 21+. Due to the strong steric interaction between themethyl group and the alkene, we focused our investigations onthe conformations of the diastereoisomers 20a+-20d+.The optimized geometries of the seleniranium ions 20a+-

20d+ are shown in Scheme 9. In all structures the alkene isbonded slightly asymmetrically to the selenium atom reflectingthe asymmetry of the highest occupied molecular orbital(HOMO) of styrene which is involved in the selenium-alkenebonding. The bond lengths vary from 2.03 to 2.10 Å for theshorter Se-C2 bond and from 2.13 to 2.17 Å for the Se-C1bond (Table 1). These bonds are longer than the selenium-aryl bond (Se-Caryl), which varies between 1.93 and 1.97 Å.There is a remarkable correlation between the Se-O distance

and the O-Se-alkene angle (see Table 1). In the structures20c+ and 20d+ the alkene and the oxygen are arranged in analmost T-shaped manner with an O-Se-alkene angle close to180°. This facilitates the interaction of the oxygen lone pairwith the antibonding molecular orbital of the selenium-alkene

bonding. Therefore stronger selenium-oxygen interactions andweaker selenium-alkene bondings are found for 20c+ and 20d+than for 20a+ and 20b+. That is expressed in the respectivebond lengths shown in Scheme 9 and Table 1.The natural population analysis (NPA) predicts a higher

charge of about 0.25 for atom C1 than for atom C2 in alldiastereomers (Table 1). This confirms the preference of carbonatom C1 over carbon atom C2 for a nucleophilic attack. Thisfact was also observed in all our methoxyselenenylationexperiments. For the structures 20c+ and 20d+, the charge ofthe selenium is less positive than for 20a+ and 20b+. This isin agreement with the stronger selenium-oxygen interactionin the diastereoisomers 20c+ and 20d+.Due to the reversibility of the seleniranium formation from

the selenium electrophile and the alkene, the stereoselectivityshould be influenced by the relative stabilities of the selenira-nium ions 20a+-20d+. The lowest energy is found for thediastereoisomer 20a+, which corresponds to the re attack ofthe selenium electrophile to styrene leading to the methoxyse-lenenylated product with the (R)-configuration at the newstereocenter. Diastereoisomer 20b+ is yielding the methoxy-selenenylated product with opposite configuration and is foundto be more than 2.5 kcal/mol (see Scheme 9) higher in energy.For the diastereoisomers 20c+ and 20d+ which cannot gain from!-stacking, energy differences of 5.4 and 7.4 kcal/mol arecalculated.

Conclusions

The asymmetric methoxyselenenylation reaction has beeninvestigated in detail. It was shown that the formation of theseleniranium ion intermediates is reversible. For the first timethe diastereomeric seleniranium ions, which are the intermediatesin the addition of chiral selenium electrophiles to alkenes, havebeen prepared independently. Therefore it was possible to detailby experiment the different stabilities of the seleniranium ionsinvolved in the asymmetric methoxyselenenylation. Further-

Scheme 9

Table 1. Geometry Parameters for the MP2/3-21G*-OptimizedSeleniranium Ions 20a+-20d+a

20a+ 20b+ 20c+ 20d+

Se-C1 2.13 2.13 2.15 2.17Se-C2 2.06 2.03 2.08 2.10Se-O 2.66 2.71 2.54 2.46Se-Caryl 1.94 1.93 1.96 1.97!O-Se-alkeneb 130.6 120.0 156.8 175.2!Caryl-Se-alkeneb 96.5 98.8 98.7 98.5atomic chargesSe +0.883 +0.904 +0.839 +0.813C1 -0.269 -0.306 -0.248 -0.255C2 -0.550 -0.523 -0.533 -0.505a Distances are in angstroms; angles are in degrees. The atomic

charges were determined by NPA using the MP2/6-31G*//MP2/3-21G*density. b Se-alkene stands for the bisector of the angle C1-Se-C2.

