The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

73

Click here to load reader

Transcript of The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

Page 1: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

CHAPTER VI

π-Allyl Nickel Complexes

The 7r-allylnickel system, being involved in many of the catalytic trans-formations of olefins which occur at a nickel atom, occupies a central position in organonickel chemistry and much of the preparative work devoted to this system has had as its objective the description of the catalytic processes.

Following a discussion of the bonding situation we have devoted separate sections to the bis-7r-allyl complexes, the 7r-allylnickel X complexes and the τΓ-allylnickel X(ligand) complexes. These are followed by a discussion of the TT-allylnickel ττ-cyclopentadienyl complexes and the ττ-cyclopropenyl system. The known compounds are tabulated, according to the nature of the π-allyl group, at the end of the chapter along with the NMR spectral data (Tables VI-8 to VI-14).

A number of reviews exist on various aspects of 7r-allyl transition metal chemistry and these are listed at the end of the references. Attention is drawn particularly to those which discuss the NMR spectra of the ττ-allyl system.

I. Bonding Considerations

Assuming that only the π orbitals of the allyl group interact with the metal orbitals then three HMO's can be constructed (Fig. VI-1) : φ± (bonding), φ2 (nonbonding) and ψ3 (antibonding). ψ± and ψ3 are of the same symmetry (Α') as the py, pz, d¿¿, ¿42_y

2, and dyz orbitals of the metal while ψ2 is of the same symmetry {A") as the/?*, dxy9 and dxz orbitals. (It should be noted that, although the ψ2 orbital is nonbonding in the allyl anion, it is available for back-bonding in ττ-allyl metal complexes.)

The 7Γ system can interact with the metal in two different orientations

329

Page 2: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

330 VI. π-Allyl Nickel Complexes

(119): the more familiar is that in which the ττ-allyl group is assumed to be perpendicular to the xz plane [Fig. VI-1 (a)] in which case symmetry consid-erations suggest that the most favorable overlap combination is φ1 with the dz* and pz orbitals (as well as the s), φ2 with the px and dxz orbitals and j/f3 with the /^ and dyz orbitals; an alternative is that the ττ-allyl group lies in the xz plane [Fig. VI-1 (b)] in which case φλ and φ3 overlap most favorably with the dyz and φ2 with the dxy orbitals. The dihedral angle between the allyl plane and the xz plane is 90° in case (a) and 180° in case (b).

Reality is, however, somewhat different, and a series of x-ray structural studies show that the dihedral angle is neither that predicted by case (a) nor by case (b) and, moreover, the results for substituted 7r-allyl complexes show that the substituents do not lie in the 7r-allyl plane and hence the original

Ψι

'C- 'W - M - ► x M -

(a) (b) Fig. VI-1. Orientation of the ττ-allyl group, (a) Dihedral angle χ = 90°; (b) Dihedral

angle χ = 180°.

assumption that only the ρπ orbitals contribute to the bonding is invalid (Table VI-1).

An attempt has been made to explain these two distortions by treating them separately (118, 119). Assuming that the overlap between φ3 and the metal orbitals is small and that the energy for the two bonding arrangements is proportional to the square of the overlap integral, then the dihedral angle (χ) at which the total bonding energy is a maximum has been calculated to be 114° and 102° for palladium, and 106° and 103° for nickel. As can be seen from Table VI-1 the agreement between the theoretical and observed values is reasonable, although it should be noted that not all authors have defined the relevant planes in the same way. The second distortion, the displacement

Page 3: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

TA

BL

E

VI-

1

DIS

TO

RT

ION

S E

XH

IBIT

ED

BY

TT-

ALL

YLN

ICK

EL S

YST

EMS

x =C3

^Y

..

.ΐ.^

.;'

a. S § C

o

Com

plex

Fi

gure

D

ihed

ral

angl

e ( x

°)

Subs

titu

ent

angl

e (0

°)

Ref

.

[7r-

CH

2C(C

H3)

CH

2]2N

i V

I-3

(^C

H2C

(C0 2

C2H

5)C

H2N

iBr)

2 V

I-7

106.

2 ^C

H3C

HC

HC

HC

H3N

iCH

3[P(

men

thyl

)2C

H3]

V

I-8

118.

8

77-C

H2C

(CH

3)C

H(C

H2)

2C(C

H3)

: C

HC

H2N

iP(^

c/o-

C6H

11) 3

V

I-9

124.

1

(77-

CH

2CH

CH

CH

2—) 2

{NiB

r[P(

wo-

C3H

7)3]

}2

VI-

10

108.

[7r-

CH

2CH

CH

2Ni(

thio

rea)

2]+ C

l"

VI-

13

118

7r-C

H2C

(CH

3)C

H2N

iBr(

diph

os)

VI-

11

106.

5b

(7T

-CH

2CH

CH

CH

2—) 2

[NiB

r(di

phos

) 2]

VI-

12

106c

7r-(

CH

3)4C

4C5H

5Ni7

r-C

5H5

VI-

17

-12

0

- 3.2 (eis to P)

-2.7(cistoCH3)

-9.3 (

CH3)

+ 2.8 (CH2)

-5.5

— -9.5

0

+ 4

40,41

46

190

89, 190

188, 189

37

43

188, 189

154, 155

a Pla

ne d

efin

ed b

y C

i, C

3, B

r, P.

b P

lane

def

ined

by

Ci,

C3,

Pi,

P 2.

c Pla

ne d

efin

ed b

y Pi

, P 2

, an

d po

ints

2/3

alo

ng C

i--C

2 an

d C

2—

C

Page 4: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

332 VI. π-Ally I Nickel Complexes

of the substituents out of the plane, is normally attributed to a rehybridization of the 77--bonded group : the driving force being better overlap with the metal orbitals. One possible rehybridization is to mix the pn orbital with that ρσ

orbital which is directed between the substituent R and the central carbon atom. An alternative to this is rehybridization of the pn orbital toward sp and of the other three orbitals attached to the allyl C atom from sp2 toward sp3. Depending upon whether the better overlap is obtained with the hybrid 7Γ orbital directed towards or away from the metal, a positive or negative effect will be observed.

-R

However, the two types of distortion of the allyl system are clearly inter-related and, moreover, no allowance has been made for electronic effects associated with other ligands bonded to the nickel (e.g., Br or PR3) which may be expected to influence C± and C3 to different extents, or for any steric interactions between the ligands (or the metal) and the substituents. A more detailed discussion of some of these and other complications are to be found in refs. 120-122.

Three attempts have been made to describe the electronic structure of bis(7T-allyl)nickel complexes using the SCCC-MO method and making the assumption that the complexes have the same geometry as bis(Tr-methallyl) nickel. If one regards the resultant charge on the nickel as an indication of the validity of the approach, then the difficulties in applying MO calculations to organonickel systems become clear: the values obtained are +0.03 (123), + 1.82 (124), and +2.03 (125) later corrected to +1.92 (126, see also 217). Fortunately a photoelectron spectrum has been published (123, 226) which should help as a guide in further theoretical work! [It has, however, been pointed out that Koopman's theory breaks down for bis(77--allyl)nickel and that the first ionization potential corresponds not to the removal of an electron from the highest occupied orbital but rather from the thirteenth orbital below it (217, 227).] The observed and calculated energy levels for (7r-C3H5)2Ni are shown in Table VI-2 with possible assignments.

The satisfactory agreement between the calculated and observed energy levels lends plausibility to the essentially zero calculated charge on the nickel atom, and support the familiar picture of the bonding in this system whereby the bonding orbital ψ± acts as an electron-donor to the metal, the nonbonding orbital ψ2 acts as an acceptor and the antibonding orbital ψ3 is involved to only a small extent as an electron-acceptor orbital.

Page 5: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

TA

BL

E V

I-2

EN

ER

GY

LEV

ELS

IN (

7r-

C3H

5)2

Ni0

s S- Co

S 1' Co

V

ertic

al I

.P.

(eV

) In

tens

ity

Cal

cula

ted

ener

gy l

evel

(eV

) Sy

mm

etry

Pr

obab

le

assi

gnm

ent

7.85

8.17

8.59

9.

48

10.4

4 11

.56

12.7

5 14

.20

15.7

3 17

.67

8.19

8.

75

9.03

9.

03

9.07

9.

61

10.1

0 10

.83

\Ag

\BU

IB,

2Ag

3Ag

2Bg

AA

g

\AU

d TT

-Ally

l π-

Ally

l TT

-Ally

l σ-

Ally

l σ-

Ally

l σ-

Ally

l

a Fro

m R

efs.

123

, 226

.

Page 6: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

334 VI. π-Ally I Nickel Complexes

Attempts have also been made to describe the bonding in (7r-C3H5NiCl)2 (123) and 77-C3H5NiCl[P(CH3)3] (127).

The geometry of (7r-C3H5NiCl)2 is assumed to be similar to that observed in (7r-C3H5PdCl)2 with a 0.14 Â decrease in the M—C distance. The charge on the chlorine was estimated to be —0.2 and it was assumed that no inter-action between the chlorine and the 7r-allyl group occurs. Surprisingly, the charge on the metal is found to be practically zero ( — 0.034). The bonding situation is slightly different to that in (7r-C3H5)2Ni in that the ττ-allyl group is thought to have almost no back-bonding function, the electron-withdrawing chlorine atom causing ψ2 to function as an electron donor.

An MO calculation for 7r-C3H5NiCl[P(CH3)3] (1) indicates a significant trans effect showing, as it does, that the overlap population in the C—C bond trans to the phosphine is larger than that in the free allyl group (i.e., has more double bond character), while that in the C—C bond eis to the phos-phine is smaller (Fig. VI-2). The calculations also predict that the Ni—C

H2 Ci—C2 1.1447 y?1 Cl C2—C3 1.0616

H—Qa( —NiX Ni—Ci 0.0310 V P(CH3)3 Ni—C2 -0.0043 Η° Ni—C3 0.0283

1

Fig. VI-2. Overlap population in 7r-C3H5Ni[Cl[P(CH3)3] (127).

bonds are all weakened with respect to the 77--C3H5Ni+ cation and that 1 would rearrange to a σ-allyl complex. Unfortunately this particular compound has not been prepared but the corresponding bromide 7r-C3H5NiBr[P(CH3)3] shows no particular tendency to isomerize (26). However, NMR evidence does indicate that strongly basic phosphines promote a 7r-allyl-a-allyl rearrange-ment (see Section V-C).

II. Spectroscopic Properties

Spectroscopic methods, in particular NMR spectroscopy, have proved to be of more than usual importance for studying ττ-allyl metal complexes. How-ever, neither the quantity nor quality of the work with nickel compares with that involving palladium (with the exception of that described in ref. 18) and interpretation is in many cases made by analogy. Fortunately, there are several excellent reviews on the NMR spectra of ττ-allylpalladium systems.

Page 7: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

//. Spectroscopic Properties 335

PQ

<

X w

PU

O

υ

H-l

< ü

o!

H Pá

O

í < Q

<: oí H ü w PH

CO

ti

s

o TÍ

2 " S ^ < Il s

1 9

•Φ ■* ^

^ ^ ^

CO

s II

m

S II

co

S II

CO CO

s s Il II

lO ιθ ιθ

s s s Il II II

. 9 o en <N _ ;

(M

<

3 *r( CS oo*

£T ON

p vo*

/ —S

•tf <N

^ <

OO

00

/ s 3 t ^ p-"

(M

<

^a % ON p oo*

/-*\ T3 >w ' ON

r-"

/—s

3 rf T —<

r-*

—\ T3 s« / ON en vo*

<N

<

VO

K

^-N

3 T—i

t -vo

/ —S

ON S

Ό

00 VO

/—S

' 3

^ ■4?

3 (SJ oo"

/—\ C/5

Tt m VO

■* ·*

OO w i o p oo* r-*

• - ^

^-# VD

r-* t-*

• - s ^ T3 73 Ό N_^ S ^ t*» ON en es O* oo'

/«-"S

^"2 3 3 oo' ON' en p 00 ON

V_^ J j J j %_• >*»• S ^ W S ^ CN w w O O O V O ^ t ' - H p r p l-H p en en Tt un* un u-i un un oo* un un*

;^^ z

2 /—S

<N

PC u se υ M U

¿ «ó <3

g ^ ed

, -r co co ·—< oí co

X ^ i¡ % τ: pc ¡j κ pc S a u

„ fc. Ö. B » 3 Ö ^ -ï fc, Èi x * S

* g g g B υ Ö « P C P C P C ^ u C C " y υ υ u PC ^>G 3 « PC ffi E υ a ¿PC

g PC K PC ¿ | ^är

£ ¿ έ ¿ S 3 $X £> 'Tj Ό ^ C*T bû X ¡

X

00

3

Page 8: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

336 VI. π-Allyl Nickel Complexes

Representative spectra are shown in Table VI-3 (a complete list of spectra is to be found at the end of this chapter, Tables VI-8 to VI-14).

The NMR spectra of the 7r-C3H5NiX(Lig) systems might be expected to show five separate absorptions for the allyl protons (assuming a square planar geometry around the nickel atom). However, this has only been observed where X is H or CH3; in all other cases an AM2X2 spectrum is found [Table VI-3 (c) and (d)]. This is the result of a left to right exchange of the τΓ-allyl group whereby H2 becomes equivalent to H3 and H4 to H5. Various possible mechanisms for this process are discussed in Section V-B (Fig. VI-14). In some cases a further simplification of the spectrum to an AX4 type is observed (e.g., 7r-C3H5NiBr[P(C2H5)3]2 Table VI-3 (e)), and it is generally accepted that this is due to a 7r-allyl to σ-allyl conversion (π-σ conversion) which is occurring faster than the NMR time scale. A mech-anism for this process is discussed in Section V-C (Fig. VI-15).

No systematic study has been made of the infrared spectra of ττ-allylnickel complexes, and the only characteristic absorptions associated with a π-bonded allyl group are a strong absorption around 1460-1500 cm"1 and one around 3060 cm - 1 . The first is assigned to a C—C stretching frequency and is fairly good evidence for the presence of a 7r-allyl group; the converse, however, is not true. The high frequency absorption is assigned to a C—H stretching frequency and is less reliable. A detailed analysis of the IR and Raman spectra of (77-C3H5)2Ni and [TT-CH 2 C(CH 3 )CH 2 ] 2 NÍ is reported in Ref. 219.

III. Bis(7r-Allyl)nickel Complexes

A. Preparation

1. REACTION WITH ALLYL MAGNESIUM HALIDE

The most commonly applied method for preparing ττ-allyl transition metal complexes is the reaction between a metal halide and an allyl Grignard reagent and, it is this method which is the standard procedure used to prepare

2CH2:CHCH2MgBr + NiBr2 ► (^C3H5)2Ni + 2MgBr2

+ NiBr2 ► [ ¡j y " I + 2MgBrCl

bis(77--allyl)nickel complexes (2, 21, 39). The intermediate ττ-allyl-nickel halide which is presumably formed is not normally isolated, but may be used in place of the nickel dihalide.

Page 9: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

777. Bis (n-Allyï)nickel Complexes 337

Attempts to prepare mixed bis(^allyl)nickel systems by reacting the π-allyl-nickel halide complex with a second and different allyl Grignard compound are unsuccessful; instead disproportionation occurs (9). This type of reaction

- 2MgBr2

(ir-C3HeNiBr)a + 2CH2:C(CH3)CH2MgBr ►

2[77-C3H5NÍ7r-methallyl] ► (ir-C3H6)aNi + (7r-methallyl)2Ni

has found application for the synthesis of bis(7r-cyclooctatrienyl)- and bis(7r-pinenyl)nickel by reacting the appropriate ττ-allylnickel halide with C3H5MgCl (47, 78, 211). The reaction of tetramethylcyclobutadienenickel dichloride with allylmagnesium halide is anomalous in that the 77-cyclobutenyl complex (2) shows no tendency to disproportionate to the corresponding bis(7r-ally)lnickel

NiClal + 2C3H5MgX "2MgC1X>

■NiCl 2C3H5MgX -2MgXCl

-Ni— Y

complex (21). The reduction of ττ-allylnickel bromide complexes with a zinc-copper couple in DMF or hexamethylphosphoric amide as solvent has been mentioned and it is claimed that substituted bis(7r-allyl)nickel complexes can be prepared thereby in 60-807o yield (10, 194).

2. DISPROPORTIONATION OF (TT-ALLYLNÍX)2 COMPLEXES

A second important preparative method which has, however, found less wide application is the disproportionation of a ττ-allylnickel halide (5-8, 10).

(77-C3H5NiBr)2 , (7T-C3H5)2Ni + NiBr2

Under normal conditions the equilibrium lies to the left-hand side of the equa-tion, but it can be displaced by carrying out the reaction in coordinating sol-vents (e.g., NH3, DMF, or water). The reaction of ττ-allylnickel bromide with ammonia has been studied in detail and unstable mono- and bisammonia adducts have been isolated. Only in the presence of further molecules of ammonia does disproportionation occur and is, moreover, not observed with those ligands which form stable adducts (e.g., diethylamine or pyridine) (5).

The τΓ-allylnickel alkoxides disproportionate spontaneously at room tem-perature or slightly above; a reaction which is perhaps of synthetic interest

Page 10: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

338 VI. π-AllyI Nickel Complexes

for the preparation of pure nickel alkoxides (12, 108). ττ-Allylnickel tosylate is reported to behave similarly (7).

(7r-C3H5NiOR)2 ► (TT-C3H5)2NÍ + Ni(OR)2

A variation of this method, of special interest for preparing samples rich in the trans isomer of (7r-C3H5)2Ni and in the eis isomer of (7r-methallyl)2Ni, is the controlled decomposition of the appropriate hydride or methyl complex (1, 11, 12, 17).

(77-C3H5NiBr)2 + 2NaBH(CH3)3 — ^ * (π-0,Η5Ν1Η)2 ~Nl/Ha> (TT-C3H5)2NÍ

3. MISCELLANEOUS METHODS

Unique reactions which produce individual bis(77--allyl)nickel complexes are the reaction of (CDT)Ni or (COD)2Ni with butadiene to give the α,ω-bis-Tr-allyl C12 nickel complex (3) (59, 60, 212) and the reaction of aliene with (COD)2Ni at low temperature which yields a product too unstable for direct investigation, but which may be stabilized by the addition of donor ligands (see Section III-C) and is probably a mixture of the bis-c/s-Tr-allyl C9H12Ni and bis-c¿y-7r-allyl C12H10Ni complexes 4 and 5 (74, 102, 196). A related

CDTNi + 3C4H6 ► Λ ^ \ + CDT [•—-Ni

3

compound (6) is suggested to be the product of the reaction between 3 and aliene (57).

A most unusual complex, bispentadienyl-dinickel (7), has been isolated from the reaction of nickel dichloride with triethylaluminum in 1,4-pentadiene.

NiCl2 + 3C5H8 + 4A1(C2H5)3 ► (C5H7Ni)2 + 4A1C1(C2H5)2 + 4C2H4 + 3C5H10

7

Page 11: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

III. Bis (n-Allyl)nickel Complexes 339

2.o/(7)4^Hi)7 P 5 ( 7 )

Ni

203 (7)"~"T420) ^ \ J · 4 * (2)

Fig. VI-3. Crystal structure of [T7-CH 2 C(CH 3 )CH 2 ] 2 NÍ (40, 41). a = 6.05; b = 13.48; c = 5.83; ß = 117.1; space group Pije; Z = 2; R = 7.9%.

An x-ray structural determination (see below) shows the presence of a Ni—Ni bond in this compound (68, 69). The 1,1,3,3-tetraphenylallyl radical is reported to react with (CDT)Ni to give diamagnetic bis(Tr-tetraphenylallyl)-nickel (220).

B. Structural Investigations

The crystal structures of two bis(7r-allyl)nickel complexes have been deter-mined by x-ray diffraction—(7r-methallyl)2Ni (Fig. VI-3) and (π-( + )-pinenyl)2-Ni (Fig. VI-4). In both complexes the 77-allyl group adopts a trans arrangement and the carbon atoms of the ττ-allyl fragment are essentially equidistant from the central metal atom. The methyl group in the 77-methallyl structure is bent 12°, out of the plane formed by the remaining carbon atoms, toward the nickel atom.

The bis-77-pentadienyl-dinickel complex (7) has been shown to contain a Ni—Ni bond (Fig. VI-5). The central carbon atom of the organic π system forms a three centered bond with the nickel atoms thereby increasing the double bond character of the terminal carbon-carbon bonds. The five pentadienyl HMO's (2 bonding, 2 antibonding, and 1 nonbonding) of which the 2 bonding and the nonbonding orbitals are filled, may be expected both geometrically and electronically to be particularly suited for interaction with the d orbitals of two transition metal atoms.

NMR evidence indicates that (7r-C3H5)2Ni exists, in solution, in two iso-meric forms. It is generally supposed that these differ in the eis (8) or trans (9) arrangement of the 7r-allyl groups (1, 12). The eis:trans isomer ratio in

2.05 (1)

Fig. VI-4. Crystal structure of (77-( + )-pinenyl)2Ni (79, 84). a = 14.91; b = 7.39; c = 8.04; ß = 90.03°; space group P2^\ R = 11.4%.

Page 12: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

340 VI. 7Γ-AllyI Nickel Complexes

nonpolar solvents is 1:3 and is practically independent of the temperature. It might be anticipated that the eis isomer, having a freely accessible fifth coordination position, would interact with polar solvents more easily than the trans isomer; this is observed: the eis:trans ratio in deuterotetrahydrofuran is 1:2 at -50° and 1:3 at +80°.

Chemical evidence for the presence of both isomers in solution is found in the different modes of reaction with diazomethane. Diazomethane presumably

1.44(2) 1.44(2)

cí I c , < ^ < t 2.24 (m^^J·'

1.40 {2)^<t2.24 (i)4>^^>^40 (2) H a Q ^ i . « > ίη^ρ^Ί.99 ( i ) \ c H 2

' 2.00 V) 2.00 (7) <

Ni / 2.590 (6)

-Ni

\ H / H 2 C ^ ^ 1 2 1 . 3 ^ ^ ^ . 1 2 2 . 6 ° , , XH2

X T H

s121.30' "XT H

Fig. VI-5. Crystal structure of ( T T - C 5 H 7 N Í ) 2 (69). a = 12.731; b = 8.591; c = 4.233; β = 90.53; Z = 2; space group P2x\n.

occupies the vacant coordination position on the eis isomer and at —100° a méthylène insertion reaction occurs to give dicyclopropylmethane (10).

+ CH 2 N 2 -► N 2 CH 2 —Ni N 2 + Ni + CH2 u 10

The trans isomer behaves differently in that, under the influence of the ligand, coupling of the allyl groups occurs to give hexa-l,5-diene (11) which then reacts with further diazomethane to give dicyclopropylethane (12) and 4-cyclopropylbutene-l (13). The ratio of 10 to the sum of 11, 12, and 13 is

Page 13: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

III. Bis (TT-Allyî)nickel Complexes 341

Ni + CH2N2 -Ni/Na

11 12 13

found to correspond to the NMR spectroscopically determined ratio of the eis to trans isomers. Table VI-4 shows the ratio of the products obtained by reacting CD2N2 (thus enabling the position of the méthylène group to be determined) with a sample consisting initially of 95% trans isomer [prepared by controlled decomposition of (7r-C3H5NiCH3)2 at —100°] and allowed to equilibrate at various temperatures. (109, 110).

TABLE VI-4

REACTION OF (7r-C3H5)2Ni WITH CD2N2

Temp.

