The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for...

65
The Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley [email protected] April 22, 2007

Transcript of The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for...

Page 1: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

The Schur expansion for Macdonald

polynomials

Sami H. Assaf

University of California, Berkeley

[email protected]

April 22, 2007

Page 2: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

The transformed Macdonald polynomials H̃µ(x; q, t) are

the unique functions satisfying the following conditions:

(i) H̃µ(x; q, t) ∈ Q(q, t){sλ[X/(1− q)] : λ ≥ µ},

(ii) H̃µ(x; q, t) ∈ Q(q, t){sλ[X/(1− t)] : λ ≥ µ′},

(iii) H̃µ[1; q, t] = 1.

1

Page 3: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

The transformed Macdonald polynomials H̃µ(x; q, t) are

the unique functions satisfying the following conditions:

(i) H̃µ(x; q, t) ∈ Q(q, t){sλ[X/(1− q)] : λ ≥ µ},

(ii) H̃µ(x; q, t) ∈ Q(q, t){sλ[X/(1− t)] : λ ≥ µ′},

(iii) H̃µ[1; q, t] = 1.

The Kostka-Macdonald polynomials K̃λ,µ(q, t) give the

Schur expansion for Macdonald polynomials, i.e.

H̃µ(x; q, t) =∑

λ

K̃λ,µ(q, t)sλ(x).

1

Page 4: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

Theorem. (Haiman 2001)

K̃λ,µ(q, t) ∈ N[q, t]

2

Page 5: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

Theorem. (Haiman 2001)

K̃λ,µ(q, t) ∈ N[q, t]

Problem: Find a combinatorial proof of positivity.

2

Page 6: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

Theorem. (Haiman 2001)

K̃λ,µ(q, t) ∈ N[q, t]

Problem: Find a combinatorial proof of positivity.

Better yet, find a combinatorial formula for K̃λ,µ(q, t).

2

Page 7: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

For S a filling of the Young diagram of µ, define

maj(S)def= |Des(S)|+

c∈Des(S)

l(c),

inv(S)def= |Inv(S)| −

c∈Des(S)

a(c).

3

Page 8: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

For S a filling of the Young diagram of µ, define

maj(S)def= |Des(S)|+

c∈Des(S)

l(c),

inv(S)def= |Inv(S)| −

c∈Des(S)

a(c).

6 7 54 1 103 9 2 8

3

Page 9: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

For S a filling of the Young diagram of µ, define

maj(S)def= |Des(S)|+

c∈Des(S)

l(c),

inv(S)def= |Inv(S)| −

c∈Des(S)

a(c).

6 7 54 1 103 9 2 8

descents

3

Page 10: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

For S a filling of the Young diagram of µ, define

maj(S)def= |Des(S)|+

c∈Des(S)

l(c),

inv(S)def= |Inv(S)| −

c∈Des(S)

a(c).

6 7 54 1 103 9 2 8

6 7 54 1 103 9 2 8

descents inversions

3

Page 11: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

For S a filling of the Young diagram of µ, define

maj(S)def= |Des(S)|+

c∈Des(S)

l(c),

inv(S)def= |Inv(S)| −

c∈Des(S)

a(c).

6 7 54 1 102 9 2 8

6 7 54 1 103 9 2 8

6 7 54 1 103 9 2 8

descents inversions

3

Page 12: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

Theorem. (Haglund, Haiman, Loehr 2005)

H̃µ(x; q, t) =∑

S:µ→N

qinv(S)tmaj(S)xS

=∑

S:µ→̃[n]

qinv(S)tmaj(S)Qn,D(S)(x)

4

Page 13: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

Theorem. (Haglund, Haiman, Loehr 2005)

H̃µ(x; q, t) =∑

S:µ→N

qinv(S)tmaj(S)xS

=∑

S:µ→̃[n]

qinv(S)tmaj(S)Qn,D(S)(x)

The Schur functions may be defined by

sλ(x) =∑

T∈SSYT(λ)

xT

=∑

T∈SYT(λ)

Qn,D(T )(x)

4

Page 14: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

Theorem. (Haglund, Haiman, Loehr 2005)

H̃µ(x; q, t) =∑

S:µ→N

qinv(S)tmaj(S)xS

=∑

S:µ→̃[n]

qinv(S)tmaj(S)Qn,D(S)(x)

Proposition. (Gessel 1984)

sλ(x) =∑

T∈SSYT(λ)

xT

=∑

T∈SYT(λ)