Asymmetric Methoxyselenenylation Reaction J. Am. Chem. Soc., Vol. 120, No. 14, 1998 3379

bipyramidal structure resulting from an selenium-oxygenin-teraction can alternatively also be obtained by the conformationshown in 21+. Due to the strong steric interaction between themethyl group and the alkene, we focused our investigations onthe conformations of the diastereoisomers 20a+-20d+.The optimized geometries of the seleniranium ions 20a+-

20d+ are shown in Scheme 9. In all structures the alkene isbonded slightly asymmetrically to the selenium atom reflectingthe asymmetry of the highest occupied molecular orbital(HOMO) of styrene which is involved in the selenium-alkenebonding. The bond lengths vary from 2.03 to 2.10 Å for theshorter Se-C2 bond and from 2.13 to 2.17 Å for the Se-C1bond (Table 1). These bonds are longer than the selenium-aryl bond (Se-Caryl), which varies between 1.93 and 1.97 Å.There is a remarkable correlation between the Se-O distance

and the O-Se-alkene angle (see Table 1). In the structures20c+ and 20d+ the alkene and the oxygen are arranged in analmost T-shaped manner with an O-Se-alkene angle close to180°. This facilitates the interaction of the oxygen lone pairwith the antibonding molecular orbital of the selenium-alkene

bonding. Therefore stronger selenium-oxygen interactions andweaker selenium-alkene bondings are found for 20c+ and 20d+than for 20a+ and 20b+. That is expressed in the respectivebond lengths shown in Scheme 9 and Table 1.The natural population analysis (NPA) predicts a higher

charge of about 0.25 for atom C1 than for atom C2 in alldiastereomers (Table 1). This confirms the preference of carbonatom C1 over carbon atom C2 for a nucleophilic attack. Thisfact was also observed in all our methoxyselenenylationexperiments. For the structures 20c+ and 20d+, the charge ofthe selenium is less positive than for 20a+ and 20b+. This isin agreement with the stronger selenium-oxygen interactionin the diastereoisomers 20c+ and 20d+.Due to the reversibility of the seleniranium formation from

the selenium electrophile and the alkene, the stereoselectivityshould be influenced by the relative stabilities of the selenira-nium ions 20a+-20d+. The lowest energy is found for thediastereoisomer 20a+, which corresponds to the re attack ofthe selenium electrophile to styrene leading to the methoxyse-lenenylated product with the (R)-configuration at the newstereocenter. Diastereoisomer 20b+ is yielding the methoxy-selenenylated product with opposite configuration and is foundto be more than 2.5 kcal/mol (see Scheme 9) higher in energy.For the diastereoisomers 20c+ and 20d+ which cannot gain from!-stacking, energy differences of 5.4 and 7.4 kcal/mol arecalculated.

Conclusions

The asymmetric methoxyselenenylation reaction has beeninvestigated in detail. It was shown that the formation of theseleniranium ion intermediates is reversible. For the first timethe diastereomeric seleniranium ions, which are the intermediatesin the addition of chiral selenium electrophiles to alkenes, havebeen prepared independently. Therefore it was possible to detailby experiment the different stabilities of the seleniranium ionsinvolved in the asymmetric methoxyselenenylation. Further-

Scheme 9

Table 1. Geometry Parameters for the MP2/3-21G*-OptimizedSeleniranium Ions 20a+-20d+a

20a+ 20b+ 20c+ 20d+

Se-C1 2.13 2.13 2.15 2.17Se-C2 2.06 2.03 2.08 2.10Se-O 2.66 2.71 2.54 2.46Se-Caryl 1.94 1.93 1.96 1.97!O-Se-alkeneb 130.6 120.0 156.8 175.2!Caryl-Se-alkeneb 96.5 98.8 98.7 98.5atomic chargesSe +0.883 +0.904 +0.839 +0.813C1 -0.269 -0.306 -0.248 -0.255C2 -0.550 -0.523 -0.533 -0.505a Distances are in angstroms; angles are in degrees. The atomic

charges were determined by NPA using the MP2/6-31G*//MP2/3-21G*density. b Se-alkene stands for the bisector of the angle C1-Se-C2.

Asymmetric Methoxyselenenylation Reaction J. Am. Chem. Soc., Vol. 120, No. 14, 1998 3379

Wirth,  T.;  Fragale,  G.;  Spichty,  M.  J.  Am.  Chem.  Soc.  1998,  120,  3376    

Page 19: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

R-­‐configura2on  through  A  face  addi2on  

19  

PhA

B

A face addition

of Ar*I(OH)OTs

B face addition

of Ar*I(OH)OTs

OMe

MeI

HHH Ph

OMe

MeI

HHPh H

TsOH

TsOH

H

Ph

TsO(R)-3

H

H

OTs

3a+

3b+

H

H

TsO(S)-3

H

Ph

OTs

1More  stable   Major  enan2omer  

OH

MeSe

HHPh H

OH

MeSe

PhHH H

OH

MeSe

HPhH H

OH

MeSe

HHH Ph

3a+0.0 kcal/mol

3b+2.8 kcal/mol

3c+5.4 kcal/mol

3d+7.4 kcal/mol

OH

MeSe

HHPh H

OH

MeSe

PhHH H

OH

MeSe

HPhH H

OH

MeSe

HHH Ph

3a+0.0 kcal/mol

3b+2.8 kcal/mol

3c+5.4 kcal/mol

3d+7.4 kcal/mol

 Hirt,  U.  H.;  Schuster,  M.  F.  H.;  French,  A.  N.;  Wiest,  O.  G.;  Wirth,  T.  Eur.  J.  Org.  Chem.  2001,  1569  