- 7 5 ° - 6 0 ° - 5 5 ° - 3 0 °

eis isomer

5.5 12.2 20.0 25.0

(%) trans isomer (%)

94.5 87.8 80.0 75.0

Mole % d 2 -10

6 12 21 26

H,

Mole % . da-12, d4-13

93 86 77 73

The NMR spectrum of (7r-methallyl)2Ni also shows that two isomers are present in solution; the ratio of eis isomer: trans isomer being 1:2.3 at room temperature. The situation with (7r-crotyl)2Ni is more complicated : in addition to eis and trans isomerization of the crotyl groups (e.g., 14 and 15), the methyl group can occupy a syn or anti position (e.g., 16) which, combined with the symmetrical or asymmetrical arrangement of ligands with respect to the methyl group (e.g., 17), gives 12 possible isomers. The NMR spectrum of

Ni Ni

14 15 16 17

(77-crotyl)2Ni at room temperature shows that at least three isomers are present and treatment with CO at room temperature gives a mixture of octa-2,6-diene, 3-methylhepta-l,5-diene, and 3,4-dimethyl-hexa-l,5-diene. At temperatures below —40° the reaction with CO gives practically only trans, trans-octa-2,6-diene; whether this is correlated with a simplification of the NMR spectrum at —40° remains to be determined (39).

Page 14: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

342 VI. 77-AllyI Nickel Complexes

The formulation of the C12-nickel complex (3) [formed by reaction of buta-diene with (CDT)Ni] as a bis-7r-allyl complex is supported by an x-ray structural determination of the related ruthenium complex C12H18RuCl (95). Twelve isomers are possible for 3. The NMR spectrum indicates that only two isomers are present in solution, both of which contain an uncomplexed trans double bond: of these the cis-anti, anti isomer (18) has been assigned

18 19

with certainty and it is assumed that the second isomer is the trans form (19) (59).

C. Reactions of Bis (π-AllyI)nickel Complexes with Donor Ligands

The reaction of any 7r-allylnickel complex with a donor ligand may result either in the conversion of the 77-allyl group to σ-allyl group, in the complete displacement of the allyl group or in the formation of an addition complex.

The π-σ conversion is only found in reactions involving strongly basic ligands. From the reaction of triethylphosphine with bis(77-methallyl)nickel or bis(7T-crotyl)nickel an adduct (e.g., 20) has been isolated which is believed, from infrared evidence, to contain a σ-allyl group (39).

-Ni- + P(C2H5)3 -Ni

P(C2H5)3

20

The NMR spectra of the systems (77-methallyl)2Ni/pyridine and (-n--C3H5)2-

Ni/ligand (ligand = NH3, pyridine, HNCH2CH2, (C2H5)2NH or morpho-line), in which the nickel: ligand ratio can be as low as 1:0.25, are of the AX4 type indicating that an induced π-σ conversion, rapid on the N M R time scale, is taking place (5, 13). A mechanism for this process is shown below from which it can be seen that simultaneously with the interchange of H(2) and H(4) the nickel moves from one side of the allyl plane to the other. A repeti-tion of this process starting from the Ni—CH(3)H(5)CH:CH2 form will cause all four syn and anti protons to become equivalent. The relevance of this mechanism has been elegantly established for 77-CH2C(/sö-C3H7)CH2PdX-(Lig) complexes (184, 185).

Page 15: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

III. Bis (TT-Allyl)nickel Complexes 343

Reaction with an excess of donor ligand results in displacement of the 7r-allyl group and formation of ligand nickel complexes. The fate of the allyl group depends upon the ligand: with CO (4, 10, 39) and isonitriles (91) insertion has been observed, but the most frequently observed reaction is

coupling of the allyl fragments (2, 39, 60). Displacement of only one π-allyl group has been observed on reaction with (CH3)2B—N(CH3)2 (15).

(7r-C3H5)2Ni + 2(CH3)2BN(CH3)2 ^ 3 " 5 1 > <f—Ni[(CH3)2BN(CH3)2]2

The reaction of the α,ω-bis-Tr-allyl C12-nickel system (3) with donor ligands may be regarded as a model for the ring closure step in the catalytic cyclo-trimerization of 1,3-dienes with nickel. This process is believed to occur in a stepwise manner with 3 being one of the intermediates involved. In the catalytic reaction butadiene is both ligand and reactant and converts 3 into CDT, while at the same time regenerating the catalyst (the catalytic reaction

Page 16: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

344 VI. 7Γ-AllyI Nickel Complexes

is discussed in detail in Volume II). That the ring closure first occurs and is then followed by displacement of the cyclic compound from the nickel atom is indicated by the reaction with triethylphosphine from which (CDT)Ni-P(C2H5)3 (21) has been isolated (59).

P(C2H5)3 3p(c2H5: ^ CDT + Ni[P(C2H5)3]4 + P(C2H5)3

Transfer of a ττ-allyl group from the nickel to a second metal has been observed in the reaction of bis(7r-allyl)nickel with diiron enneacarbonyl (101) as well as with palladium dichloride or Tr-allylpalladium chloride (9).

07-C3H5)2Ni + Fe2(CO)9 + 2I2

2(TT-C3H5)2NÍ + PdCl2

27r-C3H5Fe(CO)3I + Nil2 + 3CO (77-C3H5PdCl)2 + (7r-C3H5NiCl)2

One might expect that a donor-ligand (particularly one having good electron-acceptor properties, e.g., triphenylphosphite) would form a stable adduct with the eis isomer of bis(7r-allyl)nickel : this has, however, never been observed. The only example of bis(7r-allyl)nickel ligand complexes are 22 and 23, which have been isolated from the reaction of aliene with various zero-valent nickel-phosphine and -phosphite systems (71, 74, 82, 102, 186).

(COD)2Ni + PR3 + 3CH2:C:CH2 -2COD

Displacement of the organic group from 22 and 23 results in formation of trimethylene cyclohexane (24) and tetramethylene cyclooctane (25), respec-

Page 17: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

IV. 7Γ-AllyI Nickel X Complexes 345

tively. In addition to 22 and 23 a binuclear complex [(C6H5)3PNi]2C12H16

of unknown structure has also been isolated (186). The structure of 22 (R = cyclo-Cell^) has been confirmed by an x-ray

study (Fig. VI-6). Considerable distortion of the organic system has occurred; in particular the C—C distance in the exo-methylene group is short and the

H2 C 2.11 (1)

2.00 (1)C-^~C 2.19(1) / 1-54 (2) H2 Ί 5 6 (2)

H2C

1.50(2) Ni 2'226(3) ncycio-CeH^h I ^Ni—PR 3

1 .28(^^ C \ i . 53 (2 ) / H

H 2 C ^ \'^lc\i4(i) 1.97 (7)CC5T ' U 9 ( 2 ) X t , i 0 ( i )

H2

Fig. VI-6. Structure of ^CgH^NiPCcyc/ö-CeHiJa {12). a = 14.44; b = 11.41; c = 13.15; a = 96.0; ß = 135.7; y = 100.3; space group PI, Z = 2; R = 8.9%.

τΓ-allyl groups are neither symmetrical nor equidistant from the nickel atom. A 1:1 adduct has also been suggested to be formed 'ψ the reaction of bis(7r-allyl)nickel with 1,4-tetramethyl-benzoquinone (223).

IV. 7Γ-Allyl Nickel X Complexes

The preparation and reactions of the ττ-allylnickel hydride, -alkyl, and -aryl complexes have been discussed in Chapter IV and in this chapter any further discussion is limited to phenomena associated with the ττ-allyl group.

A. Preparation

1. OXIDATIVE ADDITION OF AN ALLYL G R O U P TO A ZERO VALENT NICKEL COMPLEX

The most convenient method for preparing the ττ-allylnickel X complexes is the reaction between the appropriate allyl compound and an organo-nickel complex, e.g. (7r-C3H5)2Ni, (COD)2Ni, or nickel vapor (21, 25, 34, 35, 64, 193, 195, 213). Bis(cycloocta-l,5-diene)nickel is the preferred reagent.

Page 18: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

346 VI. ττ-Allyl Nickel Complexes

2(COD)2Ni + 2CH3CH:CHCH2C1 ► ( T T - C H 3 C H C H C H 2 N Í C 1 ) 2 + 4 C 0 D

2Ni + 2CH2:CHCH2Br ^ ^ (7r-C3H5NiBr)2

2(COD)2Ni + 2C3H5OCOCF3 ► (^C3H5NiOCOCF3)2 + 4COD

An unusual example of this type of reaction is the conversion of the propene complex 26 into the ττ-allylnickel hydride (27) which has been discussed in Chapter IV (Section IV) (11).

(77-CH3CH:CH2NiPF3)n , n T T - C 3 H 5 N Í H ( P F 3 )

26 27

The first reported reactions of this type involved nickel tetracarbonyl (20, 24, 31, 204, 216). An intermediate nickel carbonyl halide complex (28)

2C3H5Br + 2Ni(CO)4 ^==± 2 <f— N i ' ^ \( — NiBr + 2CO

+ 6CO \ \ c o \ \ I 28

is probably first formed. The yield of 77-allylnickel halide can be dramatically increased by removing the carbon monoxide (with an inert gas stream) from the reaction mixture as it is generated (85). The presence of free CO disturbs the reaction in two ways : it reacts with the product to give nickel tetracarbonyl and hexadiene (45),

(7r-C3H5NiBr)2 + 4CO > C6H10 + Ni(CO)4 + NiBr2

and it inserts into the 7r-allylnickel group generating an acyl halide which is able to react with nickel tetracarbonyl and CO to give a variety of organic

(7T-C3H5NiX)2 + 2(« + l)CO ►

2CH2:CHCH2CONiX(CO)n ( 8 ^ , ^ > 2CH2:CHCH2COX

— 2Ni(CO) 4

products (96, 111, 112, 115, 116). It is also important that an excess of allyl halide is avoided in order to suppress the coupling reaction with the product.

(7r-C3H5NiBr)2 + 2C3H5Br ► 2C6H10 + 2NiBr2

It has been demonstrated spectroscopically that an intermediate similar to 28 is formed during the reaction of ICH2C(:CH2)CH2I with nickel tetra-carbonyl (193) or of τΓ-methallylnickel bromide with carbon monoxide (45).

Page 19: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

IV. π-Allyl Nickel X Complexes ?>ΑΊ

2. PROTONATION OF NICKEL-OLEFIN AND -ALLYL COMPLEXES

77-AUylNiX complexes may be formed by protonation of the appropriate olefin complex (21, 59, 65) or by protonation of a bis(7r-allyl)nickel system (5, 12, 21, 26, 27, 39, 108, 191, 211, 220).

OH

i (CH2:CHCHO)2Ni 4- H-acac ► ((—Niacac + CH 2 :CHCHO

(COTNi)2 + 2HC1 NiCl

2(7r-C3H5)2Ni + 2ROH ► (7r-C3H5NiOR)2 + 2C3H6

3. MISCELLANEOUS

TT-Allylnickel iodide may be prepared by reacting bis(77--allyl)nickel with iodine (21).

Anion exchange reactions between a 7r-allylnickel halide and a metal salt occur smoothly and in high yield (5,12,26, 39, 53,108,211). Related reactions

(7r-C3H5NiBr)2 + 2NaOR ► ( T 7 - C 3 H 5 N Í O R ) 2 + 2NaBr

(77-C3H5NiBr)2 + 2LiN(C6H5)2 > [7r-C3H5NiN(C6H5)2]2 + 2LiBr

(7r-cyclooctenyl-NiBr)2 4- 2Tlacac ► 2w-cyclooctenyl-Niacac + 2TlBr

are those of 7r-cyclooctatrienylnickel methoxide with acetyl iodide (211), and protonation of a ττ-allylnickel amide (5).

(^cyclooctatrienyl-NiOCH3)2 + 2CH3COI ►

(7r-cyclooctatrienyl-NiI)2 + 2CH3COOCH3

(7T-C3H5NiNCH2CH2)2 + 3H-acac C3He> 7r-C3H5Niacac + Ni(acac)2 · 2NCH2CH2

7r-Allyl nickel alkoxides have been prepared by reacting bis(7r-allyl)nickel systems with benzaldehyde (97).

/C6H5 2(7r-C3H5)2Ni 4- C6H5CHO ► 7r-C3H5Ni—O—CH

CH2CH '. CH2

29

Page 20: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

348 VI. 77-AllyI Nickel Complexes

+ C6H5CHO

A rather unusual reaction, which is also believed to be of relevance to the mechanism of the dimerization of olefins using a HNiX-AlX3 catalyst, is that of cyclooctene with a nickel acetylacetonate-ethylaluminum sesqui-chloride catalyst: on completion of the reaction ττ-biscyclooctylidenylnickel acetylacetonate may be isolated in high yield (80). This complex is believed to be formed as a result of reaction between the organic product, a cyclo-octene dimer, and the nickel hydride catalyst and is accompanied by hydro-génation of a molecule of unreacted cyclooctene.

+ HNiacac Niacac + C8Hi6

A 7T-cyclobutenyl complex (31) is the product of the reaction of tetra-methylcyclobutadienenickel dichloride dimer (32) with two equivalents of

I—NiCl2) + 2CH3MgCl

32

—NiCl| + 2MgCl2

31

methylmagnesium chloride. With excess of Grignard reagent 32 reacts to form an unstable yellow complex which decomposes eliminating methane and is probably the nickel-methyl complex analogous to 31 or its adduct with the Grignard reagent (76). Compounds similar to 31 are also probably formed as intermediates in the reaction of 32 with allyl magnesium halide or sodium cyclopentadienide and react further to form stable 7r-allylnickel7r-cyclo-butenyl- and 7r-cyclopentadienylnickel7r-cyclobutenyl complexes (21, 151; see Section VII of this chapter).

An NMR study of the reaction of (7r-crotylNiI)2 with butadiene and per-deuterobutadiene which produces ¿ra«s-polybutadiene shows that the propagation end of the polymer chain forms a 7r-allyl complex in which the initial syn conformation is preserved (66, 67, 198, see also 222).

Page 21: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

IV. π-Allyl Nickel X Complexes 349

CH3CH:CHCH2CD2

) > D

t— Nil + C4D6 ► DCr —Nil \s CD2

The 7r-allylnickel hydrides, alkyls, and aryls have been discussed in detail in Chapter IV and are prepared by reacting a ττ-allylnickel halide with Grig-nard reagent, lithium alkyl or NaHB(CH3)3 (12, 17).

B. Structural Investigations

The 7r-allylNiX compounds are in general dimeric; conclusive spectral evidence has been presented where X is a halide, alkoxide, amide, or methyl (12, 13, 18). Exceptions apparently, are the 7r-l,3-dimethylallylNiX (X = Cl, I) compounds which have been shown by molecular weight determina-tions to be significantly dissociated in benzene solution, (87, see, however, 221).

The dimeric nature of [Tr-CHaCXCC^Cal^CHaNiBrk has been confirmed by an x-ray structural study (Fig. VI-7). The dihedral angle formed between the allyl group and the bridging system is 106°. The substituent lies in the plane formed by the allyl atoms and is not, as is normally observed, bent towards the nickel.

The dimeric 7r-allylNiX molecule can exist in several isomeric forms de-pending on the eis or trans arrangement of the allyl group (33 and 34) and the syn or anti arrangement of the bridging atoms (35 and 36). The simple 77-allylnickel halides could exist as the two isomers 33 and 34; such isomeri-zation has never been reported but the two isomers present in solutions of

R i

35

R i

R2

36

Page 22: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

350 VI. π-Allyl Nickel Complexes

1.50 oyC

1.47 (2)V > V II 1.16 (2h ,Λ 1.30 (2)^ \^ / \^

\ »·» «>\ 1.45 o)A; " -y/--¿--;\ C '—C2.06(3) J\ / V

\ , ¿ / 2.33 c»\ r ^ \ p4r<r¿19 '

'"■Λ </ >; • c

Fig. VI-7. Structure of (77-CH2C(C02C2H5)CH2NiBr)2 (46). α = 7.17; b = 12.73; c = 4.83; α = 77.4; β = 97.6; y = 105.0; Z = 1; space group PI . R = 14.270.

[77-C3H5NiN(C6H5)2]2 (as shown by the NMR spectrum) are presumably of this type (5). The NMR spectra of (T7 -C 3 H 5 NÍOCH 3 ) 2 and ( T 7 - C 3 H 5 N Í O C 2 H 5 ) 2

are temperature-dependent, two isomers being present at low temperature which are believed to correspond to 35 and 36 (Rx = R2 = OC2H5) (12). A combination of the two possible effects explains the five isomers observed in the NMR spectrum of [ T 7 - C 3 H 5 N Í N ( C H 3 ) C 6 H 5 ] 2 (13).

Cis and trans isomerization of the allyl group is also observed in the low temperature NMR spectra of various dimeric π-allylnickel methyl complexes (in the case of (7r-CH3CHCHCH2NiCH3)2 two extra isomers are possible depending on the mutual arrangement of the two crotyl groups). Coalescence data has been used to calculate the energy of activation for the cis-trans isomerization of (7r-C3H5NiCH3)2 and ( T T - C H 3 C H C H C H C H 3 N Í C H 3 ) 2 and values of approximately 1 kcal/mole are obtained (18).

The TT-cyclooctenyl (and π-cyclooctatrienyl) nickel complexes present a special problem: two isomeric structures are possible: a ττ-allyl form (37)

NiX ^ NiX

37 38

and a ττ-olefin, σ-alkyl form (38). In some cases (e.g., X = acac or Cl) both isomers have been isolated and they show no tendency to interconvert. In the case of the chlorides the two isomers have also been distinguished by reaction with carbon monoxide; insertion of CO into 37 (X = Cl) gives a

Page 23: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

IV. π-Allyl Nickel X Complexes 351

/ - = \ e o c i 37 (X = Cl) + 5CO ► i í + Ni(CO)4 ~u

/ vcoc l 38 (X = Cl) + 5CO ► I f + Ni(CO)4 ~LJ

3-substituted cyclooctene derivative, while 38 (X = Cl) reacts to produce a 5-substituted cyclooctene derivative (39, 211). Complexes of type 38 are produced in the reaction between bis(cyclooctadiene)nickel and an acid and are discussed in Chapter IV (Section VIII), while complexes of type 37 may be synthesized by reaction of bis(7r-cyclooctenyl)nickel with acids, or by anion exchange reactions. The only exception is apparently the reaction of ethyl-mercaptan with bis(cyclooctadiene)nickel or with 38 (X = acac), which produces a product identical with that isolated from the reaction of 37 (X = Cl) with sodium ethyl mercaptide and which has been shown spectro-scopically to be the 7r-allyl complex 37 (X = SC2H5).

C. Reactions ο/π-Allyl NiX Complexes

1. IN WHICH THE ΤΓ-ALLYL GROUP REMAINS ATTACHED TO THE NICKEL

77-Allylnickel complexes react with substituted quiñones to form charge transfer complexes which are active catalysts for the polymerization of butadiene (48, 50, 51, 58, 87, 128-133, 215). The insolubility of these com-pounds has hampered their investigation and there seems to be no agreement upon either their nature or their composition. Reaction of (7r-crotyl)2Ni or (7T-crotylNiCl)2 with chloranil or 2-chloro-/?-benzoquinone results in partial displacement of the crotyl groups as 2,6-octadiene and 3-methyl-l,5-hepta-diene with formation of products having a nickel : quinone ration of 1:1 in the first case, and 2:1 in the second case (48, 129, 131, see also 223). In con-trast a 1:1 adduct is obtained on reaction of 7r-l,3-dimethylallylnickel chloride with chloranil without elimination of the 7r-C5H9 group. This difference in behavior has been suggested to be associated with the monomeric nature of 77-C5H9NiCl in solution (87, 128, 133). With benzoquinone (BQ) products having the composition (7r-C5H9NiCl)2 · 3BQ and (7r-C5H9NiCl)2 · BQ have been claimed (133). Related systems, also active for the polymerization of butadiene, have been obtained by reaction of ττ-crotylnickel chloride with Ni(OCOCCl3)2 and with C13CC02H (138, 139, 207).

The addition of transition metal salts (e.g., NiCl2, TiCl4, or MoCl5) or halogenated carbonyl compounds to vr-allylnickel halides can have a dram-atic effect upon the polymerization of butadiene (137, 140-142, 162, 208, 209)

Page 24: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

352 VI. 77-AllyI Nickel Complexes

and from the reaction with TiCl4 it has been possible to isolate a compound formulated as (77--C3H5NiCl)2 · TiCl4 (19). Related compounds are formed by reacting the 7r-allylnickel halides with strong Lewis acids (e.g., AlBr3) and these are also active catalysts for the polymerization of butadiene as well as the dimerization of olefins. From the reaction of (77--C3H5NiBr)2 with AlBr3 in benzene a red compound suggested to have the ionic structure 39 is obtained. An analogous hexamethylbenzene compound is formed if the reaction is carried out in benzene saturated with hexamethylbenzene (86). The same reaction in chlorobenzene produces the solvent free compound 40, in which the presence of a π-allyl system has been confirmed spectroscopically (26). The coordinatively unsaturated complex 40 readily adds donor ligands

AlBr4" (<—Ni+ AlBr4"

40

and complexes with phosphine (e.g., 41), CO (42), cyclooctadiene (43), and COT have been isolated.

AlBr4" Í —NiP(C2H5)3 + AlBr4 ~ (( —Ni(CO)2

+ AlBr4 - (—Ni COD

41 42 43

In contrast to 40 and 41 the CO and COD complexes (42, 43) are not catalytically active. With a further two molecules of triethylphosphine 41 is converted to the catalytically inactive trisphosphine complex 44, which is believed (although only infrared evidence is available) to contain a σ-allyl group.

[^-C3H5NiP(C2H5)3] + AlBr4- + 2P(C2H5)3 ► 41 {CH2:CHCH2Ni[P(C2H5)3]3 )

+AlBr4" 44

The formulation of 39-44 as ionic complexes is based more on convention than on supporting evidence and a recent structural determination of the related complex Tr-CgHsNiClAlClaCHgtP^c/ö-CßHi^g] which shows it to have a nonionic structure in which a chlorine atom bridges the nickel and aluminum atoms (see Section V-B) suggests that a reinvestigation would be profitable.

The reaction between a ττ-allylnickel halide and oxygen or a peroxide produces an active catalyst for the polymerization of butadiene, which is thought to contain a ττ-allylnickel system. For example, the reaction of (7r-C3H5NiBr)2 with oxygen is reported to yield a product having the

Page 25: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

IV. π-Allyl Nickel X Complexes 353

composition (C3H5)NiBrO (134-136). However, this has been contested and evidence has been presented to show that in actual fact destruction of the τΓ-allyl complex occurs (187).

The reaction of a 7r-allylnickel halide with nitric oxide results in insertion of an NO molecule into the syn-C—H bond to give α,β-unsaturated oxime complexes, e.g., (CH2 : CHCH : NOH)Ni(NO)Br (205).

2. IN WHICH THE ΤΓ-ALLYL GROUP IS DISPLACED

Protonation of the organic group occurs on treatment of the π-allyl NiX

(7r-C3H5NiBr)2 + 2HBr ► 2CH2:CHCH3 + 2NiBr2

dimer with acids. Hydrogénation also causes elimination of the π-allyl group: the gaseous product from the hydrogénation of (7r-crotylNiCl)2 is essentially pure trans-2-bvitenç which (assuming π-σ conversion does not occur) has been interpreted as proof of the syn arrangement of the methyl group in this complex (90).

77-Allylnickel halides react with excess allyl halides by the coupling of the

(77-C3H5NiBr)2 + 2C3H5Br ► 2C6H10 + 2NiBr2

organic groups. The discovery that, in strongly polar media, a similar coup-ling reaction can occur with other organic halides has introduced a useful synthetic method for the combination of unlike groups which is discussed in detail in Volume II (114).

R—((—NiBr + 2R'X ► 2CH2:CRCH2R' + 2NiBrX

The initial step in the catalytic dimerization of cyclooctene with a 7r-C3H5NiX/AlX3 catalyst has been shown to be the transfer of the 7r-allyl group to the cyclooctene with simultaneous generation of the active catalyst, a HNiX species (80). The final step in this reaction has been men-tioned on page 348 and both processes and related reactions are discussed more fully in Volume II.

77-C3H5NiX(AlX3) + -^-+ + HNiX(AlX3)

A number of insertion reactions have been reported involving molecules which undoubtedly initially form a donor bond to the nickel, although, in most

Page 26: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

354 VI. π-Allyl Nickel Complexes

cases, the intermediate has not been isolated. For example, treatment of τΓ-allylnickel bromide with ethyldiazoacetate leads to insertion of the carben-oid part of the molecule with formation of butadiene derivatives (100).