Qn,D(T )(x)

4

Page 15: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

Theorem. (Haglund, Haiman, Loehr 2005)

H̃µ(x; q, t) =∑

S:µ→N

qinv(S)tmaj(S)xS

=∑

S:µ→̃[n]

qinv(S)tmaj(S)Qn,D(S)(x)

Proposition. (Gessel 1984)

sλ(x) =∑

T∈SSYT(λ)

xT

=∑

T∈SYT(λ)

Qn,D(T )(x)

4

Page 16: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

For D ⊂ {1, 2, . . . , n− 1}, Gessel defined the

quasi-symmetric function Qn,D(x) by

Qn,D(x) =∑

i1≤···≤in

ij=ij+1⇒j 6∈D

xi1 · · ·xin.

5

Page 17: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

For D ⊂ {1, 2, . . . , n− 1}, Gessel defined the

quasi-symmetric function Qn,D(x) by

Qn,D(x) =∑

i1≤···≤in

ij=ij+1⇒j 6∈D

xi1 · · ·xin.

Define the descent signature σ : SYT→ {±1}n−1

by

σ(T )i =

+1 i left of i+1 in w(T )

−1 i+1 left of i in w(T )

5

Page 18: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

For D ⊂ {1, 2, . . . , n− 1}, Gessel defined the

quasi-symmetric function Qn,D(x) by

Qn,D(x) =∑

i1≤···≤in

ij=ij+1⇒j 6∈D

xi1 · · ·xin.

Define the descent signature σ : SYT→ {±1}n−1

by

σ(T )i =

+1 i left of i+1 in w(T )

−1 i+1 left of i in w(T )

The descent set of T is D(T ) = {i | σ(T )i = −1}.

5

Page 19: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

5 7 102 6 81 3 4 9

σ(T ) = −+ +−+−+ +−

D(T ) = {1, 4, 6, 9}

6

Page 20: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

5 7 102 6 81 3 4 9

σ(T ) = −+ +−+−+ +−

D(T ) = {1, 4, 6, 9}

6

Page 21: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

5 7 102 6 81 3 4 9

σ(T ) = −+ +−+−+ +−

D(T ) = {1, 4, 6, 9}

6

Page 22: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

5 7 102 6 81 3 4 9

σ(T ) = −+ +−+−+ +−

D(T ) = {1, 4, 6, 9}

6

Page 23: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

5 7 102 6 81 3 4 9

σ(T ) = −+ +−+−+ +−

D(T ) = {1, 4, 6, 9}

6

Page 24: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

5 7 102 6 81 3 4 9

σ(T ) = −+ +−+−+ +−

D(T ) = {1, 4, 6, 9}

6

Page 25: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

5 7 102 6 81 3 4 9

σ(T ) = −+ +−+−+ +−

D(T ) = {1, 4, 6, 9}

6

Page 26: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

5 7 102 6 81 3 4 9

σ(T ) = −+ +−+−++−

D(T ) = {1, 4, 6, 9}

6

Page 27: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

5 7 102 6 81 3 4 9

σ(T ) = −+ +−+−+ +−

D(T ) = {1, 4, 6, 9}

6

Page 28: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

5 7 102 6 81 3 4 9

σ(T ) = −+ +−+−+ +−

D(T ) = {1, 4, 6, 9}

6

Page 29: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

5 7 102 6 81 3 4 9

σ(T ) = −+ +−+−+ +−

D(T ) = {1, 4, 6, 9}

6

Page 30: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

5 7 102 6 81 3 4 9

σ(T ) = −+ +−+−+ +−

D(T ) = {1, 4, 6, 9}

Plan: Make a vertex-signed graph G.

6

Page 31: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

5 7 102 6 81 3 4 9

σ(T ) = −+ +−+−+ +−

D(T ) = {1, 4, 6, 9}

Plan: Make a vertex-signed graph G.

σ : V (G)→ {±1}n−1

6

Page 32: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

5 7 102 6 81 3 4 9

σ(T ) = −+ +−+−+ +−

D(T ) = {1, 4, 6, 9}

Plan: Make a vertex-signed graph G.

σ : V (G)→ {±1}n−1

Define the generating function of G by

g(x) =∑

v∈V (G)

Qn,σ(v)(x).