Page 20: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

Type  3  aryl-­‐λ3-­‐iodanes  with  ester  moiety  

20  

I+

OR'

-OTs

OH

R

Type 3 with ether moiety

Influence  of  ester  binding  moiety  in  α-­‐oxygena2on  of  ketones    

Altermann,  S.  M.  et  al,  T.  Eur.  J.  Org.  Chem.    2008,  5315  

I+O

ORR

OH

-OTs

Type 3 with ester moiety

Ph

OPh

O

OTs(0.5 mmol) 1 4

(R)-2 =>39% ee(R)-3 =>12% ee

(S)-2

IO

O10 mol% 2 or 33 equiv m-CPBA,3 equiv p-TsOH

MeCN, r.t

MeI

MeOMe

(S)-3

Page 21: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

•  Strong  interac.on  between  I-­‐-­‐-­‐O    

•  Greater  distance  between  two  alkyl  groups  

21  

Ra2onale  for  improved  enan2oselec2vity    

Ochiai,  M.;  Sueda,  T.;  Miyamoto,  K.;  Kiprof,  P.;  Zhdankin,  V.  Angew.  Chem.  Int.  Ed.  2006,  45,  8203    

I OHO

OR

I OHO

CH3

CH3

2.47 Å 2.30 Å1.94 Å 2.00 Å

IO

OMe

Bulky menthylgroup

Greater distance

Altermann,  S.  M.  et  al,  T.  Eur.  J.  Org.  Chem.    2008,  5315  

Page 22: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

Type  3  aryl-­‐λ3-­‐iodanes  with    lactate  &  lac2c  amide  moie2es  

22  

I+

OR

-OTs

OH

R'

Type 3 with ether moiety

I+O

ORR

OH

-OTs

Type 3 with ester moiety

OO

ORR'

I(OAc)2

Type 3 with lactatemoiety

I(OAc)2O NR

O

R'

Type 3 with lactic amide moiety

IO XR'

R''R

O

Large groups possible

Longer distance

Non-C2-symmetric

IOXR'

OO XR'

O

R''R R

C2-symmetric

Steric at ortho position

Page 23: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

Type  3  chiral  aryl-­‐λ3-­‐iodanes  in  Woodward  reac2on  

Fujita,  M.;  Wakita,  M.;  Sugimura,  T.  Chem.  Commun.  2011,  47,  3983  

Ar*I(OAc)2 =

OO

OMe

I(OAc)2

OO

OMe

I(OAc)2

Ar

(0.5 mmol) Ar*I(OAc)2 (0.5 mmol) BF3•OEt2 Ac2O

Ar

OAc

OHOMe

(0.2 ml) AcOHCH2Cl2

-80 to -40 °C

OMe

Ar

OH

OAcOMe

pyridine Ar

OAc

OAcOMe

(1S,2S) syn-2(0.4 mmol)1a

2'

2"3a=> 55%, 88% ee, (syn:anti = 98:2)3b=> 49%, 95% ee, (syn:anti = 98:2)

3a

3b

Ar*I(OAc)2 =

OO

OMe

I(OAc)2

OO

OMe

I(OAc)2

Ar

(0.5 mmol) Ar*I(OAc)2 (0.5 mmol) BF3•OEt2 Ac2O

Ar

OAc

OHOMe

(0.2 ml) AcOHCH2Cl2

-80 to -40 °C

OMe

Ar

OH

OAcOMe

pyridine Ar

OAc

OAcOMe

(1S,2S) syn-2(0.4 mmol)1a

2'

2"3a=> 55%, 88% ee, (syn:anti = 98:2)3b=> 49%, 95% ee, (syn:anti = 98:2)

3a

3b

Ar*I(OAc)2 =

OO

OMe

I(OAc)2

OO

OMe

I(OAc)2

OO

OMe

I(OAc)2

OO

MeO

3a

3b

3c

Type  3  chiral  aryl-­‐λ3-­‐iodanes  in  Pre  ́vost  reac2on    

Ar OMe (0.2 ml) AcOH, (0.2 ml) TMSOAc, CH2Cl2

-80 C° to rt

Ar

OAc

OAcOMe

(0.4 mmol)1

(0.5 mmol) Ar*I(OAc)2 (0.5 mmol) BF3•OEt2

(1R,2S) anti-2

3a=> 70%, 88% ee, (syn:anti = 2:98)3b=> 53%, 96% ee, (syn:anti = 2:98)