2(77-C3H5NiBr)2 + 2N2CHC02C2H5 " ! * ' . > — 1Ν1.ΒΓ2/1Ν1

CH2:CHCH:CHC02C2H5 + CH2:CH(CH2)2C02C2H5

Reaction with acrylonitrile also leads to insertion: the product, (CH2: CHCH2CH2CHCN)2Ni, is believed to be polymeric (214). The reaction with CO under pressure produces an acyl halide which is hydrolyzed by the solvent (39). Two groups of workers have shown that the reaction proceeds through an intermediate nickel acyl complex (115, 116).

i(^-C3H5NiX)2 + (n + l)CO , CH2:CHCH2CONi(CO)nX ( 4 ~ ^ ° > R O H

CH2:CHCH2C02R + Ni(CO)4

Transfer of a π-allyl group from one transition metal to a second occurs on reaction with diiron enneacarbonyl (101), bis(benzonitrile)palladium dichloride, sodium tetrachloropalladate, and with potassium tetrachloro-platinate (9).

K^-C3H5NiX)2 + Fe2(CO)9 ► 7r-C3H5Fe(CO)3X + Fe, CO, Ni

V. 7r-AUyl NiX(Ligand) Complexes

A. Preparation

1. REACTION OF (TT-ALLYLNÍX)2 COMPLEXES WITH A LIGAND

Monomerization of the dimeric ττ-allyl NiX system occurs smoothly on treatment with a donor ligand and this has been used to prepare a large

2Lig + (77-C3H5NiX)2 ► 27r-C3H5NiX(Lig)

number of compounds (e.g., 12, 21, 27). Related reactions include the treat-ment of a nickel halide with allyl Grignard or tetraallyltin (28) in the presence of the ligand. The hydride, alkyl, and aryl complexes are most conveniently prepared by treatment of the corresponding halide with NaHB(CH3)3 or Grignard reagent (12).

NiCl2 + P(C6H5)3 + Sn(CH2CH:CH2)4 ►

7r-C3H5NiCl[P(C6H5)3] + SnCl(CH2CH:CH2)3

7r-C5H9NiBr(Lig) + CH3MgBr ► 7r-C5H9NiCH3(Lig) + MgBr2

Page 27: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

V. π-Allyl NiXÇLigand) Complexes 355

2. REACTION OF AN ALLYL DERIVATIVE WITH A NICKEL LIGAND COMPLEX

An alternative method of preparation is the reaction of zerovalent nickel-ligand complexes (e.g., Lig2Ni, Lig2NiCOD, LigNi(CO)3) with an allyl

IKcyc/o-CeHn^PLNi + 2C6H5CH2C1 ► (ir-CeHeCHaNiCl)a + 2P(çyc/o-C6H11)3

halide (14, 22, 23, 30, 32, 206). The reaction with the substituted nickel carbonyl complexes occurs through the intermediacy of a five-coordinate carbonyl complex (45) which has been isolated from the reaction of allyl bromide with triphenylphosphine nickel tricarbonyl. The same reaction with allyl chloride proceeds directly to the ττ-allyl NiX(Lig) complex (14, 23, 30, 32).

(CO)3NiP(CeH5)3 + CH2:CHCH2X ~ 2 C O >

7r-C3H5NiX(CO)P(C6H5)3 " C ° > 7r-C3H5NiX[P(C6H5)3]

45

The reaction of tris(bicycloheptene)nickel with allyl bromide produces complex 46 in which a 7r-bonded olefin molecule functions as the ligand (21). A similar compound is formed by reacting bicycloheptene with 7r-methallyl-nickel chloride dimer (98). Presumably an intermediate similar to 46 is

Br

Ni + CH2:CHCH2Br ► ((— N i '

46

involved in the reaction of the 7r-allyl NiX dimers with COD in the presence of bicycloheptene, which produces the cyclooctadienenickel halide species 47 (103), and in the reaction with triphenylphosphine in the presence of bicycloheptene to give a trisphosphine nickel (1 + ) species (104).

(7T-C3H5NiBr)2 + 2COD C 7 H l 0 > 2CODNiBr

47

(7T-C3H5NiBr)2 + 6P(C6H5)3 ^ ^ 2[(C6H5)3P]NiBr

77-C3H5NiBr[P(C6H5)3] is reported to be produced in the reaction of [(C6H5)3P]3NiBr or the olefin complex (77-dimethylmaleate)NiBr[P(C6H5)3] with allyl bromide (29).

3. MISCELLANEOUS

A 1-hydroxy ττ-allyl complex (e.g., 48) may be prepared by addition of HBr to the triphenylphosphine adduct of acrolein- or methacrolein-nickel (65).

Page 28: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

356 VI. π-Allyl Nickel Complexes

OH

(CH2:C(CH3)CHO)NiP(C6H5)3 + HBr ► —(|~NiBr[P(C6H5)3]

48

An unusual reaction is that of inms-trisisopropylphosphine nickel bromo-methyl with butadiene from which the binuclear octadienyl complex 49 has been isolated (188, 189).

-2CH 3 -

2[(¿y0-C3H7)3P]2NiBr(CH3) + 2C4H6 +

Br^ P ( W Ö - C 3 H 7 ) 3

Ni

^ ^ ^ ^ ι ^ Ni

( / 5 Ö - C 3 H 7 ) 3 P Br

49

Other systems, perhaps related to 49, have been obtained by reacting π-allylnickel bromide with butadiene (224, 225).

B. Structural Investigations

The structure of eight ττ-allyl NiX(Lig)n complexes have been investigated in detail : three ττ-allylnickel alkyl complexes, two 77-allylnickel halide com-plexes, one ionic 77-allylnickel bisligand system and two five coordinate bisligand complexes as well as a partial determination of the structure of 7r-C3H5NiI(CO)[P(C6H5)3] (32). The distortions experienced by the 77-allyl group in these complexes have been discussed in Section I (Table VI-1).

The structures of two of the alkyl complexes and the ττ-allylnickel bromide complex are shown in Figs. VI-8, VI-9, and VI-10. The geometry around the nickel is in all cases approximately square planar. The structure of 77-CH3CHCHCHCH3NiCH3[P(/^-C3H7)2C6H5] is essentially identical with that of the P(menthyl)2CH3 adduct (Fig. VI-8) and the principle atomic distances for this complex are: Ni—CH3, 1.99(1); Ni—P, 2.17(1); Ni—Ci, C3, 2.06(1); Ni—C2, 1.98(1) (190).

Extremely high thermal motion in the ττ-allyl group and disorder in the A1C12CH3 molecule limit the accuracy of the determination of the structure of 7T-C3H5NiClAlCl2CH3[P(c^c/ö-C6H11)3], but here also the geometry around the nickel is essentially square planar. The bridging chlorine atom is almost symmetrically bonded to both the nickel and the aluminum atoms (113). The principal bond distances are Ni—Cl 2.253(2), NiCl—Al, 2.240(2); Al—Cl, 2.10(2); Ni—P, 2.225(1); Ni—C, 1.93(2)-2.08(2). In order to describe the geometry of the ττ-allyl group in the alkyl complexes it has

Page 29: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

V. π-Allyl NiX{Ligand) Complexes 357

/ H 3 C ^ / 1.489(6)

1.443(6)

2.103 (4)

1.999 {4]

\22.Ty

1 1 1

1.408(6)

2.069 (4)

1 1

^ C H 3 1.463 (6)

/

2.172 (1)^

(menthyl)2PCH3

Ni. sl.975 (4)

CH3

X = 118.8°; 0(c/5-CH3) = -2.7°; 0(c¿y-P) = 3.2°; a = 10°

Fig. VI-8. Structure of 77-CH3CHCHCHCH3NiCH3[P(menthyl)2CH3] (190). a = 17.446; b = 13.722; c = 11.895; Z = 4; space group Ρ2ι2ι2ι; R = 3.7%.

proved useful to invoke an in-plane twist (a) of the ττ-allyl plane about the nickel-allyl axis in addition to the dihedral angle between the ττ-allyl and nickel-ligand planes. The values for a are 10° and 5° and in both cases the twist occurs in a clockwise direction (assuming the geometry of the molecule is as shown in Figs. VI-8 and VI-9.)

The geometry around the nickel in the five coordinate complexes is approxi-mately square pyramidal with the bromine atom at the apex (Figs. VI-11 and VI-12). The unusually long Ni—Br bond compared with the mono-phosphine complex shown in Fig. VI-10 is thought to indicate greater partial ionic bond character, a postulation which is supported by the observation that solutions of the binuclear complex conduct electricity (188, 189).

The Ni—Cl bond in the bisthiourea complex (Fig. VI-13) is weakened to such an extent that this complex is best regarded as ionic. It is interesting that the mutual arrangement of the ττ-allyl group and the halide atom is the reverse of that observed for the complexes shown in Figs. VI-11 and VI-12.

CH3

2.0^7 (3)1 1.481 (4)

1.413 ( 4 ) _ C

2.175 (l)v

(cyclo-CeH^s P

.393 (4) ^ ^ ^ C ^ i 534 (4) C ^ ^ 5 0 3 ( 4 ) ^ - C

2.088 (3) I 1.499(4)

1.978(3) 1 . 3 4 4 ( 4 ) ^

•A. .1.511 (4)

CH3 1.458 (4)

χ = 124.1°; 0(CH3) = -9.3°; 0(CH2) = +2.8°; a = 5°

Fig. VI-9. Structure of 7r-CH2C(CH3)CH(CH2)2C(CH3):CHCH2NiP(^c/ö-C6H11)3

(89,190). a = 16.711, b = 12.942, c = 12.339; ß = 91.34; Z = 4; space group P2x\c\ R = 5.2%.

Page 30: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

358 VI. 7Γ-Allyl Nickel Complexes

(¿y<?-C3H7)3P

/c^

Ni 1 1 1

^6 1

Br

C—

15l' (2)

H 2 ' f c - ~ ^ /' /

1,56(2) /

/ / ^ ~ C H 2

X = 108.8°

"¿ÍJ> 1.99 V/'

1 . 4 0 ( 2 ) ^ ^ 1 . 4 5 ( 2 ) 2.0/(2) '

2.313 ( 3 ) ^ " l \ 2 . 2 0 9 (4) ^ X 1 0 0 . 1 o - / \ ^ . ^ T ,

Br P(wo-C3H7)3

;0 = -5.5°

Fig. VI-10. Structure of (7r-CH2CHCHCH2-t^{NiBr[P(/w-C3H7)3]}2 (188, 189). a = 13.72(1); b = 7.93(1); c = 7.89(1); a = 103.1; ß = 83.8; y = 103.3; Z = 1; space group ¿>T;R = 8.9%.

As a result of the square planar geometry of the 77-allyl NiX(Lig) complexes none of the syn or anti substituents on the allyl group are expected to be magnetically equivalent. This is normally observed in the NMR spectra of the 7T-allylNiCH3(Lig) complexes, but a simplification of the spectra to AM2X2 is observed in most other cases (e.g., 7r-C3H5NiBr(Lig), Table VI-3); this is the result of a left-right exchange of the syn and anti sub-stituents. Possible mechanisms for such a process are shown in Fig. VI-14 and include : (a) free rotation about the Ni-7r-allyl axis, (b) ligand exchange by an SN1 mechanism, (c) exchange of X through an ionic intermediate, and (d) ligand exchange through an intermediate five coordinate complex with restricted rotation about the Ni-allyl axis, partial dissociation or decomposition supplying the second ligand molecule needed in this case.

CH3

1.55(2)

2.02 (/) C ^ L 4 3 (2)

lA2(2)y/>JJ9 ^ c

2.06 (1)

2.05 (/)

- - - N i 2 1 7 8 ( 4 ) P

2.671 (2) CH2

Br

Fig. VI-11. Structure of 7r-CH2C(CH3)CH2NiBr(diphos) (42, 43). a= 11.14(1); b = 8.17(1); c = 15.41(2);« = 90.81; ß = 96.58; y = 105.78; Z = 2; space group P Ï ; R = 10.1%.

Page 31: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

V. π-Allyl NiX{Ligand) Complexes 359

Fig. VI-12. Structure of (^CH2CHCHCH2-H(NiBrdiphos)2 (188, 189). a = 18.08(1); b = 22.18(1); c = 17.02(1); y = 110.2; Z = 4; space group Λ2/β; R = 9.3%.

There is a lack of convincing examples in ττ-allylnickel chemistry which allow one to differentiate between these mechanisms. The broadening of the allyl-CHg signal in the NMR spectra of ^-CH3CHCHCHCH3NiCH3 [P(c-yc/ö-C6H11)3] from a double-doublet at +5° to a broad signal at —70° has been interpreted in terms of the mechanism (a) with a coalescence temperature lying at approximately —70°. The epimerization of 7r-CH3-CHCHCHCH3NiCH3[NH2*CH(CH3)C6H5], in which the amine is only weakly bonded (it can even be removed at room temperature by applying

2.07 (2)

c 1.33 (3)

XTTJ

2.218(4)^^1/72(1) / 2

1.97 (3) C 1240-— N i ^ l l p .9° | /

1.40(3)

c 2.04 (2)

NH2

Cl

Fig. VI-13. Structure of TT-CH 2 CHCH 2 NÍ [SC(NH 2 ) 2 ] 2 + C 1 - (37, 38). a = 25.24(8);

b = 11.17(4); c = 8.63(3); Z = 8; space group Pbca; R = 9.67o.

Page 32: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

360 VI. π-Ally I Nickel Complexes

Ni Ni / \ / \

Lig X X Lig (a)

Fig. VI-14. Possible mechanisms for the left to right exchange of the syn and anti protons of a 7r-C3H5 group.

a vacuum), is reasonably interpreted in terms of mechanism (b). The basically different behavior of the 7r-allylNiCH3(Lig) complexes (and of 7r-C3H5-NiH[P(C6H5)3]) compared to the Tr-allylNiX(Lig) complexes (X = Hal, OR etc.) suggests that the ionic mechanism (c) may be applicable in the latter case (18).

C. Reactions ofn-Allyl NiX(Lig) Complexes

1. IN WHICH THE ΤΓ-ALLYL GROUP REMAINS BONDED TO THE NICKEL

The τΓ-allyl NiX(Lig) complexes react readily with further ligand molecules. The nature of the product of the reaction with a second molecule of ligand

Page 33: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

V. π-Allyl NiX{Ligand) Complexes 361

depends upon the ligand and the substituent X. In general the less basic ligands (e.g., P(C6H5)3 or CO) add, to give a five-coordinate complex (13, 27):

7r-C3H5NiBr[P(C6H5)3] + P(C6H5)3 ► 7r-C3H5NiBr[P(C6H5)3]2

basic ligands (e.g., P(C2H5)3) cause π-σ conversion (26, 27)

^C3H5NiBr[P(C2H5)3] + P(C2H5)3 , CH2:CHCH2NiBr[P(C2H5)3]2

while other ligands (e.g., thiourea) so weaken the Ni—X bond that an ionic product is formed (36-38).

(7r-C3H5NiBr)2 + 4S[C(NH2)2]2 ► {7r-C3H5Ni[SC(NH2)2]2} + Br-

If the second of these possible reactions, the π-σ conversion, occurs faster than the NMR time scale, it shows itself as a simplification of the 7r-C3H5

NMR spectrum from AM2X2 to AX4. This conversion has been studied for the (77-C3H5NiBr)2-pyridine system and is also observed in the spectrum of 7T-C3H5NiX[P(C2H5)3]2 (X = CN or Br) (26, 27).

The mechanism for this process can be assumed to be analogous to that established for the corresponding palladium compounds for which, fortun-ately, detailed review articles are available (see Reviews listed at the end of this chapter). Two mechanisms can be discussed depending upon whether the allyl-Ni or the Ni—X bond is the more weakened on approach of the second ligand [Fig. VI-15 (a)]. Weakening of the allyl-nickel bond leads to a square planar Lig2NiX (σ-allyl) complex which, assuming free rotation about the Ni—Cx and Q—C2 bonds, leads to equilibration of the syn and anti protons. The ionic mechanism [Fig. VI-15 (b)] was first suggested for the 7r-C3H5PdCl[P(C6H5)3]-P(C6H5)3 system and its application to the analogous nickel systems is justified by the isolation of the ionic complex 7T-C3H5Ni (thiourea)2

+ Cl~ in which the ττ-allyl group and the two ligands form one plane (Fig. VI-13). The suggested 7r-allylNiLig3

+ intermediate has precedent in the complex C3H5Ni[P(C2H5)3]3

+AlBr4~ which is, further-more, believed on the strength of infrared evidence, to contain a σ-allyl group (26), as well as in the complexes discussed in Section VI. The ionic mechanism presupposes that X is electronegative and hence this process is ruled out for the nickel alkyl complexes.

The observed isomerization of the 7r-l,3-dimethylallyl NiCH3(Lig) com-plexes to give only that syn, anti isomer in which the anti-CH3 group is eis to the ligand (i.e., 50) as well as the absence of the anti, anti form (18) can be explained by assuming that an intermediate Lig2Ni(CH3) σ-allyl species is formed which, in common with all Lig2NiR2 and Lig2NiRX complexes (and in contrast to the corresponding palladium or platinum complexes) has a trans configuration.

Page 34: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

i(77-

C 3H

5NiX

) 2 +

Lig

Fig.

VI-

15. T

he π

-σ c

onve

rsio

n in

7r-a

llyl

NiX

(Lig

) sy

stem

s, (a

) Int

erm

edia

te L

ig2N

iRX

for

mat

ion;

(b)

inte

rmed

iate

ion

ic c

ompl

ex

form

atio

n.

Page 35: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

V. π-AHyl NiXÇLigand) Complexes 363

The product of the interaction of an aluminum trihalide with a ττ-allyl NiX(Lig)n complex can be formulated either as being ionic viz. ττ-allyl Ni(Lig)n

+AlX4", or as containing a bridging X-group, viz., vr-allyl Ni—X— AlX3(Lign). Various examples of ionic species have been suggested to be formed in reactions involving aluminum tribromide (see Section IV-C) as well as in the reaction of the binuclear complex (TT--CH2CHCHCH2-}-2-(NiBrdiphos)2 with ammonium hexafluorophosphate (188, 189) while an example containing a bridging chlorine atom has been isolated from the reaction of 7r-C3H5NiCl[P(c>yc/ö-C6H11)3] with A1C12CH3 and its structure confirmed by an x-ray determination (113, see Section V-B).

2. IN WHICH THE ΤΓ-ALLYL GROUP IS DISPLACED FROM THE NICKEL

Reaction of the 7r-allylNiX(Lig) complexes with excess ligand can lead either to coupling of the 77-allyl and X groups, displacement of the 7r-allyl group (e.g., 93) or in some cases to displacement of the group X (e.g., 32).

(7r-C3H5NiBr)2 + 6P(C6H5)3 ► 2[(CeH5)3P]3NiBr + C6H10

7r-C3H5NiI(CO)[P(C6H5)3] + 2CO ► (CO)3NiP(C6H5)3 + CH2:CHCH2P(C6H5)3 + I -

Coupling of the allyl and X groups is the reaction normally observed for the 77-allylnickel hydride and -alkyl complexes and has been discussed in detail in Chapter IV (12). This type of reaction has also been observed where X

7r-C3H5NiCH3(PR3) + 3PR3 ► C4H8 + Ni(PR3)4

is a halide (107).

(7T-C3H5NiBr)2 + 8(CH3)2NPF2 ► 2C3H5Br + 2Ni[(CH3)2NPF2]4

The reaction with CO as ligand is characterized by the ease with which insertion of the CO molecule into the ττ-allylnickel bond occurs with formation of an organic carbonyl complex.

Page 36: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

364 VI. π-Ally I Nickel Complexes

7r-C3H5NiI(CO)[P(C6H5)3] + CO + CH3OH -NiLig/HI

CH2:CHCH2OCH3 + CH2:CHCH2C02CH3

The reaction shown above may be considered as evidence for the intermediacy of five-coordinate ττ-allylnickel complexes in the catalytic carbonylation of allyl halides with nickel tetracarbonyl under slight CO pressure, which is discussed in detail in Volume II. The catalytic reaction has been extended by using a mixture of acetylene and CO and here the probable intermediacy of a five-coordinate ττ-allyl system is indicated by the fact that 51 reacts with CO and acetylene to give a 47 % yield of c¿s-methyl-2,5-hexadienoate (32).

77-C3H5NiI(CO)[P(C6H5)3] + CO + HCiCH CH3°H> 51

C02CH3 + (C6H5)3PNi(CO)3 + HI An insertion reaction also occurs on treatment of the bicycloheptene

adduct 52 with sodium acetate whereby the acetato-bridged complex 53 is produced, although in this case the resulting organic product remains bonded to the nickel (98).

,C1 -Ni + 2CH3C02Na -2NaCl i -

CH3

52 53

Protonolysis of nickel complexes containing the 77--C3H5 group produces propene. The reaction with the 7r-C3H5NiCH3(Lig) complexes occurs stepwise; under mild conditions CH4 is evolved, while more vigorous conditions are needed to protonate the 7r-allyl group; this différence in reactivity of the organic groups has been used to prepare 7r-C3H5NiX(Lig) complexes (12).

7r-C3H5NiCH3(Lig) + HX -CH4 7r-C3H5NiX(Lig) HX > C3H6 + LigNiX2

VI. [77-AllylNi(Lig)3]+ Complexes

7Γ-Allyl complexes are the product of the addition of a metal hydride to a 1,3-diene. This reaction, which has found only slight synthetic utility in organonickel chemistry, is believed to be the key to the catalytic dimerization

Page 37: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

VI. [π-Allyl Ni(Lig)3]+ Complexes 365

of 1,3-diolefins and the codimerization of a 1,3-diolefin with an olefin using a variety of mixed metal catalysts (e.g., 94, 210).

A careful study has been made of the reaction of the HNi(Lig)4 + species

(formed by protonation of the tetrakisligand complex) with butadiene and substituted 1,3-dienes: the initial product of the reaction with butadiene is a mixture of the cationic syn- and ö«i/-7r-crotylnickel complexes in which the anti isomer predominates (anti : syn = 7.3:1 at 0°). The anti isomer isomerizes slowly to the thermodynamically more stable syn isomer (anti:syn 1:19)

2HNiLig4+ + C4H6

2Ll8> <f—NiLig3+ 4- ((—NiLig3

(55, 56). The kinetic preference for the anti isomer is also found in the reaction with substituted 1,3-dienes (see Table VI-5) and suggests that on interaction with the Ni—H species the diene adopts a cis configuration, e.g.,

+ NiH

The thermodynamic preference for the syn isomer becomes reversed in reactions involving highly substituted ττ-allyl groups suggesting that it has a steric origin. The reaction with cyclopentadiene indicates that eis addition of an Ni—H species to the olefin group occurs : the product, 54, of the reaction with DNi[P(OCH3)3]4, has been shown by NMR spectroscopy to have the Ni and D atoms on the same side of the ring. 1,4-Pentadiene is first isomerized

f A + D N i L t a ^ - ^ H

/ D

Ni Lig3

54

to a 1,3-diene which then reacts with the nickel hydride complex to form the anti, syn-7r-CH3CHCHCHCH3 system, which in turn isomerizes to the syn, syn isomer (55, 56).

A further example of a cationic trisphosphine nickel allyl complex, viz., [C3H5]Ni[P(C2H5)3]3

+AlBr4-, has been discussed in Section IV-C. The intermediacy of an ionic π-crotylnickel species, perhaps 55, in the

Page 38: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

TAB

LE V

I-5

REAC

TION

OF

HN

i[P

(OC

H3)

3]4+

HS

0 4"

WIT

H 1,

3-D

iene

1,3-

Die

ne

CH

2 * C

HC

H '.