6

Page 33: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

An elementary dual equivalence for i−1, i, i+1 is

i i± 1 i∓ 1 ≡∗ i∓ 1 i± 1 i

7

Page 34: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

An elementary dual equivalence for i−1, i, i+1 is

i i± 1 i∓ 1 ≡∗ i∓ 1 i± 1 i

For T, U ∈ SYT, connect T and U with an i-colored

edge whenever w(T ) and w(U) differ by an elementary

dual equivalence for i−1, i, i+1.

7

Page 35: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

An elementary dual equivalence for i−1, i, i+1 is

i i± 1 i∓ 1 ≡∗ i∓ 1 i± 1 i

For T, U ∈ SYT, connect T and U with an i-colored

edge whenever w(T ) and w(U) differ by an elementary

dual equivalence for i−1, i, i+1.

5 7 102 6 81 3 4 9

4 7 102 6 81 3 5 9

4

7

Page 36: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

An elementary dual equivalence for i−1, i, i+1 is

i i± 1 i∓ 1 ≡∗ i∓ 1 i± 1 i

For T, U ∈ SYT, connect T and U with an i-colored

edge whenever w(T ) and w(U) differ by an elementary

dual equivalence for i−1, i, i+1.

5 7 102 6 81 3 4 9

4 7 102 6 81 3 5 9

−++−+−++− −+−+−−++−

4

7

Page 37: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

blank

8

Page 38: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

Proposition. (Haiman 1992) For T, U of partition

shape, T ≡∗ U ⇔ shape(T ) =shape(U).

9

Page 39: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

Proposition. (Haiman 1992) For T, U of partition

shape, T ≡∗ U ⇔ shape(T ) =shape(U).

Definition. Let Gλ denote the connected component of

the graph containing SYT(λ).

9

Page 40: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

Proposition. (Haiman 1992) For T, U of partition

shape, T ≡∗ U ⇔ shape(T ) =shape(U).

Definition. Let Gλ denote the connected component of

the graph containing SYT(λ).

The generating function of Gλ is∑

T∈SYT(λ)

Qn,σ(T )(x) = sλ(x).

9

Page 41: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

Proposition. (Haiman 1992) For T, U of partition

shape, T ≡∗ U ⇔ shape(T ) =shape(U).

Definition. Let Gλ denote the connected component of

the graph containing SYT(λ).

The generating function of Gλ is∑

T∈SYT(λ)

Qn,σ(T )(x) = sλ(x).

9

Page 42: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

Proposition. (Haiman 1992) For T, U of partition

shape, T ≡∗ U ⇔ shape(T ) =shape(U).

Definition. Let Gλ denote the connected component of

the graph containing SYT(λ).

The generating function of Gλ is∑

T∈SYT(λ)

Qn,σ(T )(x) = sλ(x).

Define a vertex-signed, edge-colored graph G = (V, σ, E)

whose connected components are given by Gλ.

9

Page 43: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

blank

10

Page 44: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

Definition. A vertex-signed, edge-colored graph G is a

dual equivalence graph if it satisfies 5 local axioms about

signatures and edge colors.

11

Page 45: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

Definition. A vertex-signed, edge-colored graph G is a

dual equivalence graph if it satisfies 5 local axioms about

signatures and edge colors.

Theorem. (A.) Every connected component of a DEG

is isomorphic to Gλ for a unique partition λ.

11

Page 46: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

Definition. A vertex-signed, edge-colored graph G is a

dual equivalence graph if it satisfies 5 local axioms about

signatures and edge colors.

Theorem. (A.) Every connected component of a DEG

is isomorphic to Gλ for a unique partition λ.

Corollary. (A.) If G is a DEG and α, β are statistics on

V (G) which are constant on connected components, then

v∈V (G)

qα(v)tβ(v)Qn,σ(v)(x) =∑

λ

(∑

C∼=Gλ

qα(C)tβ(C)

)sλ(x).

11

Page 47: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

Recall Haglund’s formula

H̃µ(x; q, t) =∑

S:µ→̃[n]

qinv(S)tmaj(S)Qn,σ(S)(x).

12

Page 48: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

Recall Haglund’s formula

H̃µ(x; q, t) =∑

S:µ→̃[n]

qinv(S)tmaj(S)Qn,σ(S)(x).

V = {standard fillings of µ}

12

Page 49: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

Recall Haglund’s formula

H̃µ(x; q, t) =∑

S:µ→̃[n]

qinv(S)tmaj(S)Qn,σ(S)(x).

V = {standard fillings of µ}

σ : V → {±1}n−1

12

Page 50: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

Recall Haglund’s formula

H̃µ(x; q, t) =∑

S:µ→̃[n]

qinv(S)tmaj(S)Qn,σ(S)(x).