Page 24: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

Type  3  chiral  aryl-­‐λ3-­‐iodanes  in  diamina2on  of  alkenes  

24  

NMs2

NMs2

H(2.4 equiv) HNMs2 ,

(1.2 equiv) 1

CH2Cl2, 0 °C

O

Me

MeO2CI(OAc)2

O CO2Me

Me

O

iPr

MeO2CI(OAc)2

O CO2Me

iPr

1a

1b

2 (S)-31a=> 86% yield, 85% ee, (99%)1b=> 30% yield, 84% ee

Roben,  C.;  Souto,  J.  A.;  Gonzalez,  Y.;  Lishchynskyi,  A.;  Muniz,  K.  Angew.  Chem.  Int.  Ed.  2011,  50,  9478  

Page 25: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

Non-­‐C2  or  C2-­‐symmetry  ?  

25  

NMs2

NMs2

H(2.4 equiv) HNMs2 ,

(1.2 equiv) 1

CH2Cl2, 0 °C

O

Me

MeO2CI(OAc)2

O CO2Me

Me

O

iPr

MeO2CI(OAc)2

O CO2Me

iPr

1a

1b

2 (S)-31a=> 86% yield, 85% ee, (99%)1b=> 30% yield, 84% ee

Roben,  C.;  Souto,  J.  A.;  Gonzalez,  Y.;  Lishchynskyi,  A.;  Muniz,  K.  Angew.  Chem.  Int.  Ed.  2011,  50,  9478  

Ar*I(OAc)2 =

OO

OMe

I(OAc)2

OO

OMe

I(OAc)2

OO

OMe

I(OAc)2

OO

MeO

3a

3b

3c

Ar OMe (0.2 ml) AcOH, (0.2 ml) TMSOAc, CH2Cl2

-80 C° to rt

Ar

OAc

OAcOMe

(0.4 mmol)1

(0.5 mmol) Ar*I(OAc)2 (0.5 mmol) BF3•OEt2

(1R,2S) anti-2

3a=> 70%, 88% ee, (syn:anti = 2:98)3b=> 53%, 96% ee, (syn:anti = 2:98)

Page 26: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

Dearoma2za2on  of  phenol  using  internal  nucleophile  

26  

IO OMe

O 3a

24% yield, 13% ee, (R)-2

IO N

H

O3b

42% yield, 32% ee, (R)-2

IOEtO

OO OEt

O

Me Me3c

23% yield, 27% ee, (R)-2

ION

H

OO N

H

O

Me Me3d

55% yield, 92% ee (CHCl3), (R)-2

C2-­‐symmetry    C2-­‐symmetry    

Binding    moiety  

OH

HO O

O

OO

1

(15 mol%) 3 (a-d)(1.3 equiv) mCPBA

CH2Cl2, 0 °C, 3 h

(R)-2

Uyanik,  M.;  Yasui,  T.;  Ishihara,  K.  Angew.  Chem.  Int.  Ed.  2010,  49,  2175  

Page 27: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

Dearoma2za2on  of  phenol  using  internal  nucleophile  

27  

IO OMe

O 3a

24% yield, 13% ee, (R)-2

IO N

H

O3b

42% yield, 32% ee, (R)-2

IOEtO

OO OEt

O

Me Me3c

23% yield, 27% ee, (R)-2

ION

H

OO N

H

O

Me Me3d

55% yield, 92% ee (CHCl3), (R)-2

IOX

OO X

O

R'R R

[O]in situ

IO

OX

O

O XL1

L2

R'

X = YH or YR"

aa

Binding    moiety  

OH

HO O

O

OO

1

(15 mol%) 3 (a-d)(1.3 equiv) mCPBA

CH2Cl2, 0 °C, 3 h

(R)-2

Uyanik,  M.;  Yasui,  T.;  Ishihara,  K.  Angew.  Chem.  Int.  Ed.  2010,  49,  2175  

Binding    moiety  

Page 28: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

Type  4  &  5  aryl-­‐λ3-­‐iodanes    

28  

X X IX I

OY

Y

X = I, I(OAc)2 Y = OAc, OCOCF3

II

O

OAc

OAc

Conformationally rigid systems

Type 4 Type 5

I+

OR

-OTs

OH

R'

I+OR

OR

OH

-OTs

Type 3 with ether moiety Type 3 with ester

moiety

Form conformationally flexible iodoarane

OO

ORR'

I(OAc)2 I(OAc)2O NR

O

R'

Type 3 with lactatemoiety

Type 3 with lactic amide moiety

Form conformationally rigid iodoarane

Page 29: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

29  

O !