CH

2

CH

2:C

(CH

3)C

H:C

H2

CH

3CH

:CH

CH

:CH

2

CH

2 : C

HC

(CH

3) :

CH

CH

3

CH

2 : C

(CH

3)C

H :

CH

CH

3 C

H2 '

. CH

CH

; C

HC

2Hs

CH

2:CC

1CH

:CH

2

TT-A

llyl g

roup

for

med

a/tf/

-CH

3CH

CH

CH

2 ^-

CH

3CH

CH

CH

2 a«

i/-C

H3C

HC

(CH

3)C

H2

^«-C

H3C

HC

(CH

3)C

H2

^//,^

w-C

H3C

HC

HC

HC

H3

syn 9

syn-

CH

3CH

CH

CH

Cll 3

anti

,syn

-CH

3CH

C(C

H3)

CH

CH

3

^«,^

«-C

H3C

HC

(CH

3)C

HC

H3

^«-(

CH

3)2C

CH

CH

CH

3 an

ii,s

yn-C

2U5C

UC

HC

KC

H3

^/î,^

«-C

2H5C

HC

HC

HC

H3

^«-C

H3C

C(C

1)C

H2

Initi

al p

rod.

di

strib

utio

n

88

12

62b

18

100 0 80

20

100 50

50

100

Fina

l pr

od.

dist

ribut

ion

(70)

5 95

24ö

59

20

80

80

20

100 30

70

10

0 a F

rom

Ref

s. 55

and

56.

b D

iffer

ence

TT-

(CH 3

) 2CC

HCH 2

com

plex

.

Page 39: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

VIL π-Allylnickel π-Cyclopentadienyl Complexes 367

stoichiometric reduction of butadiene with aqueous hexacyanodinickelate to but-2-ene has been established by NMR spectroscopy (105, 106).

VII. TT-Allylnickel ττ-Cyclopentadienyl Complexes (Table VI-6)

The TT-allylnickel π-cyclopentadienyl system being formally an 18-electron system might be expected to show some special stability. Although this cannot be directly substantiated, the frequency with which such an arrange-ment is adopted and, in particular, the ease with which one of the 7r-cyclo-pentadienyl rings in nickelocene is converted into a ττ-cyclopentenyl form, indicates that it is thermodynamically favored.

7r-C3H5Ni-7r-C5H5 is conveniently prepared by reacting π-allylnickel bromide with sodium cyclopentadienide or by reacting nickelocene with allylmagnesium bromide (20, 31, 143, 147). It is also formed in the reaction

K-C3H5NiBr)2 N"C;H5> .-Cal^NiTr-CsHs < ° ^ ? r ï ("QH5)2Ni

- NaBr - C5H5MgCl

between 7r-C5H5NiCl[P(C6H5)3] and allylmagnesium bromide (144). The corresponding 7r-crotyl complex can be prepared in an analogous

reaction with ττ-crotylnickel bromide and is also produced when nickelocene is heated with butadiene in THF and when crotylchloride is treated with the anion (7r-C5H5NiCO)" (it has been suggested to be formed as a mixture of syn and anti isomers) (20, 145). The analogous π-benzyl complex is probably produced in the reaction between nickelocene and benzylmagnesium chloride as a red, highly unstable liquid which rearranges to give nickel-cluster compounds (192; see Chapter VIII, Section III).

Related compounds in which the group 7,9-C9B9CHPCH3 play the role of the cyclopentadienyl group are produced by reacting nickel chloride with an allyl or methallyl Grignard reagent in the presence of the phosphocar-bollide (146) (see Chapter VIII, Section VII).

The reaction of sodium cyclopentadienide and related species with a 7r-allyl-nickel halide is general and has also been used to synthesize 56 and 57 (70,

CINi—V-((—PdCl + 2NaC5H5 ► <( ) h N i — Y~\—Pd4£- )> + 2N*C1

Page 40: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

TA

BL

E

VI-

6

ΤΓ-A

LLY

L N

Í-W

-C5H

5 C

OM

PLEX

ES

Com

plex

C

olor

(m

p)

y (H

z)

Oth

er a

bs. (

τ)

Solv

.6

7r-C

H2C

HC

H2N

i-77

-C5H

5

77-C

H2C

HC

H2N

i(l

,7-B

9H9C

HPC

H3)

(77-

CH

2CH

CH

2Ni) 2

-7r-

C8H

e (5

7)

7r-C

H2C

(CH

3)C

H2N

i-(1

,7-B

9H9C

HPC

H3)

7r

-C5H

5Ni[7

r-(C

H2)

2C] 2

Pd-7

7-C

5H5(

56)

MC

H2)

3C] 2

(Ni-

7r-C

5H5)

2 (5

8)

7r.C

H3C

HC

HC

H2N

i-7r

-C5H

5 [T

T-ÍC

Haí

íCíC

sHsl

Ni-

^CsH

s (5

9)

MC

H3)

4C4C

5H7]

Ni-

7r-C

5H5

MC

6H5)

4C4O

CH

3]N

i-7r

-CsH

5 (6

0)

7r-C

5H7N

i-^C

5H5

ir-C

5H5D

2Ni-

7r-C

5H5

77-C

5H6C

H3N

i-7r-

C5H

4CH

3

7r-C

yclo

octa

trien

yl-N

i-7r-

C5H

5

^C5H

5C2F

4Ni-

w-C

5H5

77-C

5H5C

2ClF

3Ni-

^C5H

5

77-C

5H5C

6F4N

i-7T-

C5H

5 (6

5)

7r-C

5H5C

6F8N

i-ir

-C5H

5 [7

r-C

5H5N

2(C

0 2C

2H5)

2]N

i-7r

-C5H

5

Dar

k re

d liq

. (b

p 73

-75/

12 m

m H

g m

p 7-

9)

Red

(12

0-12

1)

Dar

k gr

een

(145

d)

Red

(12

3-12

4)

Red

(15

0-16

0d)

Dar

k re

d R

ed o

il R

ed (

74.5

-75)

4.21

(s)

- - 4.85

(s)

4.25

(s)

4.70

(s)

4.95

(s)

6.30

(m)

4.26

(tt)

5.11

(tt)

7.82

(d)

6.91

(d)

5.9(

dd)

6.93

(d)

5.93

(m)

6.03

(m)

7.25

(s)

6.35

(s)

6.95

(s)

8.12

(d)

6.86

(d)

7.00

(d)

8.49

(d)

6.82

(d)

7.00

(d)

8.85

(s)

7.85

(s)

8.70

(s)

/ 123

,/1

41

1

«'12

6, J

iz

12,

ΛΡ

2 /1

2 6,

/13

12

Red

(51

-51.

5)

— (

139d

) R

ed (

43)

4.93

(s)

5.10

(s)

4.88

(s)

5.02

(t)

6.27

(s)

Red

oil

Gre

en

Red

(93

-94)

Red

(68

-73)

Dar

k re

d R

ed (

116-

117)

R

ed

4.78

(s)

4.90

4.9

4.75

(s)

4.78

(s)

4.98

(s)

4.73

(s)

4.9 l

(t)

4.90

T4.

4(4H

) 4.

48(t)

4.53

(t)

4.98

(?)

4.57

(t)

6.09

(d)

6.19

5.8(

3H)

8.0(

2H)

6.07

(m)

6.07

(m)

6.15

6.

12

7.72

(d,

CH

3)

(a)

7.4

(d,

CH

P)

3.92

(t,

2H,

C8H

6)

(b)

4.81

(d,

4H

, C

8He)

7.

70 (

d, C

H3)

(a

) 7.

5 (C

HP)

(b

)

(b)

3.78

, 3.9

0, 4

.10,

(c

) 4.

17, 7

.24,

7.4

4,

(-a-

CsH

5) 7

.67

(d),

8.46

(d),

9.07

(d)

(CH

3)

7.75

, 8.5

7, 8

.73,

9.

00,

9.08

2.

4, 2

.8 (

C6H

5)

8.85

(e

xo-C

H2)

, 9.

33

(end

o-C

H2)

(c) (b)

8.77

(ex

o-C

H2)

(b

) 7.

99 (

CH

3), 8

.86

(b)

(CH

3),

8.86

(C

H2)

7.33

(C

CH

CF)

819

F (d

) 11

6.3

(q,/

211)

7.

22 (

CH

CF)

8 1

9P 1

07.8

1 (q

), 10

9.0

(q)

117.

1 (m

), 12

6.5

(s)

7.32

(C

H—

CF)

8.

56 (

CH

CF)

(d)

(b)

20,

31,

143,

14

4, 1

47

146

148

70

70,

149

20,

145

150-

152,

15

4, 1

75

150,

151

153

39, 4

7, 1

45,

156-

161,

16

4, 1

65,

172-

174,

17

6 15

6 17

2

211

167

169,

170

16

8 17

1

Subs

titue

nts

(unl

ess

othe

rwis

e in

dica

ted)

are

ass

umed

to

be s

yn t

o po

sitio

n 1.

The

num

beri

ng s

yste

m f

ollo

ws

from

the

for

mul

a, e

.g.,

in w

-CH

3CH

CH

CH

2Ni

com

plex

es

the

CH

3 gr

oup

occu

pies

pos

ition

2 w

hile

in

an//-

7r-C

H3C

HC

HC

H2N

i co

mpl

exes

the

CH

3 gr

oup

occu

pies

pos

ition

4.

" So

lven

t: (a

), C

D3C

OC

D3;

(b)

, C6D

6; (

c), C

DC

1 3;

(d),

CC

1 3F.

Page 41: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

VIL π-Allylnickel π-Cyclopentadienyl Complexes 369

(7r-C3H5NiCl)2 + Li2C8H6 ► C — N i " ^ ) T O / Ni"~? + 2LiC1

57

148). 56 disproportionates slowly in solution to give the bisnickel complex 58 the structure of which has been confirmed by an x-ray study (Fig. VI-16).

277-C5H5Ni—C6H8—Pd7r-C5H5 ► (7r-C5H5Ni)2C6H8 + (7r-C5H5Pd)2C6H8

56 58

The bis-7r-allyl group is inclined at 18° to the cyclopentadienyl plane. The inequality in the C—C bond distances within the cyclopentadienyl ring is suggested to indicate that partial localization of the ring electrons has occurred to give an h3-C5H5 system, and as such is the only example in nickel chemistry for which this effect has been substantiated.

2.103 (9) 2.079 (4)

c c /o\ 2.087 (4) C^^—\^^C 2J1? W

2.101 (4)

Ni 1.978 (4) c I1.41 (6)

1.933 MC^IAS (l)

c ^ Í 4 1 ( l N C

1.965(4) jU1 1·5'

Ni

1.438(6) Q Ç \1.398(6)

1.401(6)/ CZ^ \ C C-^394 (6)

1.423(6)

Fig. VI-16. Structure of (7r-C5H5Ni)2C6H8 (149). a = 9.934; b = 7.775; c = 9.573; ß = 110.55; Z = 2; space group P2i//i; R = 3.47%.

A partial structural analysis of 57 shows that the molecule has a center of symmetry with a nickel-nickel distance of 4.31 Â (148; details of the structure are reported in Ref. 218).

The 7T-cyclobutenylnickel-7r-cyclopentadienyl compounds 59 and 60 are formed by nucleophilic attack on the cyclobutadiene ring (150-153). The intermediate ττ-cyclobutenylnickel chloride has not been isolated, the reaction

Page 42: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

370 VI. π-Allyl Nickel Complexes

NiCl2 + NaC5H5 ►

HeCe

) H5C6

ΟβΗδ

UNÍ77-C 5 H 5

CeHö

Γ/ Ν

ι_\ /

\ Ί . ΜΐΓΊ 1 ΙΝΙνΛ 1

\ AJ

NaCgH8

-NaCl *

Ç5H5

NÍ7r-C5H5

59

NaQCHa

HBr

H5Ce

H5C6

OCH3

CeH 5

-Niir-CeHe

CeH 5

60

proceeding directly to give 59, the true nature of which was recognized only after the x-ray structural determination had been completed (Fig. VI-17). The cyclopentadiene group occupies an exo position (154, 155).

1,2-Addition to one of the cyclopentadienyl rings of nickelocene converts it into the ττ-cyclopentenyl group. The simplest reaction of this type is hydro-génation which may be carried out directly at 50° and 30 atm of hydrogen

1.44 (2)

' °°° 1.58 m

Ç 1.98 (i)

W J c-c / l . 5 6 ( l )

-Cc'89'

1.44(2)

C 2.55 (/)

c

Ni

2.15 (2)

2.17 ( 2 ) C ^ V - ^ ^ C 2'13 (2)

\ 0 / c — d 2.10 (2) 2.U (i)

Fig. VI-17. Structure of [n-(CU3)^C5H5]Ni-7T-C5ll5 (154). a = 11.66; b = 11.77; c = 11.41; Z = 4; space group Ρ2ι2ι2ι; R = 7.770.

(156) or under milder conditions in the presence of a catalyst, e.g., Raney nickel, palladium on charcoal, or RhCl[P(C6H5)3]3 (156,157). An NMR study has shown that hydrogénation and deuteration occur stereospecifically with the hydrogen atoms adding to the most hindered side of the ring, the central

Page 43: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

VIL π-Allylnickel π-Cyclopentadienyl Complexes 371

metal atom probably being involved in the transfer step. π-Cyclopentenyl-nickel ττ-cyclopentadienyl is also the product from the reaction of cyclo-

Ni + D2

pentadiene with nickel tetracarbonyl (158-160, 172-174) or nickel vapor (161); presumably an intermediate biscyclopentadiene species is formed and followed by intramolecular hydrogen transfer. Some support for this mech-

2\\ / / + Ni v±y Ni

V Ni—HJ

<> Φ anism comes from the isolation of ligand stabilized analogues to the two intermediates viz., 62 and 63, which are formed by reacting the appropriate

\l? Ni

[P(OC6H4-o-C6H5)3]2 62

Ni H 7 ^Vicyclo-CeU^s

63

bis-phosphite nickel or bisphosphine nickel complex with cyclopentadiene (82, 163). Other reactions in which 61 is formed include the reduction of nickelocene electrolytically (164), with sodium amalgam, or with sodium borohydride (157) and it is also the product isolated from the reactions of nickelocene with ethylene (145), nickel bromide with cyclopentenyl magnes-ium bromide (39, 47), and nickel bromide with a mixture of sodium cyclo-pentadienyl and cyclopentenyl magnesium chloride (165).

A reaction related to the hydrogénation of nickelocene is the addition of a molecule of bromine, which has been reported, without evidence, in a patent, to give 7r-C5H5NÍ7r-C5H5Br2. It is also claimed that addition of a second mole of halogen occurs (166).

Page 44: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

372 VI. 77-Ally»/ Nickel Complexes

Olefins or acetylenes can add to one of the rings in nickelocene either in a 1,3-sense to give a norbornyl derivative bonded to the nickel by a σ-bond (this reaction is discussed more fully in Chapter IV, Section XII-C) or in a 1,2-sense to give a 7r-allyl product. 1,3-Addition seems to be limited to acetylenic compounds and 1,2-addition to fluoroolefins (167, 168). Tetra-

fluorobenzyne adds in both senses to give a mixture of the norbornyl deriva-tive 64 and the 7r-allyl complex 65 (169, 170). Diethyldiazocarboxylate

64 65

^HsOaCNiNCOaCaHö) also reacts with nickelocene, but the direction of addition is not known (171).

VIII. Hetero-TT-Allylnickel Complexes

The possibility of preparing transition metal complexes containing a hetero-7T-allyl system has attracted sporadic attention. The information for nickel is, however, sparse.

The earliest reported complex of this type (R2NCNNiCO)n was later shown to be in reality a trimer containing a 7r-bonded R2N—C=N group (see Chapter II, Fig. II-3). The methylenebisdiphenylphosphine anion (66) has some similarity with the allyl anion and a complex (67) containing this system has been obtained by reacting the lithium salt with nickel bromide. The compound is dimeric and diamagnetic but no further details have been published (83). 2NiBr2 4- 2Li[(C6H5)2PCHP(C6H5)2]

66

+ [(C6H5)2PCHP(C6H5)2NiBr]2 + 2LiBr

67

The B3H72 anion is isoelectronic with the ττ-allyl anion and an unstable

complex, probably best formulated as B3H7Nidiphos, has been isolated by

Page 45: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

IX. π-Cyclopropenyïnickel Complexes 373

reacting diphosNiX2 with this anion. By analogy with the stable platinum complex [(CH3)2PC6H5]2PtB3H7, for which an x-ray structural determination has been carried out, it seems probable that here the borane is functioning as a true hetero-7r-allyl group (201).

The complex (CH2 : CH2)Ni[CH2 : CHB C2H5(CH2)3P(^cfo-C6H11)2] should also be mentioned: an x-ray determination has shown that the Ni—B distance is only 2.5 Â and it is therefore possible that this complex also con-tains a hetero-7r-allyl group (see Chapter V, Fig. V-9).

IX. 7r-Cyclopropenylnickel Complexes (Table VI-7)

The cyclopropenyl cation is the simplest aromatic system by the Hiickel definition. It differs from the π-allyl group in that the nonbonding orbital (φ2) in the former is antibonding in the cyclopropenyl group and hence back bonding from the metal to the organic ligand might be expected to be of even less significance. The analogy with the 7r-allyl group is shown clearly by the types of complex which have been isolated: viz., (7r-C3R3NiX)2, 7T-C3R3NiX(Lig), 7T-C3R3NiX(Lig)2, and 7r-C3R3NÍ7r-C5H5. As yet no bis-77--cyclopropenyl nickel complex, (TT-C3R3)2NÍ, has been reported.

CRHK

¿ 1.97 (7) 1.41 ( \ ) / \ 1.43 (1)

S 1.46(1) H 5 C e C 1 C C6H5

1.96 (i) 1.42(1) 1-90(1)

Fig.VI-18. Structure of [7r-(C6H5)3C3NiCl(py)2]py (178,179). a = 16.570; b = 10.538; c = 22.485; β = 129.14; Z = 4 ; space group P2x\c\ R = 9.7%.

(77-C3(C6H5)3NiBr)2 and 7r-C3(C6H5)3NiX(CO), X = Cl, Br, are prepared by reacting the appropriate cyclopropenyl halide with bis(cyclooctadiene) nickel or nickel tetracarbonyl (21, 177).

2(C6H5)3C3Br + 2Ni(COD)2 ► (7r-C3(C6H5)3NiBr)2 + 4COD

(C6H5)3C3Br + Ni(CO)4 ► 7r-C3(C6H5)3NiBr(CO) + 3CO 68

Page 46: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

374 VI. π-Allyl Nickel Complexes

The carbonyl complex 68 reacts with excess pyridine to form a bispyridine adduct 69 which on reaction with cyclopentadienylthallium is converted to the 7r-cyclopentadienyl complex (178-181).

—► 2^C3(CeH5)3NÍ7r-C5H5 + TlBr3 + 2py 27r-C3(C6H5)3NiBr(py)2 + T1C5H5

69

The carbonyl complex 68 reacts with the [7,9-B9H9CHPCH3] " ion to produce a phosphocarboUide nickel complex suggested to have structure 70 (146).

CeHö

H5Ce—C | C—C6H5

A relatively long living Ni(C3H3)+ fragment is observed in the mass spectrum of nickelocene as well as the bimetallic fragment Ni2[(7r-C5H5)2-C3H3

+] in which the cyclopropenyl group may be sandwiched between two (7T-C5H5)Ni groups (182).

2.14 (1)

2.10 (1)C ç^> P2J3U)

^ ! / C—!—C 2.08(2) j 2.13(2)

I I

Ni

■ W ^ g 1.43 0) ^ > H5Ce"

Fig. VI-19. Structure of 7r-C3(C6H5)3Ni-7r-C5H5 (180, 181). a = 21.003; b = 12.360; c = 7.496; Z = 4; space group Pna2x; R = 5.670.

Page 47: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

IX. π-Cyclopropenylnickel Complexes 375

ES 3

«3 c¿ r-

Ϊ^

os ^ ^ 00

£ er — oo

vo vo ON

VO ON. i—1

VO VO ON ON 1-H 1—1

c4

U

3 J. S3 υ

¿

I I t

υ tu u

ö ö S £ <Ν

_ ON

m tí O >

SP^ — q ·° Ό S C l ? CiT3 * Ö * * s

I o

»H S- ' '

as z„z Ü C0

/—s ep

Bu

^ a X iff υ υ v 2 % g υ υ υ

IO 10 IO

CD CD CO

υ u u v ^ S-/ v«^

è è i

B PH

8 05

X 0»

PP

CO

u CO IO

X ΰ τ

m Ζ

CO 03

¡S

J

8

(S3 έ J 'Z„ % « cJtfO

CO CO «

ffi ffi X u u υ ¿ Λ ¿

λ» λ.

^ ^ ^) •*mS *w' ^*' έ i έ

α 8

Î CO

Page 48: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

376 VI. π-Allyl Nickel Complexes

ro Tt· Tf <Λ

S c oo

o .2 u

00 . 2 ,, g -ï g Ä

1 - a * ¿Il C/3 «

u . a c E Z

ac ac

z z

xac acá

z 7

I 5

ïg l f £ 2 I O

3 3 00 ¿ j .

ac υ ac υ

υ

S S S

Ύ o

I & ? o τ ε ac"gac S l a a 3 x ¡£iiac υ &υ è st

I I δ

BBS £ £ £ o o u U U î=S

z z z u u u ac s x υ υ υ ac ac ac u υ υ έ έ è

^ 1 J G

O £ •O ti &S

ι£ fe ffi z ac υ ac υ ac υ

oo t^

Ό 1 0

^ ^ ^ Λ

isi? 1 i <u —

? c » > O % O) Q, =3 2 = 8 > ^ f f l O Û

V ac ?~u ac ^ £ ^ * 3 « Ο ϋ ϊ ς fefe^ac ac ac a c y z z z ^ ac ac ac S ac ac ac g u u u 4 ac ac ac g

e ÍN

+ Λ

Ö 3

ω ω Z. 3

S g 0

ac u

ac u 0

fe ac u z ac u ac u ac u

#G

«n TÍ·

1

Λ 3 £ J2

Ö !£, 43 (U « 73

fi

3 ac u 0

£ x u z ac υ ac u ac u

$ + Λ

3 ï J= 0

? έ Ä ,Ο « "ω

><

§ ac u fe ac u z ac u ac u ac u

_c 0

^ + S Λ N Ό c w

3 * "" 0 5=5

><

Hs ac u £ ac u z ac u ac υ ac u

c 0

1

Λ *o

Ö j>

» 3 PH

N

"T$ ac u £ ac u z ac u ac υ ac u

<n

+ A

3 O ω

=3 3

~*8 ö g J8 I ε βτ3

•2 "" S

ac ( J ^m

! 1 £ < ac ac u u z z ac ac υ υ ac ac υ υ ac ac υ υ

Page 49: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

7r-C

H2C

HC

H2N

iC2H

5 [P

(C6H

5)3]

w-C

HaC

HC

HaN

ic^

c/o-

QH

s

n-C

H2C

HC

H2N

icyc

lo-C

3H5[

P(C

eH5)

3]

(7r-

CH

2CH

CH

2NiC

6H5)

3

7r-C

H2C

HC

H2N

iC6H

5 [P

(C6H

5)3]

77-C

H2C

HC

H2N

imes

ityl

(TT

-CH

2CH

CH

2NÍC

1) 2

7r-C

H2C

HC

H2N

iCl[

P(O

CeH

4-o-

CeH

5)3]

7r

-CH

2CH

CH

2NiC

l[P

(C6H

5)3]

(7

r-C

H2C

HC

H2N

iBr)

2

Yel

low

och

re (

d >

- 60

in

eth

er)

Dee

p vi

olet

(d

> —

90

in

ethe

r)

Yel

low

och

re (

d >

- 60

in

ethe

r)

Dee

p bl

ue (

d >

-45

in

5.26

7.

65

ethe

r)

Bro

wn

(d >

+ 6

5 in

be

nzen

e)

Dar

k re

d (d

>-2

5)

5.30

7.