V = {standard fillings of µ}

σ : V → {±1}n−1

E must preserve inv and maj

12

Page 51: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

Recall Haglund’s formula

H̃µ(x; q, t) =∑

S:µ→̃[n]

qinv(S)tmaj(S)Qn,σ(S)(x).

V = {standard fillings of µ}

σ : V → {±1}n−1

E must preserve inv and maj

Hµ = (V, σ, E) must be a DEG

12

Page 52: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

The spaced row reading word of S, r(S), is the row

reading word of S augmented with 0s in (µµ1

1 )/µ.

13

Page 53: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

The spaced row reading word of S, r(S), is the row

reading word of S augmented with 0s in (µµ1

1 )/µ.

5 7 102 6 81 3 4 9

13

Page 54: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

The spaced row reading word of S, r(S), is the row

reading word of S augmented with 0s in (µµ1

1 )/µ.

5 7 10 02 6 8 01 3 4 9

13

Page 55: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

The spaced row reading word of S, r(S), is the row

reading word of S augmented with 0s in (µµ1

1 )/µ.

5 7 10 02 6 8 01 3 4 9

r(S) = 5 7 10 0 2 6 8 0 1 3 4 9

13

Page 56: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

Define involutions

i i± 1 i∓ 1di←→ i∓ 1 i± 1 i

14

Page 57: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

Define involutions

i i± 1 i∓ 1di←→ i∓ 1 i± 1 i

i i± 1 i∓ 1edi←→ i± 1 i∓ 1 i

14

Page 58: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

Define involutions

i i± 1 i∓ 1di←→ i∓ 1 i± 1 i

i i± 1 i∓ 1edi←→ i± 1 i∓ 1 i

D(k)i (w) =

di(w) if dist(i−1, i, i+1) > k

d̃i(w) if dist(i−1, i, i+1) ≤ k

14

Page 59: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

Define involutions

i i± 1 i∓ 1di←→ i∓ 1 i± 1 i

i i± 1 i∓ 1edi←→ i± 1 i∓ 1 i

D(k)i (w) =

di(w) if dist(i−1, i, i+1) > k

d̃i(w) if dist(i−1, i, i+1) ≤ k

|Inv(S)| =∣∣∣Inv

(D

(µ1)i (S)

)∣∣∣

Des(S) = Des(D

(µ1)i (S)

)

14

Page 60: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

Define involutions

i i± 1 i∓ 1di←→ i∓ 1 i± 1 i

i i± 1 i∓ 1edi←→ i± 1 i∓ 1 i

D(k)i (w) =

di(w) if dist(i−1, i, i+1) > k

d̃i(w) if dist(i−1, i, i+1) ≤ k

|Inv(S)| =∣∣∣Inv

(D

(µ1)i (S)

)∣∣∣Des(S) = Des

(D

(µ1)i (S)

)

inv(S) = inv(D

(µ1)i (S)

)

maj(S) = maj(D

(µ1)i (S)

)

14

Page 61: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

Almost define i-colored edges to be the pairs{

S, D(µ1)i (S)

},

but with a bit of tweaking when µ1 ≥ 3.

15

Page 62: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

Almost define i-colored edges to be the pairs{

S, D(µ1)i (S)

},

but with a bit of tweaking when µ1 ≥ 3.

Conjecture. Hµ is a DEG for which inv and maj are

constant on connected components.

15

Page 63: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

Almost define i-colored edges to be the pairs{

S, D(µ1)i (S)

},

but with a bit of tweaking when µ1 ≥ 3.

Conjecture. Hµ is a DEG for which inv and maj are

constant on connected components.

Theorem. (A.) The conjecture is true for µ1 ≤ 3.

15

Page 64: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

Almost define i-colored edges to be the pairs{

S, D(µ1)i (S)

},

but with a bit of tweaking when µ1 ≥ 3.

Conjecture. Hµ is a DEG for which inv and maj are

constant on connected components.

Theorem. (A.) The conjecture is true for µ1 ≤ 3.

Corollary. (A.) For µ1 ≤ 3, we have

K̃λ,µ(q, t) =∑

C∼=Gλ

qinv(C)tmaj(C).

15

Page 65: The Schur expansion for Macdonald polynomialsfishel/ams_tuscon/assaf.pdfThe Schur expansion for Macdonald polynomials Sami H. Assaf University of California, Berkeley sassaf@math.berkeley.edu

T HAT ′S ALL FOLKS!