O

XRR'

I(OAc)2

I

OR'

R"'

R"Type 3

R''

O

O

O

OI

R!

R!

Type 1

S!

H O

O

I

RO

O

Type 2

X XX

X = I, I(OAc)2

Type 4

II

O

OAc

OAc

Type 5

R S R' R S R'

O

Oxidation of sulfide

R R'O

R R'O

OR"

! -

Oxy

gena

tion

of k

eton

es

R

R'

R

R'OR"

OR"

OH

R'

OH

R'

Nu

Dearomatization

Catalyst

Diox

ygen

atio

n &

diam

inat

ion

of a

lken

esII OOAc

OAc

Type 5

X

X = I(OAc)2Type 4

One  carbon  and  two  heteroatom  ligands  chiral  aryl-­‐λ3-­‐iodanes  

Flexible  

Rigid  

Page 30: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

Quideau,  S.;  Lyvinec,  G.;  Marguerit,  M.;  Bathany,  K.;  Ozanne-­‐Beaudenon,  A.;  Buffeteau,  T.;  Cavagnat,  D.;  Chenede,  A.  Angew.  Chem.  Int.  Ed.    2009,  48,  4605  

Dearoma2za2on  using  external  nucleophile  

30  

O

OHI

* O

OHI

*

CO2H

IOMe

(+)-2a70% yield, 21% ee, 3

(-)-2b72% yield,23% ee, 3

(R)-2c70% yield,47% ee, 3

OH O

OH

(1 equiv) 2(a-c)

(1 equiv) m-CPBA,CH2Cl2, r.t

1 (S)-3

*Ar IOH

O

*Ar IO

O

OH*Ar I

OO

OHO

[O]

m-CPBA

[O]

ArOH-H2O

H+ cat.ligandexchanges

* = chirality*Ar I

OH

OArCO2H

*Ar IO

O

OArO

(R)-2c 4 5

5'4'

ArOHH+ cat.

Page 31: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

General  mechanism  proposal:  aryl-­‐λ3-­‐iodane  pathway    

31  

Quideau,  S.;  Lyvinec,  G.;  Marguerit,  M.;  Bathany,  K.;  Ozanne-­‐Beaudenon,  A.;  Buffeteau,  T.;  Cavagnat,  D.;  Chenede,  A.  Angew.  Chem.  Int.  Ed.  2009,  48,  4605  

O IMe

HO

OO

O

HMe

R

rotatingbonds

Unfavored face for ArOH approach

O IMe

HO

OO

O

R

MeH

syn

OOH

S

OOH

R

minor major

Via ligand coupling (LC)

*Ar IOH

O

*Ar IOH

O

4'

(R)-3 (S)-3

Page 32: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

General  mechanism  proposal:  aryl-­‐λ5-­‐iodane  pathway    

32  

Quideau,  S.;  Lyvinec,  G.;  Marguerit,  M.;  Bathany,  K.;  Ozanne-­‐Beaudenon,  A.;  Buffeteau,  T.;  Cavagnat,  D.;  Chenede,  A.  Angew.  Chem.  Int.  Ed.  2009,  48,  4605  

O IMe

O

O OO

R

Hypervalent twist

O IMe

OO

O

R

Mesyn

OOH

S

major

5'

(S)-3

MeO

Same facial discriminating orientation as for iodine (III) path

OO

S

I O

O*Ar IO

O

OH3

Page 33: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

Evidence  for  aryl-­‐λ5-­‐iodane  pathway    

33  Quideau,  S.;  Lyvinec,  G.;  Marguerit,  M.;  Bathany,  K.;  Ozanne-­‐Beaudenon,  A.;  Buffeteau,  T.;  Cavagnat,  D.;  Chenede,  A.  Angew.  Chem.  Int.  Ed.  2009,  48,  4605  

[5+H]+  

*Ar IOH

O

*Ar IO

O

OH*Ar I

OO

OHO

[O]

m-CPBA

[O]

(R)-2c 4 5

ArOH-H2O

H+ cat.*Ar I

OO

OArO

5'

[(R)-­‐2C  +  H]  +  

S47

a)

Page 34: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

S48

34  

Quideau,  S.;  Lyvinec,  G.;  Marguerit,  M.;  Bathany,  K.;  Ozanne-­‐Beaudenon,  A.;  Buffeteau,  T.;  Cavagnat,  D.;  Chenede,  A.  Angew.  Chem.  Int.  Ed.  2009,  48,  4605  