32

Red

(83

d)

Yel

low

O

rang

e (1

40-1

50d

) R

ed b

row

n (9

3-95

d)

5.7(

tt)

7.7(

d)

7T-C

H2C

HC

H2N

iBr[

P(O

CeH

5)3]

7T-C

H2C

HC

H2N

iBr[

P(O

CeH

5)3]

2

7r-C

H2C

HC

H2N

iBr[

P(C

6H5)

3]

ir-C

H2C

HC

H2N

iBr[

P(C

eHB) 3

] 2

7T-C

H2C

HC

H2N

iBr(

CO

) [P

(CeH

5)3]

(4

5 X

=

Br)

i7

-CH

2CH

CH

2NiB

r[P

(CH

3)3]

ir

-CH

2CH

CH

2NiB

r[P

(C2H

5)3]

7r

-CH

2CH

CH

2NiB

r[P

(C2H

5)3]

2

7r-C

HaC

HC

H2N

iBr[

P(C

4H9)

3]

w-C

H2C

HC

H2N

iBr[

P(c

>'c

/o-C

eH11

) 3

7T-C

H2C

HC

H2N

iBr(

NH

3)

7T-C

H2C

HC

H2N

iBr(

NH

3)2

7r-C

H2C

HC

H2N

iBr[

HN

(C2H

5)2]

7r

-CH

2CH

CH

2NiB

r[H

N(C

2H5)

2]2

5.50

(m)

6.50

(d)

Yel

low

R

ed (

140-

142)

Red

Bri

ck r

ed

Red

bro

wn

Red

bro

wn

Yel

low

-bro

wn

Red

Y

ello

w b

row

n B

row

n Y

ello

w

Ora

nge

Yel

low

(-4

0d

)

5.7(

m)

5.10

(tt)

5.1(

m)

- 5.05

5.

1 5.

08

(qui

n)

5.0

6.42

(d)

6.71

(d)

6.62

(d)

6.48

(d)

6.71

6.

7 5.7

1.82

(o-

H)

(c)

2.82

(m

, p-

H)

8.47

8.

93 (

/>-C

H3)

(c

) 9.

70 (

o-C

H3)

8.8(

d)

J 12

7.0,

/ 1

4 13

.3

(b)

(d)

(b)

(d)

(e)

(b)

(b)

6.82

(d)

/9.8

(e

)

(b)

7.94

(d)

7.46

(d)

7.65

(d)

7.04

(d)

7.32

(d)

7.75

7.

8

/i2

7.5,

Ju

14

.0

Ji2

7, /

14

14

/is

7.5,

/ 1

4 14

.0

J 12

6.5,

/ 1

4 13

.5

Ji2

7, /

14

14

Λ41

4

/9.8

v c_ c

1462

v c_ c

1455

μ

= 1.

31

DB

v co2

057

v c_c

l500

vc-

c15

00

v c_c

l495

v

c_cl

49

5-

1490

12

12

12

12

12

12

9, 2

0, 2

1,

195

22

23

20,

21,

24,2

5,

64,

85,

99,

195

26

,27

27

12,

14,

26-2

9,

203

26

,27

26,

32,

33

26

26

,27

26,

27

28,

203

26

5 5 5 5

R =?

■r

<§ s*

g 9 s *§

Sí- fc

Co

Page 50: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

Com

plex

7r-C

H2C

HC

H2N

iBr[

N(C

2H5)

3]

7r-C

H2C

HC

H2N

iBr[

mor

phol

ine]

2 7T

-CH

2CH

CH

2NiB

rdip

y 7r

-CH

2CH

CH

2NiB

r 2[P

2(C

eH5)

4]

ir-C

H2C

HC

H2N

iBr(

py) 2

7r

-CH

2CH

CH

2NiB

r(D

MSO

) 2

7r-C

H2C

HC

H2)

NiB

r(bi

cycl

ohep

tene

)(46

) (7

T-C

H2C

HC

H2N

iI) 2

ir-C

H2C

HC

H2N

iI[P

(OC

6H4-

o-C

6H5)

3]

ír-C

H2C

HC

H2N

Ü[P

(C6H

5)3]

7r

-CH

2CH

CH

2NiI

(CO

)[P(

C6H

5)3

7r-C

H2C

HC

H2N

iI[P

(C4H

9)3]

2 7r

-CH

2CH

CH

2NiI

(CO

)[P(

C4H

e)3]

*-

CH

2CH

CH

2NiI

[Pfo

>c/o

-CeH

11) 3

] 7T

-CH

2CH

CH

2NiC

N

7r-C

H2C

HC

H2N

iCN

[P(

C2H

5)3]

2

(*-C

H2C

HC

H2N

iOC

H3)

2

7T-C

H2C

HC

H2N

iOC

H3[

P(C

eH5)

3]

(7T-

CH

2CH

CH

2NiO

C2H

5)2

ír-C

HaC

HC

HaN

iOQ

Hst

PÍC

eHs)

^

7r-C

H2C

HC

H2N

iOC

H(C

6H5)

-C

H2C

H:C

H2

(29)

ir

-CH

2CH

CH

2NiO

-/er

/-C

4H9

ír-C

H2C

HC

H2N

iO-/

er/-

C4H

9[P(

C6H

5)3]

(^

CH

2CH

CH

2NiO

C6H

5)2

^CH

2CH

CH

2NiO

CeH

5[P(

C6H

5)3]

(i

r-C

H2C

HC

H2N

iOC

OC

H3)

2 (T

T-C

H2C

HC

H2N

ÍOC

OC

H2C

1) 2

(T

T-C

H2C

HC

H2N

ÍOC

OC

HC

12)

2

(7r-

CH

2CH

CH

2NiO

(CO

CC

l 3) 2

Col

or (

mp)

Red

bro

wn

Pale

yel

low

Y

ello

w

Red

(llO

d)

Dar

k re

d B

rick

red

Red

D

arkr

ed(1

18-1

20d)

Red

bro

wn

Red

bro

wn

Ora

nge

red

Ora

nge

Red

bro

wn

Yel

low

O

rang

e (2

5-30

)

Ora

nge

yello

w

Red

bro

wn

Pale

yel

low

Dar

k br

own

Dar

k re

d

Red

Bric

k re

d Pa

le b

row

n R

ed b

row

n O

rang

e br

own

Ora

nge

brow

n O

rang

e br

own

Ora

nge

brow

n

τχα

4.80

5.03

5.26

(qui

n)

4.45

(tt)

4.44

(tt)

4.98

4.38

(tt)

5.12

4.

96(t

t) 5.

55

TAB

LE V

I-8

(con

tinue

d)

r 2a

τ 3α

τ 4α

7.10

6.07

(d)

7.36

(d)

7.77

(d)

7.89

(d)

7.98

6.79

(d)

6.62

8.

18(d

) 8.

52

τ5α

8.14

6.72

(d)

8.43

(d)

8.59

(d)

8.68

7.87

(d)

7.43

8.

80

8.73

/(H

z)

Λ2

6.5,

/ 1

4 13

.0

Jl2,

Jn

13

/9.8

Ji2

7, /

i 4 1

3

/x2

7.5,

A

* 14

Ji2

7, Λ

4 13

Oth

er a

bs.

(τ)

6.85

(O

CH

3)

6.96

(O

CH

2)

8.81

(C

H3)

6.

97 (

OC

H2)

8.

83 (

CH

3)

8.68

, 8.

80

(ter

/-C

4H9)

8.

81 (

ter/

-C4H

9)

2.87

(C

6H5)

2.

9 (C

6H5)

Solv

.1

(d)

(g)

(b)

(g)

(g)

(b)

(g)

(b)

(b)

(b)

5 Tem

p

-20

-20

-20

Mis

c.

v c_c

l590

(?

)

v c_ c

1490

v c_ c

1485

*c-c

l449

Ref.

26

13

26

30

5 26

21

20,

21,

M=

1.6

2D

31

,64

v co2

043

v co2

040

v c_ c

1460

spec

trum

te

mp,

de

p.

veo1

560

veo1

595

veo1

620

veo 1

650

21

14,2

1 32

, 33

14

32,

33

21

26

26,

27

12

12

12

12

97

12

12

12

12

34,

35

34,

35

34,

35

34,

35

00 3 3 Φ

<■"**

sr

<*>

9 Ü

^3 1

Page 51: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

(Tr-

CH

aCH

CH

aNiO

CO

CFí

Oa

7r-C

H2C

HC

H2N

iaca

c

^-C

H2C

HC

H2N

iN(C

6H5)

2]2

[ÍT

-CH

2C

HC

H2N

ÍN(C

H3

)C6H

5]2

(77.

CH

2CH

CH

2NiN

CH

2CH

2)2

(77-

CH

2CH

CH

2NiC

l) 2Ti

Cl4

7r

-CH

2CH

CH

2Ni[S

C(N

H2)

2]2C

l

7r-C

H2C

HC

H2N

i[SC

(NH

-¿K

>-C

3H7)

2]2C

l 7r

-CH

2CH

CH

2Ni[

SC(N

H2)

2]2B

r 7r

-CH

2CH

CH

2Ni[S

C(N

(CH

3)2)

2]2B

r 7r

-CH

2CH

CH

2Ni [

SC(N

H2)

2]2I

7r

-CH

2CH

CH

2Ni-

ethy

lene

thio

urea

I

[rr-

CH

2CH

CH

2NiC

eH6]

[AlB

r4]

(39)

[7

7-C

H2C

HC

H2N

iC6H

6][A

l 2B

r 7]

[7r-

CH

2CH

CH

2NiC

6(C

H3)

6] [ A

l 2B

r 7]

[7r-

CH

2CH

CH

2Ni(

CO

) 2][

AlB

r 4]

(42)

[7

r-C

H2C

HC

H2N

i-l,5

-CO

D][

AlB

r 4](

43)

[ w-C

H2C

HC

H2N

i · C

OT]

[AlB

r 4]

{CH

2CH

CH

2N¡[

P(C

2H5)

3]3}

[AlB

r 4](

44)

ir-C

HaC

HC

HaN

iClA

lCl a

CH

3-[P

Cc <

yc/o

-CeH

11) 3]

{n

-CH

zCH

CH

zNiC

OlP

icyc

lo-C

eHu^

]}-

[AlB

r 4]

Ora

nge

b ro

wn

Dar

k br

own

Red

Red

(88

-89)

Yel

low

bro

wn

Ora

nge

(115

d)

Vio

let

Red

ora

nge

Red

ora

nge

Red

ora

nge

Red

ora

nge

(115

d)

Red

R

ed

Red

Y

ello

w

Yel

low

Y

ello

w b

row

n R

ed o

il O

rang

e

Pale

yel

low

4.42

(m)

4.78

5.13

(m)

4.96

(tt)

7.43

7.28

(d) 7.92

8.

00

8.06

(d)

8.52

8.

63

(a)

/i2

7,/

14

13

8.21

(C

H3)

(b

) 4.

72 (

s, a

cac-

H)

J 12

~5.5

, 2.

0-2.

8 (C

6H5)

/i

4 ~1

3.0

8.48

(m)

2.85

(C

6H5)

6.5

0, (

b)

6.66

, 6.9

2, 7

.02

7.35

, 7.3

8 (N

—C

H3)

v co1

670

isom

ers

in s

oin

(?)

eis

and

tran

s is

omer

s

34, 3

5,

213

5 5

mix

ture

of

13

isom

ers

vc-c

l490

v c_ c

1490

v co2

080

5 19

36-3

8,

44

36,4

4 36

,44

36,4

4 36

,44

36,4

4 86

86

86

26

26

26

26

11

3

26

See

foot

note

Tab

le V

I-14

. N

i /

\ Li

g X

"

Solv

ent:

see

foot

note

Tab

le V

I-14

. c S

ee a

lso

Tabl

e V

I-6.

Page 52: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

TA

BL

E

VI-

9

TT

-CH

2C(R

')C

H2

NIC

KE

L C

OM

PLEX

ES

Com

plex

C

olor

(m

p)

T3°

/(

Hz)

O

ther

abs

. (τ)

So

lv.b T

emp.

M

isc.

R

ef.

[7r-

CH

2C(C

H3)

CH

2]2N

i

[7r-

CH

2C(C

H3)

CH

2]2N

iP(C

2Hs)

3 77

-CH

2C(C

H3)

CH

2NiC

H3

7T-C

H2C

(CH

3)C

H2N

iCH

3[P(

C6H

5)3]

[ w-C

H2C

(CH

3)C

H2N

iCl]

2

w-C

H2a

CH

3)C

H2N

iCl[

P(C

eH5)

3]

[7T-

CH

2C(C

H3)

CH

2NiB

r]2

7T-C

H2C

(CH

3)C

H2N

iBr(

CO

)

7T-C

H2C

(CH

3)C

H2N

iBr[

P(C

eH5)

3]

îr-C

H2C

(CH

3)C

H2N

iBr[

CN

-/e/

7-C

4H9]

77

-CH

2C(C

H3)

CH

2NiB

r(C

O) [

P(C

6H5)

3]

Ora

nge

7T-C

H2C

(CH

3)C

H2N

iBr(

diph

os)

Dar

k re

d 7r

-CH

2C(C

H3)

CH

2NiI

(CO

)[P(

CeH

5)3]

O

rang

e 7r

-CH

2C(C

H3)

CH

2NiC

l(bi

cycl

ohep

tene

) (5

2)

Red

7r

-CH

2C(C

H3)

CH

2Ni[

SC(N

H2)

2]2B

r O

rang

e br

own

77-C

H2C

(CH

3)C

H2N

i[S 2

CN

(CH

3)2]

Y

ello

w b

row

n

Yel

low

(31

)

Red

bro

wn

Vio

let

(d >

-7

8 in

Y

ello

w (

d> -

10

in

d-to

luen

e)

Red

bro

wn

(118

d)

Ora

nge

Bro

wn

ethe

r)

8.36

(s)

8.61

(s)

8.39

(s)

8.34

(s)

8.40

8.

52

8.00

(s)

8.27

(s)

6.34

(s)

6.49

(s)

7.39

(s)

7.32

7.

49

~

7.63

6.

35

6.82

(s)

6.60

(s)

8.21

(s)

7.81

(s)

7.70

(s)

7.9

8.06

8.63

7.

65

7.50

(s)

7.70

(s)

Î.18(

s)

7.02

(s)

7.30

8.09

(s)

11.7

7 (N

i—C

H3)

2.

1-3.

0 (C

6H5)

9.

77 (

Ni—

CH

3)

7.3-

8.0

(C6H

5)

9.03

(te

/7-C

4H9)

7.44

(s,

N-C

H3)

(c)

(c)

(0

(a)

(g)

(a)

(d)

(a)

-70

-75

-30

tran

s is

omer

ei

s is

omer

v c

_cl4

80

vc—

cl 46

6

v co2

083,

20

49

v co2

027

*co2

029

1,5,

8-10

, 12

, 21

, 39

-41,

47

39

12

12

20,

21,

39

23

10,4

5 45

194

194

32

42,4

3 32

98

36

,44

194

Page 53: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

[7r-

CH

2C(C

H3)

CH

2NiO

CO

CF

3]2

Ora

nge

brow

n 8.

00

ir-C

H2C

(CH

3)C

H2N

iaca

c Y

ello

w g

reen

7.

88(s

) 7.

47

7.44

(s)

W-C

H2C

[C(:

CH

2)C

H2C

(CH

2)2]

CH

2

NiP

(OC

eH4-

o-C

eH8)

3

(22,

R =

O

CeH

4-o-

CeH

5)

7T-C

H2C

[C(:

CH

2)C

H2C

(CH

2)2]

CH

2 N

iP(C

eH5)

3 (2

2 =

CeH

5)

W-C

H2C

[C(:

CH

2)C

HaC

(CH

2)2]

CH

2

NiP

ic.y

c/o-

CeH

iOa

(22,

R =

cy

clo-

CeH

u)

7T-C

H2C

[C(C

: C

H2)

2CH

2C(C

H2)

2]-

CH

2Ni

(5)

Yel

low

Ora

nge

red

(97-

98)

Ora

nge

7.56

(s

, C

H2)

7.

05(s

, C

H2)

7.

05(s

, C

H2)

7.

51(s

)

7.40

(s)

7.63

(s)

6.7(

s)

6.84

(s)

6.90

(s)

7.05

(s)

7.29

(8)

ir-C

H2C

[C(C

: C

H2)

2CH

2C(C

H2)

2]C

H2-

NiP

(CeH

5)3

(23,

R =

C

6H5)

7r

-CH

2C[7

r-C

(CH

2)C

H2]

CH

2NiC

l · P

dCl

[7r-

CH

2C(C

0 2C

2H5)

CH

2]2N

i [7

T-C

H2C

(C0 2

C2H

5)C

H2N

iBr]

2

[7T

-CH

2C(C

H2I

)CH

2NiI

] 2

Ora

nge

yell

ow

6.23

(s)

6.40

(s)

5.74

(s)

See

foot

not

e T

able

VI-

14.

Ñi

/ \

Lig

X

" S

olve

nt:

see

foo

tnot

e b

Tab

le V

I-14

.

.17

.08(

s)

.60(

d)

.64(

d)

.15(

d)

.25(

d)

13(d

)

.50(

e)

ΛΡ

10.4

, Λ

-Ρ 9

.7

ΛΡ 8

.4,

Λ'ρ

9.2

Λ

Ρ 9

ΛΡ

. 10

(a)

8.23

(s,

aca

c-C

H3)

(a)

4.77

(s,

aca

c-H

) 5.

3, 5

.6(:

CH

2)

(b)

4.9,

5.2

5 (:

CH

2)

(b)

2.3,

2.9

(C

eH5)

4.

84,

5.2

6(:

CH

2)(

b)

4.6

8(m

:CH

2)

(k)

5.30

(d,

J =

2,

:C

H2)

5.

38 (

:CH

2)

(b)

4.69

(:C

H2)

8.34

(s)

6.03

(q

CH

2)

(a)

9.05

(t,

CH

3)

7.26

(s)

(m)

213

193

22,

71,

82

73

,74

71

,72

186

186

70

10,

194

46,

193

193

R 3 1 s ri

••"•M

κ§

^3 "t

·§

S <3 &-

g r?'

?*-

f*

♦***

9 s *s

^"

•1

F %

tb

Co

oo

Page 54: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

TA

BL

E

VI-

10

w-R

CH

CH

CH

2Ni

Com

plex

es

Com

plex

C

olor

(m

p)

y (H

z)

Oth

er a

bs. (

τ)

Solv

." T

emp.

M

isc.

R

ef.

Or-

CH

3CH

CH

CH

2)2N

i (1

4-17

)

( w-C

H3C

HC

HC

H2)

2NiP

(C2H

5)3

(TT

-CH

3CH

CH

CH

2NÍC

H3)

2

*-C

H3C

HC

HC

H2N

iCH

3AlC

H3

7T-C

H3C

HC

HC

H2N

iCH

3MgC

l(C

H3)

· 0(

C2H

5)2

TT

-CH

3CH

CH

CH

2NÍ-

CH

3[P(

OC

eH4-

o-C

eH5)

3]

7r-C

H3C

HC

HC

H2N

iCH

3 [P

(cyc

lo-

CeH

xOa]

7r-C

H3C

HC

HC

H2N

i-C

H2C

H:

CH

CH

3[P(

C2H

5)3]

Yel

low

(-5

)

Ora

nge

red

liq.

Red

(d

>-3

0 in

tol

uene

) 5.

18(d

t) 9.

06(d

)

Mix

ture

of

isom

ers;

see

ref

. 39

, 47

7.29

(d)

7.08

(dq)

7.

77(d

) (c

)

Ora

nge

Yel

low

5.80

(dt)

9.53

(d)

5.25

(dt)

8.56

(d)

(c)

Bei

ge (

d >

30 in

ben

zene

) 6.

27(d

t) 8.

91(d

d)

Ora

nge

(d >

70

in t

olue

ne)

5.37

(dt)

8.42

(dd)

7.

33(d

) 7.

15(d

q) —

Ora

nge

red

liq.

11.1

1, 1

1.56

(N

i—C

H3)

11

.33

(Ni—

CH

3)

11.4

5, 1

1.99

(N

i-C

H3)

11.7

1 (N

i-C

H3)

7.68

(d)

7.8(

mj

8.30

(d)

/ 14

10.1

2, 1

0.28

(=

/ 15)

13,

(Ni—

CH

3)

/i3

7,

10.3

2, 1

0.61

/ 2

4 6.

0 (A

l—C

H3)

7.

27(d

) 7.

45(d

q) 8

.32(

d)

/ 14(=

/ 15)

13,9

.83

(Ni—

CH

3)

(c)

/i3

7,

10.0

6 (M

gCH

3)

/ 24

6.0

6.46

, 9.

14

(C2H

5)

7.88

(d)

7.8(

dq)

9.54

(d)

/i«(

=/ 1

B)

13,1

1.06

(c

) •M

.3 7,

/2

4 6,

(d

, N

i—C

H3)

y 2

P 9.

0,

2.8

(m,

CeH

5)

•/PN

1CH

3 8

.0

/ 14

10.2

5 (d

, N

iCH

3) (

c)

(=/ 1

5)

13,

7.9-

9.0(

C6H

11)

Ji3

6, y

24 6

, Λ

Ρ 4.

5,

•PN

ICH

3 5.

5

v c_c

l505

5,

8,

21,

39,4

7 39

18

39

Page 55: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

(TT

-CH

3CH

CH

CH

2NÍC

1) 2

(7r-

CH

3CH

CH

CH

2NiB

r)a

(7T

-CH

3CH

CH

CH

2NiI

) 2

( w-C

H3C

HC

HC

H2N

iNC

S) 2

7r-C

H3C

HC

HC

H2N

iNC

S[P

(CeH

5)3]

(7

T-C

H3C

HC

HC

H2N

iOC

OC

F3)

2

77-C

H3C

HC

HC

H2N

i [P

(OC

H3)

3]2P

Fe

Red

(83

d)

5.25

(dt)

9.

53(d

) 7.

38(d

) 7.

48(d

q) 8

.48(

d)

/ 14

(=/ 1

6)

12.5

, 7i

3 6.

5 y 2

4 6.

5,

/ 35

~1

8 13c

48

.0(0

), 1

06

.9(0

), 7

0.0

(0),

16.

8(C

*Hz)

/ c

i H 1

59,

7 C2 H

163

/C

3 H 1

61,

7C4H

12

4

Red

(99

d)

5.34

(dt)

9.

38(d

) 7.

37(d

) 7.

40(d

q) 8

.58(

d)

/ 14

(=Λ

5)

13,

δΐ3 0

49

.6(0

), 1

05

.6(0

), 7

1.2

(0),

18.

0(O

Hz)

/ c

i H 1

61,

/ C2 H

165

Jc

*a 1

61,

/ C*

H

124

5.40

(dt)

8.

93(d

) 7.

14(d

) 7.

44(d

q) 8

.57(

d)

/ 14

(=/«

) 13

.0,

/i3

6.8

/ 24

6.5,

/ 2

3~

1.5

8 1

3c 5

2.4

(0),

10

5.5

(0),

76

.3(0

), 1

9.6(

OH

z)

/ ci H

162

, / C

2 H 1

61,

y c3 H

161

Pal

e br

own

Dar

k br

own

Ora

nge

brow

n Y

ello

w o

rang

e (4

3-44

)

5.50

9.

50

5.04

9.

74

4.63

(dt)

8.

25(d

)

7.30

7.

60

7.50

7.

22

5.78

(dd)

8.60

8.38

7.

32(d

d) /

14

6.20

(s,

OC

H3)

(=

Λβ

) 14

, Λ

3 7.

5 / 2

4 6,

JJS

2.5

(a)

(c)

(c)

(c)

(a)

(c)

(a)

(g)

v c_c

l435

rel.

to

hexa

-m

ethy

l-di

silo

x-an

e v c

_cl4

60

Rel

. to

he

xa-

met

hyl-

disi

lox-

ane

v c_c

l445

rel.

to

hexa

-m

ethy

l-di

silo

x-an

e ΙΌ

Ν2

13

0,

20,

21,

39

,50

-5

2,9

0

202

8, 1

8, 2

0

202

52,

54,

66

,67

202

53

vc_c

l450

»>

CN

2100

53

21

3 an

ti-i

som

er 5

5 T C

H3

8.82

(d)

J =

6

Page 56: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

TA

BL

E

VM

O (

con

tin

ued

)

Com

ple

x C

olor

(m

p)

Τ2β

/(H

z)

Oth

er a

bs.