*Ar IOH

O

*Ar IO

O

OH*Ar I

OO

OHO

[O]

m-CPBA

[O]

(R)-2c 4 5

ArOH-H2O

H+ cat.*Ar I

OO

OArO

5'

[5’+H]+  [(R)-­‐2C  +  H]  +  

Evidence  for  aryl-­‐λ5-­‐iodane  pathway    

Page 35: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

Dearoma2za2on  using  internal  nucleophile  

35  

II

O

OAc

OAc

OMe

I(OAc)2

O

O

BzOH

HBzO

OO

I

3a40% yield,

3% ee, (R)-2

3b66% yield,

1% ee, (R)-2 3c

65% yield, 59% ee, (R)-2

Dohi,  T.;  Maruyama,  A.;  Takenaga,  N.;  Senami,  K.;  Minamitsuji,  Y.;  Fujioka,  H.;  Caemmerer,  S.  B.;  Kita,  Y.  Angew.  Chem.  Int.  Ed.  2008,  47,  3787  

OH

HO O

O

OO

1

(0.55 equiv) 3 (a-c)

CH2Cl2, 0 °C, 3 h

(R)-2

O

2a

O

HO O

IOAc

Ar*

OO

O

HO O

Associative

Dissociative

Racemic

O

2a

OO

O

HO O

IOAc

Ar*

OH

HO O

1

OH

HO O

O

OO

1

(0.55 equiv) 3 (a-c)

CH2Cl2, 0 °C, 3 h

(R)-2

Page 36: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

Evidence  for  associa2ve  pathway  

Entry   Solvent   ee  (%)  2     Yields  (%)  

1   CHCl3   72   64  

2   CH2Cl2   59   65  

3   CH3CN   20   50  

4   (CF3)2CHOH   0   87  

36  

OH

HO O

1

(0.55 equiv) 3c

0 °C, 3 h

O

(R)-2

O

HO O

IOAc

Ar*

OO

O

HO O

Associative

Dissociative

Racemic

O

2

OO

Non-polar solvent

Polar solvent

II

O

OAc

OAc

Dohi,  T.;  Maruyama,  A.;  Takenaga,  N.;  Senami,  K.;  Minamitsuji,  Y.;  Fujioka,  H.;  Caemmerer,  S.  B.;  Kita,  Y.  Angew.  Chem.  Int.  Ed.  2008,  47,  3787  

Page 37: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

Evidence  for  associa2ve  pathway  

37  

O

HO O

IOAc

Ar*

Associative

Br

OH

HO O

1a

(0.15 equiv) 3c

CH2Cl2, 0 °C, 3 h

O

70% yield,69% ee, (R)-2a

OO

II

O

OAc

OAc

Br Br

OH

HO O

1

(0.55 equiv) 3cO

30% yield,0% ee, 2

OO

O

HO O

DissociativeII

O

OAc

OAc

OMe OMeOMeCH2Cl2, -50 °C,

2 h

Dohi,  T.;  Maruyama,  A.;  Takenaga,  N.;  Senami,  K.;  Minamitsuji,  Y.;  Fujioka,  H.;  Caemmerer,  S.  B.;  Kita,  Y.  Angew.  Chem.  Int.  Ed.  2008,  47,  3787  

Page 38: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

Ra2onale  for  Stereoselec2vity  

38  

IIO

OAc

OAc I

IO

AcO

OAc

=

I

IO

AcO

OAcI

IO

AcO

O

OHO

rotatingbonds

HOO

I

IO

AcO

O

OH

HO O

1

O

(R)-2

O

Page 39: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

Outline  

•   Introduc.on  

•  Asymmetric  induc.on  using  chiral  aryl-­‐λ3-­‐iodane  reagents  

–  Chiral   aryl-­‐λ3-­‐iodanes   with   one   carbon   and   two  heteroatom   ligands   &   their   applica.ons   in   oxida.ve  addi.on  reac.ons  

–  Chiral   aryl-­‐λ3-­‐iodanes   with   two   carbon   and   one  heteroatom   ligands   &   their   applica.ons   in   aryla2on  reac2ons  

39  

Page 40: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

Two  carbons  and  one  heteroatom  ligands  chiral  aryl-­‐λ3-­‐iodanes  

40  

R

OR

O

Ar*

Asymmetric !"arylation

Catalyst

IL

Ar*

Type 1

IL

Ar*

IL*

Ar

Type 1

Type 2

Page 41: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

Asymmetric  α-­‐aryla2on  with  unsymmetric  aryl-­‐λ3-­‐iodanes  

41  Ochiai,  M.;  Kitagawa,  Y.;  Takayama,  N.;  Takaoka,  Y.;  Shiro,  M.  J.  Am.  Chem.  Soc.  1999,  121,  9233    

IBn

Ar

BF4CO2Me

O (0.20 mmol) (S)-3 (0.20 mmol) tBuOK

(0.20 mmol) 1

CO2MeO

Ar(R)-2

(4 ml) tBuOHr.t, 1 h

37% yield, 53% ee(S)-3

Page 42: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

Possible  pathways  for  α-­‐aryla2on  

42  Chen,  K.  C.;  Koser,  G.  F.  J.  Org.  Chem.  1991,  56,  5764  Ochiai,  M.;  Kitagawa,  Y.;  Toyonari,  M.  ARKIVOC  2003,  6,  43  

IO

CO2MeIO

CO2Me

O-

CO2Me

K+

IO

CO2Me

IX

and/or

I O

MeO2C

!-

!+

and/orI!-

O

MeO2C !+

OCO2MeAryl radicals pathway

Ligand exchange-ligand coupling pathway

Page 43: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

Evidence  for  ligand  exchange-­‐ligand  coupling  pathway    

43  

O O

No evidence forformation of 3-substituted

dihydrobenzofuran

Ochiai,  M.;  Kitagawa,  Y.;  Toyonari,  M.  ARKIVOC  2003,  6,  43  

O-

CO2Me

K+ O

I+ BF4-

(2 ml) t-BuOH, 25 °C

OCO2Me

OCO2Me

O

IO

OCO2Me

OH

(0.09 mmol) 1

(0.09 mmol) 2

(61%) 3 (7%) 4

5 6

Page 44: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

Ligand  exchange-­‐ligand  coupling  pathway  

44  Ochiai,  M.;  Kitagawa,  Y.;  Toyonari,  M.  ARKIVOC  2003,  6,  43  

O-

CO2Me

K+

O

I+Ph

BF4-

IO

O

MeO2C

I O

MeO2C

O

Ligand exchange Pseudo rotation

IO

O

MeO2C

!-

!+

I O

MeO2C

O

!-

!+

Ligand coupling

OCO2Me

OCO2Me

O

IO

!-

O

MeO2C!+

1

23 4

5 6

O-

CO2Me

K+ O

I+ BF4-

(2 ml) t-BuOH, 25 °C

OCO2Me

OCO2Me

O

IO

OCO2Me

OH

(0.09 mmol) 1

(0.09 mmol) 2

(61%) 3 (7%) 4

5 6

O-

CO2Me

K+ O

I+ BF4-

(2 ml) t-BuOH, 25 °C

OCO2Me

OCO2Me

O

IO

OCO2Me

OH

(0.09 mmol) 1

(0.09 mmol) 2

(61%) 3 (7%) 4

5 6

Page 45: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

45  

R

OR

O

Ar*

Asymmetric !"arylation

Catalyst

IL*

Ar

Type 2

IL

Ar*

IL*

Ar

Type 1

Type 2

Two  carbons  and  one  heteroatom  ligands  chiral  aryl-­‐λ3-­‐iodanes  

Page 46: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

46  

C

D

I

O

A

I

OOSO

O

OSOO

B

OCO2Et

2, 3

1, 2

O-I bondforms

C-I bondforms

O

CO2Et

I

O

OEt

O

I

O

OEt

O

4

Norrby,  P.  O.;  Petersen,  T.  B.;  Bielawski,  M.;  Olofsson,  B.  Chem-­‐Eur.  J.  2010,  16,  8251    

O

OEt

O

(0.19 mmol) 2(0.17 mmol) CsOH,

(2 mL) toluene,

I

2

OO3S

O

OEt

O

racemic(0.15 mmol) 3

42

α-­‐aryla2on  using  aryl-­‐λ3-­‐iodanes  with  chiral  heteroatom  ligand    

Page 47: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

Energy  level  diagram  of  aryla2on  of  acetaldehyde  

good agreement with the lack of selectivity observed in theexperimental work (Scheme 2 and Supporting Information).

Thus, asymmetric induction in the arylation of enolates bydiaryliodonium salts could either be obtained by influencingthe neutral, prochiral complex C,[6] by differentiation of theenantiotopic faces irreversibly during the enolate forma-tion,[7] or by increasing the barrier to interconversion of theO!I and C!I intermediates. Ionic species are not expectedto have any beneficial interactions with neutral C. ChiralLewis bases could coordinate to the iodine in a similarmanner to chiral anions and give complexes like E and F,but rearrangements of those species have too high barriersto be competitive. Potentially fruitful approaches couldeither be based on covalently linked auxiliaries, or on chiral

Lewis acids that could associate with and favor reactions viaC-linked intermediate D. We are currently investigatingsuch systems[27] and will report the results in due time.