(τ)

S

olv.

" T

emp

. M

isc.

w-C

H3C

HC

HC

H2N

i[P

(OC

H3)

3]3H

S04

fl/i

//-7

r-C

H3C

HC

HC

H2N

i[P

(OC

H3)

3]3H

S04

7r-C

H3C

HC

HC

H2N

i[P

(OC

2H5)

3]2P

F6

Yel

low

-ora

nge

(63

-65)

w-C

H3C

HC

HC

H2N

i[P

(OC

2H5)

3]3P

Fe

Red

ora

nge

(>

25)

7r-C

H3C

HC

HC

H2N

i[P

(OC

2H5)

3]3H

S04

anti

-7r-

CH

3CH

CH

CH

2Ni-

[P(O

C2H

5)3]

3HS

04

7r-C

H3C

HC

HC

H2[

SC

(NH

2)2]

2Cl

[TT

-CH

3CH

CH

CH

2NÍ(

CN

) 2]+

(*-C

H3C

HC

HC

H2)

2Ni-

/>-c

hlo

ran

il

(7r.

CH

3CH

CH

CH

2)2N

i-m

onoc

hlo

r-p

-b

enzo

qu

inon

e 0r

-CH

3CH

CH

CH

2NiC

l)2-

/7-c

hlo

ran

il

(7T

-CH

3CH

CH

CH

2NiC

l)2-

mon

och

lor-

p-

ben

zoq

uin

one

a«//

-77-

CH

2CH

CH

(CH

2)2C

H :

CH

(CH

2)2-

CH

CH

CH

2Ni

(18,

19)

77

-CH

2CH

CH

[(C

H2)

2CH

: C

H] 2

-C

HC

eHsO

Ni

(30)

T

T-C

H2C

HC

H(C

H2)

2CH

: C

HC

H2N

iP-

(QT

/o-C

eHu

^

(^C

8H1

2)N

iP(O

CeH

4-o

-CeH

5)3

(TT

-CH

2CH

CH

CH

2—) 2

{NiB

r[P

(C6H

5)3]

} 2

(49)

Lig

ht

bro

wn

Bro

wn

B

row

n

Bro

wn

Bro

wn

Ora

nge

red

(+

1)

Bro

wn

Yel

low

Yel

low

B

row

n y

ello

w

4.87

(dt)

4.91

(t)

4.8(

m)

5.79

(dt)

4.82

(dt)

8.

25(d

)

4.80

(m)

4.71

(dt)

8.

25(d

)

4.86

(dt)

8.

40(d

)

8.51

(d)

8.6(

d)

6.08

(dq

) 7.

68(d

) / 1

4 (=

Λ5)

6.30

(O

CH

3)

12

,/1

37

, / 2

4 6.

5 —

8.

95(d

) 6.

95(d

) / 1

5 12

, / 2

4 6.

5 —

6.

24(d

q)

7.36

(d)

/ 14

(=Λ

5)

5.96

, 8.

70

14,

J 13

7.5,

(O

C2H

5)

y 24

6, /

34

2 —

6.

28(d

q)

7.59

(d)

/ 14

(=Λ

5)

5.97

, 8.

71

12.5

, J i

a 7,

(O

C2H

5)

/ 24

6.5,

/

35

~2

6.69

(d)

5.70

(dq

) 7.

75(d

) / 1

4 (=

Λ5)

5.98

, 8,

73

11

.5,/

24

(OC

2H6)

6.

5, /

13

6.5

6.64

(d)

8.91

(d)

7.01

(d)

/ 15

12,

/l3

( = /l

2)

6,

7.3(

d)

6.4(

m)

7.3(

d)

/ 247

/l5H

,/2

4 7

Mix

ture

of

two

isom

ers,

see

pag

e 34

2

7.40

(d)

/i4(/

i 5)1

2,

3.80

(:C

H)

Λ37

.5

4.86

(:

CH

)

(f)

7!

(f)

(g)

(g)

(f)

50

(f)

0)

(b)

55

,56

55

,56

55

anti

iso

mer

55

8.94

(

/=6

)

v co1

410

v co1

470

55,

56

36

,44

105,

10

6 4

8,4

9 4

8,4

9

v co1

420

48

,49

, 58

, 13

1 v c

o147

0 4

8,4

9 58

v

c_cl

48

5 4,

59,

60,

88

97

61

,62

47

188,

18

9

Page 57: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

IX. π-Cyclopropenylnickel Complexes 385

S*SS.S * 8 Ι™ 8 , 5 OO" OS fS fS fN SO

IS 5 - S 5 - S 3 l ; g ï t-»' 00*

«S35[i

?3 ΐ55

se υ

* §

s

2 •5* o U •â* .2· o

«E Is 33 IS

υ υ 5* δδ SS

¿

κ ϋ "3 κ υ κ υ 33 υ

15^ %*

£33 *V

33 ϋ

33 υ at υ 33 υ χ£ υ υ

g atz

ffi 33 U

09

33 U

33 υ 33 υ

33 U

33 υ

33 g

a 33

£a u u

33 U 33 U

ai u

33 U

8 8 8

e

33 U 33 U

33 U

33 U

33 U Ä33 U J

33 «

33 u B II δΙΒδ S J B B

Λ ü ■o·?

32SS2S5S i

33

33 g •£33

Π 33

33 33 U U 33 33 U U XX υ u

5 1 33 33 U U 33 X Ü U 33 33 υ υ 33 33 U U XX u u

33 h? « z

BJÎBë K.B.£8

Page 58: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

TAB

LE V

I-11

7T

-R2 C

HC

HC

HR

3 NIC

KE

L C

OM

PLEX

ES

Com

plex

C

olor

(m

p)

/ (H

z)

Oth

er a

bs. (

τ)

Solv

." T

emp.

M

isc.

R

ef.

(77-

CH

3CH

CH

CH

CH

3NiC

H3)

2

7r-C

H3C

HC

HC

HC

H3N

iCH

3 [ A

1(C

H3)

3]

^CH

3CH

CH

CH

CH

3NiC

H3[

P(O

C6H

5)3]

7r-C

H3C

HC

HC

HC

H3N

i-C

H3[

P(C

eH4-

o-C

6H5)

2C6H

5]

a/ií

/,5^

- w-C

H3C

HC

HC

HC

H3N

iCH

3 [P

(C6H

4-o-

C6H

5)2C

eH5]

^CH

3CH

CH

CH

CH

3NiC

H3[

P(C

6H5)

]3

7r-C

H3C

HC

HC

HC

H3N

i-C

H3[

P(C

6H5)

2CH

2CeH

5]

a/i/Z

.^/i-

TT-C

HaC

HC

HC

HC

HaN

i-C

H3[

P(C

6H5)

2CH

2C6H

5]

^CH

3CH

CH

CH

CH

3Ni-

CH

3[P(

CeH

5)2C

H3]

a/i//

,jj7i

-7r-

CH

3CH

CH

CH

CH

3Ni-

CH

3[P(

CeH

5)2C

H3]

Dee

p vi

olet

(d

> +

10 i

n to

luen

e)

Pale

yel

low

(d

> +

20

in

tolu

ene)

Ora

nge

yello

w (

d >

+ 2

0 in

tol

uene

)

Red

(d

> 5

8 in

tolu

ene)

Pale

yel

low

(d

> 6

4 in

to

luen

e)

Ora

nge

yello

w (

d >

64

in

tolu

ene)

Ora

nge

yello

w (

d >

75

in

tolu

ene)

5.36

(t)

6.00

(t)

5.75

(t)

5.3 5.41

(t)

5.56

(t)

9.08

(d)

7.37

(dq)

9.45

(d)

7.85

(dq)

8.55

(dd)

9.25

(dd)

6.3(

m)

9.09

(dd)

9.09

(d)

5.27

(dd)

6.

65(d

q)

5.47

(t)

9.07

(dd)

5.28

(dd)

6.

7(m

)

8.43

(dd)

7.6

(m)

7.4(

m)

8.55

(dd)

7.6

(m)

7.37

(dq)

8.34

(dd)

9.4

4(dd

) —

8.29

(dd)

7.6

(m)

7.0(

m)

8.32

(d)

7.64

(dq)

[7.0

5 (dq)

]

8.23

(d)

9.32

(d)

7.1(

m)

[8.3

4(d)

] 7.

7(m

) 7.

0(m

)

[8.2

8(d)

] 9.

28(d

d)

7.1(

m)

/M (

=/«

) 12

.0,

Λ4

(=/ 3

5) 6

.0

/l4

(=/l

5)

12.0

, Λ

* (=

/ 35)

6.0,

/ 3

P 5.

0,

ΛΡ

9.0,

/C

H3N

1P 8

.0

1 Ji

s 12

.0,

/ 24

(=/a

e)

6.0,

/3P

5.0

, / 2

P 1.

0,

/CH

3N1P

8.0

/ 2

4( =

/35

)6.0

, / 3

P 5.

0,

/ 2p

1.0,

/c

H3N

ip 7

.5

/l4

(=/l

5)

12.0

, Λ

4 (=

/ 35)

6.0,

/ 3

P 5.

0, /

2P

1.0,

«Λ3Η

3ΝΙΡ

7.0

Λ

4(=

/ΐ5)

12.0

, Λ

4 (=

/ 35)

6.0

/i4

7.0,

J15

12.

5,

/24

( = /

35)

6

/i*

(=/χ

β) 1

2.0,

/ 2

4(=

/ 35)6

.0

Λ4

7.0,

J15

12.

0,

J35

6.0

11.9

3, 1

1.49

(c

) (N

i—C

H3)

10.5

8 (c

) (N

i—C

H3A

I)

10.2

3, 1

0.43

(A

l—C

H3)

8.

78 (

d,

(c)

Ni—

CH

3),

2.9

(CeH

5)

10.2

6 (d

, (c

) N

1CH

3),

2.9

(C6H

5)

10.0

6 (d

, (c

) N

i—C

H3)

, 2.

9 (C

6H5)

10.0

5 (d

, (c

) N

i—C

H3)

, , 2

.4-2

.9 (

CeH

5)

9.98

(s,

Ni—

CH

3)(c

) 2.

9 (C

6H5)

, 6.

41 (

d-C

H2P

) 10

.0 (

s, N

i—C

H3)

(c)

2.9

(C6H

5),

6.41

(C

H2P

) 10

.09

(d,

(c)

Ni—

CH

3)

2.5,

2.9

(C

eH5)

, 8.

30

(P-C

H3)

10.0

5 (d

, (c

) N

i—C

H3)

2.

5, 2

.9

(C6H

5),

8.30

(P

-CH

3)

-60

-35

0 0 0 -20

+ 5

+ 5

-30

-30

Spec

trum

te

mp,

de

pend

. Sp

ectr

um

tem

p,

depe

nd.

18

18

18

18

18

18

18

18

18

18

Page 59: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

7T

-CH

3CH

CH

CH

CH

3Ni-

CH

3[P

(CeH

4-<

?-C

H3)

3]

7r

-CH

3C

HC

HC

HC

H3N

i-

CH

3[P

(CH

2C

6H

5) 3

]

7T

-CH

3CH

CH

CH

CH

3Ni-

CH

3 [P

(CeH

5)2-

wo

-C3H

7]

rr

-CH

3C

HC

HC

HC

H3N

i-

CH

3[P

(CeH

5) 2

-^í-

C4

He]

a/i

//>

>7

i-7

r-C

H3C

HC

HC

HC

H3N

i-C

H3[

P(C

eH5)

a-/<

?r/

-C4H

e]

7T

-CH

3CH

CH

CH

CH

3Ni-

CH

3[P

(CH

3) a

CeH

5]

anti,

syn-

n-C

H3C

HC

HC

HC

H3m

-

CH

3[P

(CH

3) 2

CeH

5]

7T

-CH

3CH

CH

CH

CH

3Ni-

CH

3[P

(wo

-C3H

7) 2

CeH

5]

r-C

H3C

HC

HC

HC

H3N

i-

CH

3[P

(/er

/-C

4H

e)2C

eH5]

Yel

low

(d

>

75

in t

olu

ene)

5.5

0(t

) 9

.10

(d)

8.4

5(d

) 7

.4(m

)

Ora

ng

e y

ello

w

(d

> 8

5 in

5

.60

(t)

8.9

8(d

)

tolu

ene)

Ora

ng

e y

ello

w

(d

> 7

5 in

5.

61 (

t)

8.9

1(d

)

tolu

ene)

Ora

ng

e (d

>

78

in

5.5

8(t

) 9

.40

(dd

)

tolu

ene)

5.2

9(d

d)

Ora

ng

e (d

>

78

in

5.5

7(t

) 8

.87

(dd

)

tolu

ene)

8.2

7(d

d)

7.3

(m)

8.4

5(d

) 7

.7(m

) 7

.2(m

)

8.3

1(d

d)

8.1

(m)

7.0

(m)

8.2

6(d

d)

9.2

5(d

d)

7.0

(m)

8.2

4(d

d)

7.8

(m)

6.9

(m)

Yel

low

(d

>

10

0 in

tolu

ene)

5.3

6(d

d)

6.7

(m)

8.2

0(d

d)

9.1

8(d

d)

7.1

(m)

5.6

0(t

) 9

.07

(d)

8.3

7(d

d)

7.7

(m)

7.3

(m)

5.6

4(t

) 9

.20

(dd

) 8

.49

(dd

) 7

.7(m

) 7

.4(m

)

/l4

(=/l

5)

12

.0,

/ 24

(=/ 3

5)6

.0,

/ 3P

5.0

/ 2p

0.5

, Jc

H3N

iP

7.5

Λ4

(=/i

s)

12

.0,

/ 24

(=/ 3

5)

6.0

, J 3

P

4.0

, y

2P

0,

«/cH

3NlP

7

.0

/l4

( = /

l 5)

12

.0,

/ 24

(=

/ 35)

6.0

/ 14

(=/i

e)

12

.0,

/ 24

(=/ 3

5)

6.0

, / 3

p 5

.5,

/ 2P

1.0,

/CH

3N1P

5.

5

J 15

12

.0,

714

7

.5,

/ 35

(=/ 2

4)

6.0

,

/ 3P

5.5

, / 2

P 1.

0,

/CH

3N1P

6.

5

/l4

( =

Λ5

)

i2.o

,y2

4(=

/ 35)

6

.0,

/ 3P

5.0

, / 2

P

2.0

, /c

H3N

7.5

J 15

12

.5,

/ 14

7.5

,

/ 35

(=/ 2

4)

6.0

,

/ 3p

5.0

, / 2

P 1.

5,

ΛΐΗ

βΝΐρ

7.

5

/l4

(=/l

5)

12

.0,

/ 24

(=/ 3

5)

6.0

, / 3

P 5

.0,

/ 2P

0,

/cH

3MP

6

.0

Λ4

( =

/ΐ5)1

2.0

,

/l4

( = /

35)

6

.0,

/ 3p

4.5

, / 2

p 0

.5,

/CH

3N1P

6

.0

10

.31

(d,

(c)

Ni—

CH

3)

3.0

0 (C

6H

4),

7.9

(C

6H

4C

H3)

10

.03

(c)

(Ni—

CH

3)

2.8

(C

6H

5),

7.0

4 (C

H2P

)

10.1

1 (s

, (c

)

Ni—

CH

3)

2.5

, 2

.9

(CeH

5)

7.2

,

8.9

(C

3H

7)

9.7

7 (d

, (c

)

Ni—

CH

3)

2.1

, 2

.9

(C6H

5)

8.7

2

(d,

C4H

9)

10

.03

(d,

(c)

Ni—

CH

3)

2.1

, 2

.9

(CeH

6)

8.7

6

(d,

C4H

9)

9.9

2 (d

, (c

)

Ni—

CH

3)

2.6

, 2

.9

(CeH

5)

8.7

1,

8.7

3

(P—

CH

3)

10

.0 (

d,

(c)

Ni—

CH

3)

2.6

, 2

.9

(CeH

6)

8.7

3,

8.7

5 (P

CH

3)

10

.19

(d,

(c)

Ni—

CH

3)

2.7

(C

eH6),

7.7

, 8

.85

-

9.2

3 (C

3H

7)

10

.08

(d,

(c)

Ni—

CH

3),

2.4

, 2

.9

(CeH

5)

8.6

5,

8.6

9 (C

4H

9)

Page 60: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

TA

BL

E V

I-11

{co

ntin

ued)

Com

plex

C

olor

(m

p)

/(H

z)

Oth

er a

bs (

τ) S

olv.

" Tem

p.

Mis

c.

Ref

.

TT

-CH

3CH

CH

CH

CH

3NÍC

H3]

P(C

H3)

3]

7r-C

H3C

HC

HC

HC

H3N

i-C

H3[

P(C

H3)

2men

th.]

7r-C

H3C

HC

HC

HC

H3N

i-C

H3[

P(w

o-C

3H7)

3]

7r-C

H3C

HC

HC

HC

H3N

i-C

H3[

P(m

enth

.)2C

H3]

7r-C

H3C

HC

HC

HC

H3N

i-C

H3[

P(w

o-C

3H7)

2-te

/-/-

C4H

9]

77-C

H3C

HC

HC

HC

H3N

i-C

Hal

P^c/

o-C

eHu)

,]

77-C

H3C

HC

HC

HC

H3N

i-C

H3[

As(

CeH

5)3]

a/»i

/-77-

CH

3CH

CH

CH

CH

3Ni-

CH

3[A

s(C

eH5)

3]

7T-C

H3C

HC

HC

HC

H3N

i-C

H3[

As(

/jo-C

3H7)

3]

7T-C

H3C

HC

HC

HC

H3N

i-C

H3[

2,4.

6-co

llidi

ne]

Lem

on y

ello

w o

il (d

> 7

7 in

tol

uene

)

Pale

yel

low

(d

> 90

in

tolu

ene)

Pale

yel

low

(d

> 10

2 in

to

luen

e)

Yel

low

(d

> 78

in

tolu

ene)

Ora

nge

yello

w (

d >

in

tolu

ene)

5.56

(t)

8.50

(dd)

8.

32(d

d) 7

.8(m

) 7.

2(m

) / 1

4 (=

Λ5)

12.0

, / 2

4(=

/ 35)6

.0,

/ 3P

5.0,

J2P

2.0

, /c

H3N

iP

8.0

5.73

(t)

8.51

(d)

8.46

(d)

7.3(

m)

7.3(

m)

/ 14

(=Λ

5)

12.0

, 5.

68(t)

J 2

i (=

/ 35)

6.0

5.65

(t)

8.56

(d)

8.49

(dd)

7.8

(m)

7.4(

m)

/ 14

(=/ 1

5) 1

2.0,

/ 2

4 (=

/ 35)

6.0,

/ 3

P 5.

0,

/CH

3N1P

6

.0

5.60

(t)

8.5(

m)

7.30

(m)

6.9(

m)

/ 14

(=Λ

5)

12.0

, /C

H3N

1P

6.5

5.62

(t)

8.56

8.

49

7.7(

m)

7.4(

m)

/ 14

(=Λ

5)

12.0

, / 2

4 (=

/ 35)

6

.0

/CH

3N1P

5.

5

5.58

(t)

8.50

(dd)

7.

4(m

) /i

4 (=

/«)

12.0

, / 2

4(=

/ 35)6

.0,

/ 2p

(=/ 3

p) 6

.0,

/CH

3N1P

5.

5 5.

37(t)

9.

02(d

) 8.

34(d

) 7.

44(d

q) 6

.77(

dq)/

14 (

=/ 1

5) 1

2.0

/ 24

(=/ 3

6) 6

.0

5.26

(dd)

6.4

0(dq

) 8.

28(d

) 9.

23(d

) 6.

96(d

q) /

14 (

=/ 1

5)

12.0

, / 2

4 (=

/ 3e)

6.0

10.1

5 (d

, (c

) N

i—C

H3)

9.

00 (

d,

P—C

H3)

10.3

6, 1

0.33

(N

i—C

H3)

8.

3, 9

.1

(P-C

H3,

men

th)

10.4

0 (d

, N

iCH

3),

8.88

, 8.

90

(C3H

7)

10.3

2, 1

0.24

(d

, N

i—C

H3)

8.

78,

8.82

(d

, PC

H3)

8.

3-9.

27

(men

th.)

10.3

8 (d

, N

i—C

H3)

8.

80

(ter

t-C

4H9)

8.7

2-8.

92 (

C3H

7)

10.3

4 (d

, N

i—C

H3)

8.

5 (C

eHu)

-20

(c)

(c)

(c)

(c)

Ora

nge

yello

w (

d >

58 i

n to

luen

e)

Ora

nge

red

(d >

64

in

tolu

ene)

5.61

(t)

8.53

(d)

8.50

(d)

7.3(

m)

/ 14

(=/ 1

5)

12.0

, /¡

24 (

=/ 3

δ)

6

5.59

(t)

8.51

(d)

7.31

(m)

5.36

(t)

9.22

(d)

8.56

(d)

~7.4

(m)—

/ 1

4 (=

/ 15)

12.0

, Λ

4 (=

/ 35)

6.0

10.0

1 (s

, N

i—C

H3)

2.

5, 2

.9

(C6H

5)

10.0

4 (s

, N

i—C

H3)

2.

5,

2.9

(QH

5)

10.3

5 (s

) 7.

9,

8.91

(C

3H7)

10

.39

(s)

7.9,

8.

84 (

C3H

7)

10.3

7 (s

), 3.

74

(C5H

2) 7

.15,

7.

39,

8.26

(C

H3)

(c)

(c)

(c)

(c)

(c)

Page 61: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

7r-C

H3C

HC

HC

HC

H3N

iCH

3(py

)

7r-C

H3C

HC

HC

HC

H3N

iCH

3(qu

inol

ine)

7T-C

H3C

HC

HC

HC

H3N

iCH

3(/5

o-qu

inol

ine)

*-C

H3C

HC

HC

HC

H3N

iCH

3(ac

rid

ine)

77-C

H3C

HC

HC

HC

H3N

i-C

H3(

phen

anth

ridi

ne)

7T-C

H3C

HC

HC

HC

H3N

iCH

3(py

rrol

e)

7T-C

H3C

HC

HC

HC

H3N

iCH

3(in

dole

)

7T-C

H3C

HC

HC

HC

H3N

i-C

H3(

N-m

ethy

lani

line

) 7T

-CH

3CH

CH

CH

CH

3NiC

H3(

indo

line

)

77-C

H3C

HC

HC

HC

H3N

i-[P

(OC

2H5)

3]3H

S0 4

an//,

5^/i-

7r-C

H3C

HC

HC

HC

H3N

i-[P

(OC

2H5)

3]3H

S0 4

7T-C

H3C

HC

HC

HC

H3N

i-[P

(OC

H3)

3]3H

S0 4

a«//

,j^

/i-7

r-C

H3C

HC

HC

HC

H3N

i-[P

(OC

H3)

3]3H

S0 4

7r-C

H3C

HC

HC

HC

H3N

iCH

3[H

N(C

2H5)

2]

í7-C

H3C

HC

HC

HC

H3N

i-C

H3(

diaz

obic

yclo

octa

ne)

7T-C

H3C

HC

HC

HC

H3N

iCH

3(m

orph

olin

e)

*-C

H3C

HC

HC

HC

H3N

iCH

3(H

2NC

2H5)

Ora

nge

yell

ow (

d >

62 i

n to

luen

e)

Pal

e re

d (d

>

69 i

n to

luen

e)

Pal

e re

d (d

>

64 i

n to

luen

e)

Blu

e vi

olet

(d

> 80

in

tolu

ene)

Red

(d

> 66

in

tolu

ene)

Red

R

ed

Ora

nge

yell

ow

Yel

low

Ora

nge

yell

ow

Ora

nge

yell

ow

Ora

nge

yell

ow

Ora

nge

yell

ow

5.27

(t)

5.16

(t)

5.14

(0

5.01

(0

5.11

(0

5.60

(t)

5.65

(t)

5.44

(t)

5.40

(t)

5.04

(t)

5.34

(m)

5.13

(t)

5.32

(t)

5.58

(t)

5.08

(t)

5.52

(t)

5.55

(t)

9.06

(d)

9.30

(d)

9.36

(d)

9.01

(d)

9.58

(d)

9.27

(d)

9.37

(d)

9.50

(d)

10.1

5(d)

9.39

(d)

9.38

(d)

8.57

(d)

8.40

(d)

8.76

(d)

8.30

(d)

8.34

(d)

9.22

(d)

9.20

(d)

9.15

(d)

9.03

(d)

.