Experimental Section

Experimental procedures, analytical data, and computational details areavailable in the Supporting Information.

Acknowledgements

This work was financially supported by the Swedish Research Council,Carl Trygger Foundation, and K&AWallenberg Foundation.

Keywords: arylation · density functional calculations ·hypervalent compounds · iodanes · reaction mechanisms

[1] a) R. E. Gawley, J. Aub!, Principles of Asymmetric Synthesis, Perga-mon, Oxford, 1996 ; b) T. Ooi, K. Maruoka, Angew. Chem. 2007,119, 4300–4345; Angew. Chem. Int. Ed. 2007, 46, 4222–4266.

[2] A. C. B. Burtoloso, Synlett 2009, 0320–0327.[3] E. A. Merritt, B. Olofsson, Angew. Chem. 2009, 121, 9214–9234;

Angew. Chem. Int. Ed. 2009, 48, 9052–9070.[4] a) M. Bielawski, M. Zhu, B. Olofsson, Adv. Synth. Catal. 2007, 349,

2610–2618; b) M. Bielawski, D. Aili, B. Olofsson, J. Org. Chem.2008, 73, 4602–4607; c) E. A. Merritt, J. Malmgren, F. J. Klinke, B.

Figure 2. Energy levels (in kJmol!1) of possible intermediates and TS structures in the reaction of acetaldehyde enolate with Ph2ICl in THF. Dotted linesindicate rapid association/dissociation equilibria.

Figure 3. Favored [2,3] rearrangement TS in the arylation of enolate 1with Ph2ICl (hydrogen atoms are hidden).

Chem. Eur. J. 2010, 16, 8251 – 8254 " 2010 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim www.chemeurj.org 8253

COMMUNICATIONa-Arylation by Rearrangement

47  Norrby,  P.  O.;  Petersen,  T.  B.;  Bielawski,  M.;  Olofsson,  B.  Chem-­‐Eur.  J.  2010,  16,  8251    

Ener

gy (k

J/m

ol)

Page 48: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

48  

O

O

O

OI

R!

R!

Type 1

S!

H O

O

I

RO

O

Type 2

O

o-CH3C6H4S CH3

53% ee

Ph

O O

RHRacemic

OI

OSOO

Ar2IL O

OEt

O

Racemic

1)  Aryl-­‐λ3-­‐iodanes  with  chiral  hetero  atom  ligands:  no  chiral  induc.on  

Summary  

Page 49: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

Summary  

49  

I+

OR

-OTs

OH

R'

I+OR

OR

OH

-OTs

Type 3 with ether moiety Type 3 with ester

moiety

Form conformationally flexible iodoarane

OO

ORR'

I(OAc)2 I(OAc)2O NR

O

R'

Type 3 with lactatemoiety

Type 3 with lactic amide moiety

Form conformationally rigid iodoarane

2)  Type  3  Aryl-­‐λ3-­‐iodanes:  Binding  moiety  plays  major  role  in  asymmetric  induc.on  

3)  Type  3  Aryl-­‐λ3-­‐iodanes:  C2-­‐Symmetry  plays  major  role  in  asymmetric  induc.on  

IOXR'

OO XR'

O

R''R R

C2-symmetric

Steric at ortho position

Page 50: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

Summary  

50  

4)  Type  4  &  5  Aryl-­‐λ3-­‐iodanes:  Rigidity  plays  major  role  in  asymmetric  induc.on  

X XX

X = I, I(OAc)2

Type 4

II

O

OAc

OAc

Type 5O

OO

59% ee

O

OH

47% ee

Page 51: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

Acknowledgement  

•  Dr.  Baker  &  Dr.  Smith  

•  Dr.  Borhan  

•  Dr.  Jackson  

•  Dr.  Maleczka  

•  Baker’s  Group:  Gina,  Greg,  Hui,  Heyi,  Quanxuan,  Wen  &  Zhe  

•  Friends:  Kumar,  Uday,  Ruth,  Mark,  Irosha  &  Damith    

•  Dilini  

51  

Page 52: Thequestforhighly$ enanoselecve $$ chiral$hypervalentarylλ ...€¦ · type 3 as electrophilic reagents, we observe a facial selectivity upon reaction with alkenes and ketones and

52