8.75

(d)

8.41

(d)

8.62

(d)

8.80

(d)

8.87

(d)

8.84

(d)

9.05

(d)

8.48

(d)

8.74

(d)

8.77

(d)

8.77

(d)

8.69

(d)

7.45

(dq

) 7.

36(d

q)

/ 14

(=/ 1

5)

12.0

,

7.36

(dq

) 7.

23(d

)

/24

( = /

3s)

6.0

/l4

(=/l

5)1

2.0

, Λ

4 (=

/ 35)

6.0

7.42

(dq

) 7.

22(d

q)

71

4(=

/ 15)

12.0

,

7.20

(dq

) 7.

10(d

q)

Λ4

(=/ 3

5)6

.0

Ι/ΐ4

(=Λ

5)1

2.0

, / 2

4 (=

/ 35)

6.0

7.26

(dq

) 7.

13(d

q)

/ 14

(=/ 1

5)

12.0

,

~7.

4(m

) —

/ 24

(=/ 3

5)

6.0

/ 24

(=/ 3

5)6

.0

7.54

(dq

) 7.

16(d

q)

/ 14

(=/ 1

5)

12.0

,

7.3(

m)

-/ 2

4(=

/ 35)6

.0

/l4

(=/l

6)1

2.0

, / 2

4 (=

/ 35)

6.0

~7.8

(dq

) ~

7.7(

dq

) / 1

4 (=

/ 15)

12.0

,

6.51

(dq

)

8.98

(d)

6.53

(dq

)

9.01

(d)

~7

.2(m

)-

~7

.2(m

)-

~7.

8(m

) —

~7

.5(m

)-

/24

( = / 3

5)

6.0

/l4

( = Λ

5)

12,

/ 24

(=/ 3

δ)

6,

Jes

6, /

24

6

/ΐ4

(=Λ

5)1

1.5

, J™

(=

/ 3s)

6.

5 /i

5 14

, J 1

2 7,

J3

5 6,

/2

4 7

A*

(=A

s) 1

2.0,

/2

4 ( =

/ 35)

6.0

/i4

(=/i

s)1

2.0

, Λ

4 (=

/ 35)

6.0

/ΐ4

(=Λ

5)1

2.0

, 24

( =

/ 3S)

6.0

/14

(=/ 1

5)

12.0

, / 2

4 (=

/ 35)

6.0

10.0

6 (N

i—C

H3)

1.

7, 3

.1-3

.7

(py)

9.

96 (

s,

Ni—

CH

3)

0.95

-1.5

, 2.

7-3.

3 (q

uin)

9.

92 (

s,

Ni—

CH

3)

1.85

, 2.

40,

3.7,

3.9

6 (q

uin)

9.

85 (

s,

Ni—

CH

3)

0-3.

0 (L

ig)

9.81

(s,

N

i—C

H3)

11.1

, 3.

6 (L

ig)

10.6

1 (N

i—C

H3)

7.

5, 7

.9,

8.97

(L

ig)

10.6

1 (N

i—C

H3)

10

.54

(Ni—

CH

3)

(c)

(c)

(c)

(c)

(c)

(c)

(c)

(c)

(c)

(g)

(g)

(g)

(g)

(c)

(c)

(c)

6.8,

7.5

(L

ig)

10.5

2 (N

i—C

H3)

8.

9, 7

.85,

9.

35 (

Lig

)

(c)

-30

0 0 0 0 -30

-10

-30

0 0 0 -30

0 + 5

-30

Page 62: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

TA

BL

E V

I-11

(c

ontin

ued)

Com

plex

C

olor

(m

p)

T5°

/(

Hz)

O

ther

abs

. (τ)

So

lv.6 T

emp.

M

isc.

R

ef.

r-C

H3C

HC

HC

HC

H3N

iCH

3(py

rrol

idin

e)

7r-C

H3C

HC

HC

HC

H3N

i-C

H3[

(S)a

-H2N

C(C

H3)

HC

eH5]

7r-C

H3C

HC

HC

HC

H3N

i(C

H2(

CH

3CN

)

77-C

H3C

HC

HC

HC

H3N

iCH

3(C

6H5C

N)

7T-C

H3C

HC

HC

HC

H3N

i-C

H3(

CN

-/i?

r/-C

4H9)

7T-C

H3C

HC

HC

HC

H3N

iCH

3[(C

H3)

2S0 2

]

ir-C

H3C

HC

HC

HC

H3N

i-C

H3[

CH

2P(C

eH5)

3]

7r-C

H3C

HC

HC

HC

H3N

i-C

H3[

CH

2P(/

*>-C

3H7)

3]

7r-C

H3C

HC

HC

HC

H3N

iCl

(7T-

CH

3CH

CH

CH

CH

3NiB

r)2

[7r-

CH

3CH

CH

CH

CH

3NiN

(CeH

5)C

H3]

2 7T

-C2H

5CH

CH

CH

CH

3Ni

[P(O

C6H

3)3]

3HS0

4

Ora

nge

yello

w

Ora

nge

yello

w

Yel

low

ora

nge

(d >

0 i

n to

luen

e)

Ora

nge

red

(d >

0 i

n to

luen

e)

Yel

low

(d

> 0

in

tolu

ene)

Ora

nge

yello

w (

d >

15 in

to

luen

e)

Bro

wn

yello

w (

d >

30 in

to

luen

e)

Pale

yel

low

(d

> 84

in

tolu

ene)

Red

R

ed

Dar

k re

d (d

~ 2

0)

5.50

(0

5.50

(t)

5.56

(t)

5.40

(t)

5.42

(t)

5.48

(t)

5.45

(t)

5.70

(t)

5.49

(t)

5.65

(t)

5.18

(t)

5.04

(t)

8.93

(d)

8.95

(d)

9.02

(d)

8.66

(d)

8.57

(d)

8.42

(d)

8.68

(d)

9.02

(d)

8.56

(d)

8.70

(d)

8.65

(d)

8.62

(d)

8.54

(d)

8.30

(d)

8.35

(d)

8.36

(d)

8.39

(d)

9.6(

d)

9.18

(d) 8.

52(d

)

~7

.2(m

)-

7.9(

m)

7.7(

m)

7.5(

m)

7.4(

m)

7.4(

m)

7.3(

m)

6.9(

m)

7.1(

m)

7.0(

m)

/ΐ4(

5)1

2.0,

/ 2

4 ( =

/ 35)

6.0

/l4(

=/l

5)1

2.0,

/ 2

4(=

/ 35)6

.0

/l4

( = /»

) 12

.0,

/ 24

(=/ 3

5)

6.0

/ 14

(=Λ

5)

12.0

, / 2

4 (=

/ 35)

6.0

/ΐ4(

5)1

2.0,

Λ

4(=

/ 35)6

.0

/ΐ4(

5)1

2.0,

/2

4 ( =

/ 35)

6.0

9.06

(dq)

7.5

6(dq

) / 1

4 (=

/i5)

12.0

,

~8.1

(m )

7.6(

m)

7.8(

m)

7.74

(dq)

/ 24

(=/ 3

5)

6.0

/l4

( =

/l5)

11.

0,

Λ4

(=/ 3

5) 6

.0

/ΐ4(

5)1

1.7

/l4

( = /l

5) 1

2,

/24

( = / 3

5) 7

Λ4

( = /l

5) 1

2,

/ 35

6

10.5

2 (N

i—C

H3)

10

.57,

8.8

, 7.

6 (L

ig)

10.3

8 (Ni—

CH

3)

8.4,

6.1

, 8.

67

2.90

(Li

g)

10.0

6 (N

i—C

H3)

9.

16

(CH

3CN

) 9.

78

(Ni—

CH

3)

3.1

(C6H

5)

9.66

(N

i—C

H3)

9.

04 (

C4H

9)

10.5

4 (N

i—C

H3)

7.

68

(CH

3-S

) 10

.46

(Ni—

CH

3)

8.51

, 8.

60

(c)

(c)

(c)

(c)

(c)

(c)

(c)

(Ni—

CH

2.P)

2.

2, 2

.8

(CeH

5)

10.3

5 (N

i—C

H3)

9.

95,

10.0

2 (N

i—C

H2P

) 8.

1, 9

.01,

9.0

3 (C

3H7)

8.07

, 8.

86

(C2H

5)

(c)

(g)

+ 20

87,2

04

18, 7

5

c148

5 13

56

Page 63: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

anti

, jjw

-7r-

C2H

5CH

CH

CH

CH

3Ni

· [P

(OC

H3)

3]3H

S0 4

7r.C

H3C

HC

HC

HC

H3N

iaca

c T

T-c

yclo

pent

yl ·

NC

I (7

T-C

yclo

hexe

nyl)

3Ni

(w-C

yclo

hexe

nyl-

NiC

l)a

(7T

-Cyc

lohe

pten

yl) 2

Ni

(7r-

Cyc

lohe

pten

yl-N

iBr)

2

(w-C

yclo

octe

nyl)

2Ni

(7r-

Cyc

looc

teny

l-N

iCH

3)2

(7T

-Cyc

looc

teny

l-N

iCl)

2 (3

7)

(7T

-Cyc

looc

teny

l-N

iBr)

2

π-C

yclo

octe

nyl-

Ni ·

aca

c

(ir-

Cyc

looc

teny

I-N

iOC

OC

H3)

2

(7r-

Cyc

looc

teny

l-N

iSC

2H5)

2

(ir-

Cyc

looc

tatr

ieny

l)2N

i (i

r-C

yclo

octa

trie

nyl-

NiC

l)2

7r-C

yclo

octa

trie

nyl-

NiC

l[P

(C2H

5)3]

77

-Cyc

looc

tatr

ieny

l-N

iCl(

NH

3)

π-C

yclo

octa

trie

nyl-

NiB

r π-

Cyc

looc

tatr

ieny

l-N

iI

^C

yclo

octa

trie

nyl

-NiO

CH

3

(rr-

Cyc

looc

tatr

ieny

l-N

iO-r

er/-

C4H

9)2

ff-C

yclo

octa

trie

nyl-

Ni-

acac

(w

-Cyc

looc

tatr

ieny

l-N

iOC

OC

H3)

2

8.37

(d)

8.26

, 9.

0 (g

) (C

2H5)

Red

Y

ello

w (

dec

> -4

0)

Red

Y

ello

w

Red

Y

ello

w

Red

(d

> -2

0 in

to

luen

e)

Red

Dar

k re

d

Yel

low

bro

wn

Red

bro

wn

Red

bro

wn

Red

R

ed

Red

bro

wn

Yel

low

R

ed

Vio

let

Ora

nge

yell

ow

Scar

let

Bro

wn

Red

4.90

(t)

5.47

(dt)

5.29

(t)

4.9(

t)

4.56

(t)

4.40

(t)

4.8

5.86

(d)

6.4(

dt)

6.12

(dt)

6.45

(dt)

6.2

8.0(

br)

J 12

(=/ 1

3)

8.5,

/2

CH

28

7.90

(br)

J 1

2 (=

/ 14)

8.1

~8

.0

8.0

T4.

4 (8

H),

5.7

(6H

), 6

.7 (

2H),

7.9

(2H

) T

4.4

(4H

), 6

.1 (

3H),

4.4

(2H

)

T4.

3 (4

H),

5.6

(3H

), 7

.8 (

2H),

8.9

(C

2H5)

T4.

3 (4

H),

5.8

(3H

), 8

.3 (

2H)

T3.

9 (4

H),

T

4.1

(4H

),

T4.

0 (4

H),

6.1

(3H

), 7

.8 (

2H),

8.8

(te

r/-C

4H9)

5.

1 (1

H),

5.6

(1H

), 6

.1 (

2H),

7.9

(2H

), 8

.3 (

CH

3)

5.2-

5.8

(4H

), 7

.9 (

2H; >

, 8.

2 (C

H3)

8.8

(—C

H2—

)

8.60

(br

)

4.74

(ac

ac-H

),

8.24

(C

H3)

, 8.

76 (

CH

2)

7.2,

8.6

(C

H2)

(0

(i)

(b)

(g)

(b)

(b)

(b)

0 0 30

30

v c_ c

1450

v c_c

l480

65

21

,47

21,

39,

47

39,4

7 3

9,4

7 39

,47

10,

21,

39,

47,

194

18

21,3

9,

47,

64

77,

194

21

,77

21

21,3

9 47

,211

21

, 47

, 21

1 21

1 21

1 21

1 21

1 21

1 21

1 21

,211

21

,211

4 5

See

foot

not

e a

Tab

le V

I-14

.

" S

olve

nt:

See

foo

tnot

e b

Tab

le V

I-14

.

Page 64: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

TA

BL

E

VI-

12

r-R

2 CH

C(R

1 )CH

2 N

ICK

EL

CO

MPL

EXES

Com

plex

es

Col

or (

mp)

/(

Hz)

O

ther

abs

. (τ)

So

lv.6

Tem

p.

Mis

c.

77-C

H3C

HC

(CH

3)C

H2N

i[P(O

CH

3)3]

3HS0

4 —

a/

i//-7

7-C

H3C

HC

(CH

3)C

H2N

i —

[P

(0C

H3)

3]3H

S04

7r-H

OC

HC

(CH

3)C

H2N

iBr

7r-H

OC

HC

(CH

3)C

H2N

iaca

c —

ir

-CH

3CH

C(C

l)C

H2N

i[P(

OC

H3)

3]3H

S04

w-C

H2C

CH

CH

: C

HC

HC

CH

2-

Dee

p vi

olet

[N

iBrP

(OC

eH4-

o-C

6H5)

3]2

(7r-

(+)-

pine

nyl)

2Ni

Yel

low

bro

wn

(7T-(

+ )-

pine

nyl-

NiB

r)2

Red

7r-C

H2C

(CH

3)C

H(C

H2)

2C(C

H3)

: C

HC

H2-

Y

ello

w

NiP

(o>c

/o-C

6Hn)

3

i7-C

eH5C

H2N

iCl[

P(c>

'c/o

-CeH

11)3

] V

iole

t

8.16

(s)

8.47

(d)

8.16

(s)

3.40

(d)

6.72

(d)

7.42

(d)

/ 24

6.5,

/3

5 3

8.9(

d)

7.08

(d)

/ 24

6.5,

/3

5 2.

5

5.79

(q)

6.35

(d)

8.79

(br)

7.

30(s

) 7.

30(s

) 8.

07(s

)

8.23

(s)

8.9(

CH

2)

7.30

(m)

7.59

(m)

7.59

(m)

8.55

(s)

7.59

(m)

7.30

(m)

7.30

(m)

(g)

(g)

(g)

8.89

, 9,

29

(s,

CH

3)

8.9

(br,

CeH

u) (

b)

4.20

(C

:CH

)

56

56

65

65

56

22

78, 7

9,

84

21,7

8

See

foot

note

a T

able

VI-

14.

b Sol

vent

: Se

e fo

otno

te b

Tab

le V

I-14

.

TA

BL

E

VI-

13

TT

-R4 R

2 CC

HC

H2

NIC

KE

L C

OM

PLEX

ES

Com

plex

es

Col

or (

mp)

/(

Hz)

O

ther

abs

. (τ)

So

lv."

T

emp.

M

isc.

R

ef.

[7r-

(CH

3)2C

CH

CH

2]2N

i M

CH

3)2C

CH

CH

2NiB

r]2

7r-(

CH

3)2C

CH

CH

2Ni[

P(O

CH

3)3]

3HS0

4 [7

T-(C

H3) 2

C :

CH

(CH

2)2C

(CH

3)C

HC

H2-

NiB

r]2

Yel

low

ora

nge

Purp

le

Red

liq

.

5.31

(q)

9.43

(s)

7.19

(dd)

9.2

4(s)

8.

16(d

d)/ 3

5 2,

/ 15

13,

/i3

7.5

8.24

(s)

8.78

(s)

7.61

(d)

/ 15

14

(a)

(g)

10,1

94

193

56

193

" So

lven

t: se

e fo

otno

te b

Tab

le V

I-14

.

See

foot

note

a T

able

VI-

14.

Page 65: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

TAB

LE

VI-

14

A.

TRIS

UB

STIT

UTE

D T

T-A

LLY

LNIC

KEL

CO

MPL

EXES

Com

plex

C

olor

(m

p)

Tl°

/(H

z)

Oth

er a

bs. (

τ) S

olv.

" T

emp.

M

isc.

R

ef.

7T-l,

3-D

imet

hylc

yclo

bute

nyl-N

iBr

7r-C

H3C

HC

(CH

3)C

HC

H3N

i-[P

(OC

H3)

3]3H

S04

û/j/

/,^/i

- w-C

H3C

HC

(CH

3)C

HC

H3N

i-[P

(OC

H3)

3]3H

S04

7r-(

CH

3)2C

CH

CH

CH

3Ni

[P(O

CH

3)3]

3HS0

4 7r

-(C

H3)

2CC

HC

H-w

o-C

3H7N

i-[P

(OC

H3)

3]3H

S04

7-(C

H3)

2CC

HC

(CH

3)2N

i-[P

(OC

H3)

3]3H

S04

Red

TT

-CH

2(C

H2)

6CC

CH

(CH

2)5C

H2]

· aca

c π-

Pent

amet

hylc

yclo

bute

nyl-

NiC

l (3

1)

Red

7r

-Pen

tam

ethy

lcyc

lobu

teny

l-N

iCl[

P(C

6H5)

3]

Ora

nge

r-1-

Ally

ltetra

met

hylc

yclo

bute

nyl-N

i-7r

-CH

2CH

CH

2 r-

1-A

llylte

tram

ethy

lcyc

lobu

teny

l-NiC

l Red

8.18(s)

8.57(d)

J 2

i (=/35) 6.5

8.18(s) 5.27(q)

8.44(d) 8.98(d)

/24 6.5,

J35 6

4.96(d) 8.33(s)

8.53(s) 8.84(s) 6.56(dq)

J15 13, /35 6

8.42

8.77

B.

TE

TR

A-

AN

D P

ENTA

SUB

STTT

UTE

D T

T-A

LLY

LNIC

KEL

CO

MPL

EXES

5.34

(s)

8.45

(s)

8.61

(s)

8.04

(s)

8.13

(s)

8.83

(d)

9.25

(s)

9.99

(s)

7.34

(s)

9.89

(s)

9.13

(C

3H7)

(g)

(g)

(g)

(g)

(g)

2.3-

2.6

(C6H

5)

(g)

9.56

(s,

CH

3)

(b)

3.3,

4.1

(:C

H),

8.

13 (

d, C

H2)

47

56

56

56

56

CH

3 as

sign

-m

ent

unkn

own 80

,81

76

76

21

21,1

17

5 Su

bstit

uent

s (u

nles

s ot

herw

ise

indi

cate

d) a

re a

ssum

ed t

o be

syn

to

posi

tion

1. T

he n

umbe

ring

sys

tem

fol

low

s fr

om t

he f

orm

ula,

e.g

., in

w-C

H3C

HC

HC

H2N

i co

mpl

exes

N

i th

e C

H3

grou

p oc

cupi

es p

ositi

on 2

whi

le i

n ar

tr/'-T

r-C

H3C

HC

HC

H2N

i co

mpl

exes

the

CH

3 gr

oup

occu

pies

pos

ition

4.

/ \

Lig

X

b Sol

vent

: (a

), C

6H6;

(b)

, C6D

6; (

c), d

8-to

luen

e; (

d), C

6H5C

1; (e

), C

H2C

1 2;

(f),

CD

2C1 2

; (g

), C

DC

1 3;

(h),

C6H

12;

(i),

cycl

open

tane

; (j)

, C

D3C

OC

D3;

(k)

, CS 2

; (1)

, H20,

m =

C

HC

1 3.

Page 66: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

394 VI. π-Allyl Nickel Complexes

The structure of the bispyridine adduct (Fig. VI-18) and the π-cyclopenta-dienyl complex (Fig. VI-19) have been published. The geometry of the τΓ-cyclopropenyl group is practically identical in both complexes with the ring C—C distance approximately 0.05 Â longer than that found for the free organic ligand (183). The three phenyl groups are tilted away from the nickel by about 20° and adopt a propellor like arrangement in the ττ-cyclopenta-dienyl complex but are twisted in different directions in the bispyridine complex.

References

1. H. Bönnemann, B. Bogdanovic, and G. Wilke, Angew. Chem. 79, 817 (1967). 2. G. Wilke and B. Bogdanovic, Angew. Chem. 73, 756 (1961). 3. J. K. Becconsall, B. E. Job, and S. O'Brien, / . Chem. Soc, A p. 423 (1967). 4. B. Bogdanovic, Ph.D. Dissertation, Technische Hochschule Aachen, 1962. 5. U. Birkenstock, Ph.D. Dissertation, Technische Hochschule Aachen, 1966. 6. A. V. Volkov, O. P. Parenago, V. M. Frolov, and B. A. Dolgoplosk, Proc. Acad.

Sei. USSR 183, 1064 (1968). 7. V. A. Yakovlev, E. I. Tinyakova, and B. A. Dolgopolosk, Bull. Acad. Sei. USSR

p. 1350 (1968). 8. G. Wilke, B. Bogdanovic, U. Birkenstock, and H. Pauling, (Studiengesellschaft

Kohle m.b.H.), DDR patent 68,506 (1969). 9. H. F. Zimmermann, Ph.D. Dissertation, Technische Hochschule Aachen, 1967.

10. E. J. Corey, L. S. Hegedus, and M. F. Semmelhack, / . Amer. Chem. Soc. 90, 2417 (1968).

11. H. Bönnemann, Angew. Chem. 82, 699 (1970). 12. H. Bönnemann, Ph.D. Dissertation, Technische Hochschule Aachen, 1967. 13. W. Fleck, Ph.D. Dissertation, University of Bochum, 1971. 14. Montecatini Edison S.p.A., Italian Patent 791,655 (1967); Chem. Abstr. 71, 91660

(1969). 15. G. Schmid, Chem. Ber. 103, 528 (1970). 16. H. Bönnemann, unpublished results (1969). 17. B. Bogdanovic, H. Bönnemann, and G. Wilke, Angew. Chem. 78, 591 (1966). 18. H. Schenkluhn, Ph.D. Dissertation, University of Bochum, 1971. 19. N. I. Pakuro, E. V. Zabolotskaya, and S. S. Medvedev, Vysokomol. Soedin, Ser. B

10, 3 (1968); Chem. Abstr. 68, 69914 (1968). 20. G. Bürger, Ph.D. Dissertation, University of Munich, 1962. 21. G. Wilke (Studiengesellschaft Kohle m.b.H.), U.S. Patent 3,468,921 (1969). 22. M. Englert, Ph.D. Dissertation, University of Bochum, 1971. 23. R. F. Heck, J. C. W. Chien, and D. S. Breslow, Chem. Ind. {London) p. 986 (1961). 24. E. O. Fischer and G. Bürger, Z. Naturforsch. B 16, 77 (1961). 25. V. A. Vashkevich, A. M. Lazutkin, and B. I. Mitsner, / . Gen. Chem. USSR 37,

1830 (1967). 26. D. Walter, Ph.D. Dissertation, Technische Hochschule Aachen, 1965. 27. D. Walter and G. Wilke, Angew. Chem. 78, 941 (1966). 28. P. L. Maxfield, Inorg. Nucl. Chem. Lett. 6, 707 (1970). 29. M. Dubini and F. Montino, Chim. Ind {Milan) 49, 1283 (1967).

Page 67: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

References 395

30. R. G. Hayter, Inorg. Chem. 3, 711 (1964). 31. E. O. Fischer and G. Bürger, Chem. Ber. 94, 2409 (1961). 32. F. Guerrieri and G. P. Chiusoli, / . Organometal. Chem. 15, 209 (1968). 33. G. Guerrieri and G. P. Chiusoli, Chem. Commun, p. 781 (1967). 34. F Dawans, J. C. Maréchal, and P. Teyssie, / . Organometal. Chem. 21, 259 (1970). 35. F. Dawans and P. Teyssie, / . Polym. Sei., Part B 7, 111 (1969). 36. Montecatini Edison S.p.A., Italian Patent 807,705 (1968); Chem. Abstr. 71, 81542

(1969). 37. A. Sirigu, Inorg. Chem. 9, 2245 (1970). 38. A. Sirigu, Chem. Commun, p. 256 (1969). 39. W. Keim, Ph.D. Dissertation, Technische Hochschule Aachen, 1963. 40. R. Uttech and J. Dietrich, Z. Kristallogr. 122, 60 (1965). 41. H. Dietrich and R. Uttech, Naturwissenschaften 50, 613 (1963). 42. M. R. Churchill and T. A. O'Brien, Chem. Commun, p. 246 (1968). 43. M. R. Churchill and T. A. O'Brien, / . Chem. Soc., A p. 206 (1970). 44. F. Guerrieri, Chem. Commun, p. 983 (1968). 45. E. J. Corey, M. F. Semmelhack, and L. S. Hegedus, / . Amer. Chem. Soc. 90, 2416

(1968). 46. M. R. Churchill and T. A. O'Brien, Inorg. Chem. 6, 1386 (1967). 47. G. Wilke et al., Angew Chem. 78, 157 (1966). 48. G. Lugli, W. Marconi, A. Mazzel, and N. Palladino, Inorg. Chim. Acta 3, 151

(1969). 49. SNAM Progetti S.p.A., British Patent 1,132,425 (1968); Chem. Abstr. 70, 20846

(1969). 50. E. N. Zavadovskaya, M. P. Teterina, O. K. Sharaev, A. G. Azizov, T. K. Vydrina,

and E. I. Tinyakova, Zh. Prikl. Spektrosk. 13, 851 (1970); Chem. Abstr. 74, 69720 (1971).

51. E. N. Zavadovskaya, M. P. Teterina, O. K. Sharaev, A. G. T. Azizov, K. Vydrina, E. I. Tinyakova, and B. A. Dolgopolosk, Proc. Acad. Sei. USSR 188, 798 (1969).

52. T. Matsumoto and J. Furukawa, / . Polym. Sei., Part B 5, 935 (1967). 53. T. Y. Chepurnaya, F. P. Proskuryakova, Z. C. Stepanova, B. D. Babitskii, and

V. A. Kormer, Russ. J. Inorg. Chem. 15, 1764 (1970). 54. V. A. Kormer, R. S. Lyashch. B. D. Babitskii, G. V. L'vova, M. I. Lobach, and

T. K. Chepurnaya, Proc. Acad. Sei. USSR 180, 88 (1968). 55. C. A. Tolman, / . Amer. Chem. Soc. 92, 6777 (1970). 56. C. A. Tolman, / . Amer. Chem. Soc. 92, 6785 (1970). 57. R. Baker, B. N. Blackett, and R. C. Cookson, Chem. Commun, p. 802 (1972). 58. O. K. Sharaev, A. V. Alferov, E. I. Tinyakova, B. A. Dolgoplosk, V. A. Kormer,

and B. D. Babitskii, Proc. Acad. Sei. USSR 177, 1003 (1967). 59. B. Bogdanovic, P. Heimbach, M. Kröner, G. Wilke, E. G. Hoffmann, and J.

Brandt, Justus Liebig s Ann. Chem. 727, 143 (1969). 60. G. Wilke, M. Kröner, and B. Bogdanovic, Angew. Chem. 73, 755 (1961). 61. J. M. Brown, B. T. Golding, and M. J. Smith, Chem. Commun, p. 1240 (1971). 62. P. W. Jolly, I. Tkatchenko, and G. Wilke, Angew Chem. 83, 329 (1971). 63. B. Büssemeier, P. W. Jolly, and G. Wilke, unpublished results (1972). 64. G. Wilke (Studiengesellschaft Kohle m.b.H.), German Patent 1,194,417 (1965). 65. R. van der Linde and B. Bogdanovic, unpublished results (1969). Int. Conf.

Organometal. Chem., 4th 1969 U8 (1969). 66. M. I. Lobach, V. A. Kormer, I. Y. Tsereteli, G. P. Kondratenkov, B. D. Babitskii,

and V. I. Klepikova, / . Polym. Sei., Part B 9, 71 (1971).

Page 68: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

396 VI. π-Allyl Nickel Complexes

67. M. I. Lobach, V. A. Kormer, I. Y. Tsereteli, G. P. Kondratenkov, B. D. Babitskii, and V. I. Klepikova, Proc. Acad. Sei. USSR 196, 22 (1971).

68. R. Rienäcker and H. Yoshiura, Angew. Chem. 81, 708 (1969). 69. C. Krüger, Angew. Chem. 81, 708 (1969). 70. W. Keim, Angew. Chem. 80, 968 (1968). 71. M. Englert, P. W. Jolly, and G. Wilke, Angew. Chem. 84, 120 (1972). 72. B. L. Barnett, C. Krüger, and Y-H. Tsay, Angew. Chem. 84, 121 (1972). 73. P. W. Jolly, unpublished results (1971). 74. S. Otsuka, A. Nakamura, S. Ueda, and K. Tani, Chem. Commun, p. 863 (1971). 75. B. Bogdanovic and D. Uvalic, unpublished results (1970). 76. G. Freund, Ph.D. Dissertation, Technische Hochschule Karlsruhe, 1965. 77. H. G. Nüssel, Ph.D. Dissertation, University of Bochum, 1970. 78. H. Pauling and G. Wilke, unpublished results (1967). 79. C. Krüger, unpublished results (1969); see also C. Krüger, Angew. Chem. 84, 412

(1972). 80. B. Bogdanovic, B. Henc, H. G. Karmann, H. G. Nüssel, D. Walter, and G. Wilke,

Ind. Eng. Chem. 62, 34 (1970). 81. B. Bogdanovic and G. Wilke, Brennst.-Chem. 49, 323 (1968). 82. M. Englert, P. W. Jolly, and G. Wilke, Angew. Chem. 83, 84 (1971). 83. K. Issleib and H. P. Abicht, / . Prakt. Chem. [N.S.] 312, 456 (1970). 84. C. Krüger, Z. Kristallogr. 132, 436 (1970). 85. Studiengesellschaft Kohle m.b.H., British Patent 1,118,075 (1968). 86. L. Porri, G. Natta, and M. C. Gallazzi, / . Polym. Sei., Part C6, 2525 (1967). 87. A. G. Azizov, O. K. Sharaev, E. I. Tinyakova, G. N. Bondarenko, M. P. Teterina,

N. A. Shimanko, and B. A. Dolgoplosk, Proc. Acad. Sei. USSR 197, 299 (1971). 88. G. Wilke et al.9 Angew. Chem. 75, 10 (1963). 89. B. Barnett, B. Büssemeier, P. Heimbach, P. W. Jolly, C. Krüger, I. Tkatchenko,

and G. Wilke, Tetrahedron Lett. p. 1457 (1972). 90. V. M. Frolov, A. V. Volkov, O. P. Parenago, and B. A. Dolgoplosk, Proc. Acad.

Sei. USSR 177, 1200 (1967). 91. H. Breil and G. Wilke, Angew. Chem. 82, 355 (1970). 92. L. Horner and H. Kunz, Chem. Ber. 104, 717 (1971). 93. P. Heimbach, Angew. Chem. 76, 586 (1964). 94. R. G. Miller, T. J. Kealy, and A. L. Barney, / . Amer. Chem. Soc. 89, 3756

(1967). 95. J. E. Lydon, J. K. Nicholson, B. L. Shaw, and M. R. Truter, Proc. Chem. Soc,

London p. 421 (1964). 96. E. O. Fischer and G. Burger, Z. Naturforsch. B 17, 484 (1962). 97. Studiengesellschaft Kohle m.b.H., British Patent 1,197,500 (1970). 98. M. C. Gallazzi, T. L. Hanlon, G. Vitulli, and L. Porri, / . Organometal. Chem. 33,

C45 (1971). 99. T. Arakawa (Mitsui Petrochemical Ind. Ltd.), Japanese Patent 71-06,286 (1971).

100. I. Moritani, Y. Yamamoto, and H. Konishi, Chem. Commun, p. 1457 (1969). 101. A. N. Nesmeyanov, S. P. Gubin, and A. Z. Rubezhov, / . Organometal. Chem. 16,

163 (1969). 102. S. Otsuka, K. Mori, and F. Imaizumi, / . Amer. Chem. Soc. 87, 3017 (1965). 103. L. Porri, G. Vitulli, and M. C. Gallazzi, Angew. Chem. 79, 414 (1967). 104. L. Porri, M. C. Gallazzi, and G. Vitulli, Chem. Commun, p. 228 (1967). 105. M G. Burnett, Chem. Commun, p. 507 (1965). 106. D. Bingham and M. G. Burnett, / . Chem. Soc, A p. 1782 (1971). 107. H. T. Dodd and J. F. Nixon, / . Organometal. Chem. 32, C67 (1971).

Page 69: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

References 397

108. H. Bönnemann, U. Birkenstock, B. Bogdanovic, W. Fleck, P. Heimbach, and G. Wilke, Proc. Int. Symp. React. Bond Trans. Organometal. Compounds, 3rd, 1970 C4 (1970).

109. H. Bönnemann, B. Bogdanovic, D. Uvalic, G. Schomburg, and G. Wilke, Proc. Int. Conf. Organometal. Chem. 4th, 1969 J4 (1969).

110. D. Uvalic, Ph.D. Dissertation, University of Bochum, 1969. 111. G. P. Chiusoli and L. Cassar, Angew. Chem. 79, 177 (1967). 112. P. Heimbach, P. W. Jolly, and G. Wilke, Advan. Organometal. Chem. 8, 28 (1970), 113. B. Bogdanovic, B. Illmeier, D. Walter, and G. Wilke, unpublished results (1971);

Y-H. Tsay and C. Krüger, unpublished results (1972). 114. E. J. Corey and M. F. Semmelhack, / . Amer. Chem. Soc. 89, 2755 (1967). 115. G. P. Chiusoli and S. Merzoni, Z. Naturforsch. B 17, 850 (1962). 116. R. F. Heck, / . Amer. Chem. Soc. 85, 2013 (1963). 117. W. Keim and G. Wilke, unpublished results (1964). 118. S. F. A. Kettle, Inorg. Chim. Acta 1, 303 (1967). 119. S. F. A. Kettle and R. Mason, / . Organometal. Chem. 5, 573 Ü966). 120. P. Heimbach and R. Traunmüller, "Chemie der Metail-Olefin-Komplexe." Verlag

Chemie, Weinheim, 1970. 121. R. Traunmüller, Ph.D. Dissertation, University of Vienna, 1969. 122. P. Heimbach and R. Traunmüller, Justus Liebigs Ann. Chem. 727, 208 (1969). 123. D. A. Brown and A. Owens, Inorg. Chim. Acta 5, 675 (1971). 124. G. de Brouckère, Theor. Chim. Acta 19, 310 (1970). 125. A. Veillard, Chem. Commun, p. 1022 (1969). 126. A. Veillard, Chem. Commun, p. 1427 (1969). 127. W. W. Fogleman, L. C. Cusachs, and H. B. Jonassen, Chem. Phys. Lett. 3, 52

(1969). 128. A. G. Azizov, O. K. Sharaev, E. I. Tinyakova, and B. A. Dolgoplosk, Proc. Acad.

Sei. USSR 190, 65 (1970). 129. A. G. Azizov, T. Y. Vydrina, O. K. Sharaev, E. I. Tinyakova, and B. A. Dolgo-

plosk, Proc. Acad. Sei. USSR 195, 797 (1970). 130. A. G. Azizov, O. K. Sharaev, E. I. Tinyakova, and B. A. Dolgoplosk, Vysokomol.

Soedin., Ser. B11, 746 (1969). 131. V. I. Skoblikova, Z. D. Stepanova, V. D. Babitskii, and V. A. Kormer, / . Gen. Chem.

USSR 39, 207 (1969). 132. A. G. Azizov, O. K. Sharaev, E. I. Tinyakova, and B. A. Dolgoplosk, Proc. Acad.

Sei. USSR 197, 268 (1971). 133. M. R. Galding and N. A. Buzina, Proc. Acad. Sei. USSR 197, 238 (1971). 134. T. Matsumoto, J. Furukawa, and H. Morimura, / . Polym. Sei., Part A-1 9, 875

(1971). 135. T. Matsumoto, J. Furukawa, and H. Morimura, / . Polym. Sei., Part B 7, 541

(1969). 136. T. Matsumoto, J. Furukawa, and H. Morimura, / . Polym. Sei., Part A-1 9, 1971

(1971). 137. V. A. Kormer, B. D. Babitskii, M. I. Lobach, and N. N. Chesnokova, / . Polym.

Sei., Part C16, 4351 (1969). 138. A. V. Volkov, O. P. Parenago, V. M. Frolov, and B. A. Dolgoplosk, Proc. Acad.

Sei. USSR 187, 563 (1969). 139. T. K. Vydrina, E. I. Tinyakova, and B. A. Dolgoplosk, Proc. Acad. Sei. USSR

183, 1013 (1968). 140. O. K. Sharaev, A. V. Alferov, E. I. Tinyakova, and B. A. Dolgoplosk, Bull. Acad.

Sei. USSR 2469 (1967).

Page 70: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

398 VI. π-Allyl Nickel Complexes

141. E. A. Mushina, T. K. Vydrina, E. V. Sakharova, E. I. Tinyakova, and B. A. Dolgoplosk, Dokl. Akad. Nauk SSSR 177, 361 (1967); Chem. Abstr. 68, 40722 (1968).

142. E. A. Mushina, T. K. Vydrina, E. V. Sakharova, V. A. Yakovlev, E. I. Tinyakova, and B. A. Dolgoplosk, Vysokomol. Soedin, Ser. B 9, 784 (1967;; Chem. Abstr. 68, 13827 (Z968).

143. W. R. McClellan, H. H. Hoehn, H. N. Cripps, E. L.Muetterties, and B. W. Howk, / . Amer. Chem. Soc. 83, 1601 (1961).

144. H. Yamazaki, T. Nishido, Y. Matsumoto, S. Sumida, and N. Hagihara, / . Órgano-metal. Chem. 6, 86 (1966).

145. D. W. McBride, E. Dudek, and F. G. A. Stone, / . Chem. Soc, London p. 1752 (1964).

146. P. S. Welcker and L. J. Todd, Inorg. Chem. 9, 286 (1970). 147. M. Dubeck (Ethyl Corp.), U.S. Patent 3,086,984 (1963); Chem. Abstr. 59, 10126

(1963). 148. A. Miyaké and A. Kanai, Angew. Chem. 83, 851 (1971). 149. A. E. Smith, Inorg. Chem. 11, 165 (1972). 150. R. Criegee and P. Ludwig, Chem. Ber. 94, 2038 (1961). 151. R. Criegee, F. Förg, H. A. Brune, and D. Schönleber, Chem. Ber. 97, 3461 (1964). 152. R. B. King, Inorg. Chem. 2, 528 (1963). 153. P. M. Maitlis, A. Efraty, and M. L. Games, / . Amer. Chem. Soc. 87, 719 (1965). 154. W. Oberhansli and L. F. Dahl, Inorg. Chem. 4, 150 (1965). 155. L. F. Dahl and W. E. Oberhansli, Inorg. Chem. 4, 629 (1965). 156. K. W. Barnett, F. D. Mango, and C. A. Reilly, / . Amer. Chem. Soc. 91, 3387 (1969). 157. J. C. Wollensak (Ethyl Corp.), U.S. Patent 3,088,960 (1963); Chem. Abstr. 59,

10127 (1963). 158. E. O. Fischer and H. Werner, Tetrahedron Lett. p. 17 (1961). 159. E. O. Fischer and H. Werner, Chem. Ber. 92, 1423 (1959). 160. E. O. Fischer and H. Werner (Union Carbide Corp.), U.S. Patent 3,121,729

(1964); Chem. Abstr. 60, 15913 (1964). 161. P. L. Timms, Chem. Commun, p. 1033 (1969). 162. E. A. Mushina, T. K. Vydrina, E. V. Sakharova, E. I. Tinyakova, and B. A.

Dolgoplosk, Proc. Acad. Sei. USSR 170, 881 (1966). 163. K. Jonas and G. Wilke, Angew. Chem. 81, 534 (1969). 164. S. P. Gubin, S. A. Smirnova, and L. I. Denisovich, / . Organometal. Chem. 30, 257

(1971). 165. M. Dubeck and A. H. Filbey, / . Amer. Chem. Soc. 83, 1257 (1961). 166. D. Kaufman (National Lead Co.), U.S. Patent 2,922,805 (1960); Chem. Abstr. 54,

11048(1960). 167. D. W. McBride, R. L. Pruett, E. Pitcher, and F. G. A. Stone, / . Amer. Chem. Soc.

84, 497 (1962). 168. R. L. Hunt and G. Wilkinson, Inorg. Chem. 4, 1270 (1965). 169. D. M. Roe and A. G. Massey, / . Organometal. Chem. 20, PI (1969). 170. D. M. Roe and A. G. Massey, / . Organometal. Chem. 23, 547 (1970). 171. M. Green, R. B. L. Osborn, and F. G. A. Stone, / . Chem. Soc, A p. 3083 (1968). 172. E. O. Fischer and H. Werner, Chem. Ber. 95, 695 (1962). 173. D. Jones, G. W. Pashall, L. Pratt, and G. Wilkinson, Tetrahedron Lett. p. 48

(1961). 174. B. L. Shaw and N. Sheppard, Chem. Ind. {London) p. 517 (1961). 175. R. B. King, Appl. Spectrosc. 23, 148 (1969).

Page 71: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

References 399

176. H. P. Fritz, Chem. Ber. 94, 1217 (19611 177. E. W. Gowling and S. F. A. Kettle, Inorg. Chem. 3, 604 (1964). 178. D. L. Weaver and R. M. Tuggle, / . Amer. Chem. Soc. 91, 6506 (1969). 179. R. M. Tuggle and D. L. Weaver, Inorg. Chem. 10, 2599 (1971). 180. M. D. Rausch, R. M. Tuggle, and D. L. Weaver, / . Amer. Chem. Soc. 92, 4981

(1970). 181. R. M. Tuggle and D. L. Weaver, Inorg. Chem. 10, 1504 (1971). 182. E. Schumacher and R. Taubenest, Helv. Chim. Acta 47, 1525 (1964). 183. M. Sundaralingam and L. H. Jensen, / . Amer. Chem. Soc. 88, 198 (1966). 184. P. W. N. M. van Leeuwen and A. P. Praat, Chem. Commun, p. 365 (1970). 185. P. W. N. M. van Leeuwen, A. P. Praat, and M. van Diepen,/. Organometal. Chem.

24, C31 (1970). 186. S. Otsuka, A. Nakamura, T. Yamagata, and K. Tani, / . Amer. Chem. Soc. 94,

1037 (1972). 187. L. R. Wallace and J. F. Harrod, Macromolecules, 5, 656 (1971). 188. T. S. Cameron and C. K. Prout, Acta Crystallogr., Sect. B 28, 2021 (1972). 189. T. S. Cameron, M. L. H. Green, H. Munakata, C. K. Prout, and M. J. Smith,

/ . Coord. Chem. 2, 43 (1972). 190. B. L. Barnett and C. Krüger, unpublished results (1971); see also C. Krüger,

Angew. Chem. 84, 412 (1972). 191. V. A. Yakovlev, B. A. Dolgoplosk, K. L. Makovetskii, and E. I. Tinyakova, Proc.

Acad. Sei. USSR 187, 557 (1969). 192. T. I. Voyevodskaya, I. M. Pribytkova, and Y. A. Ustynyuk, / . Organometal. Chem.

37, 187 (1972). 193. M. F. Semmelhack, Ph.D. Dissertation, Harvard University, Cambridge, Massa-

chusetts, 1967. 194. L. S. Hegedus, Ph.D. Dissertation, Harvard University, Cambridge, Massa-

chusetts, 1970. 195. M. J. Piper and P. L. Timms, Chem. Commun, p. 50 (1972). 196. W. K. Olander and T. L. Brown, / . Amer. Chem. Soc. 94, 2139 (1972). 197. S. O'Brien, M. Fishwick, and B. McDermott, Inorg. Syn. 13, 73 (1972). 198. V. A. Kormer and M. O. Lobach, / . Polym. Sei., Part B 10, 177 (1972). 199. J. P. Durand, F. Dawans, and P. Teyssie, / . Polym. Sei., Part A-l, 8, 979 (1970). 200. J. C. Maréchal, F. Dawans, and P. Teyssie, / . Polym. Sei., Part A-l 8, 1993 (1970). 201. L. J. Guggenberger, A. R. Kane, and E. L. Muetterties, / . Amer. Chem. Soc. 94,

5665 (1972). 202. L. A. Churlyaeva, M. I. Lobach, G. P. Kondratenkov, and V. A. Kormer, / .

Organometal. Chem. 39, C23 (1972). 203. P. L. Maxfield (Phillips Petroleum Co.), U.S. Patent 3,475,471 (1969); Chem.

Abstr. 71, 123730 (1969). 204. K. N. Anikejew, B. D. Babitskii, A. M. Werblowskii, T. N. Koschenez, M. I.

Lobach, W. S. Makova, and E. M. Ruvis (Inst. Petrochem. Syn.), German Patent 2,138,599 (1972).

205. R. A. Clement (E. I. du Pont), U.S. Patent 3,652,620 (1972). 206. K. Jonas, unpublished results (1970); B. Bogdanovic and D. Walter, unpublished

results (1967). 207. G. V. Isagulyants, V. M. Frolov, A. P. Khimov, V. M. Gorelik, O. P. Parenago,

and B. A. Dolgoplosk, Proc. Acad. Sei. USSR 198, 524 (1971). 208. N. P. Simanova, M. I. Lobach, B. D. Babitskii, and V. A. Kormer, Vysokomol.

Soedin., Ser. B 10, 588 (1968); Chem. Abstr. 70, 5059 (1969).

Page 72: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

400 VI. π-Ally I Nickel Complexes

209. V. I. Skoblikova, S. S. Pasova, B. D. Babitskii, and V. A. Kormer, Vysokomol. Soedin., Ser. B 10, 590 (1968); Chem. Abstr. 70, 5060 (1969).

210. A. C. L. Su and J. W. Collette, / . Organometal. Chem. 36, 177 (1972). 211. M. Kröner and G. Wilke, unpublished results (1962). 212. P. S. Skell, J. J. Havel, D. L. Williams-Smith, and M. J. McGlinchy, Chem. Com-

mun, p. 1098 (1972). 213. P. Bourdauducq and F. Dawans, / . Polym. Set, Part A-l 10, 2527 (1972). 214. M. Dubini and F. Montino, / . Organometal. Chem. 6, 188 (1966). 215. L. S. Hegedus, E. L. Waterman, and J. Catlin, / . Amer. Chem. Soc. 94, 7155 (1972). 216. K. Sato, S. Inoue, and K. Saito, Chem. Commun, p. 953 (1972). 217. M. M. Rohmer and A. Veillard, Chem. Commun, p. 250 (1973). 218. Y. Kitano, M. Kashiwagi, and Y. Kinoshita, Bull. Chem. Soc. Japan, 46, 723 (1973). 219. D. C. Andrews and G. Davidson, / . Organometal. Chem. 55, 383 (1973). 220. A. Schott, H. Schott, G. Wilke, J. Brandt, H. Hoberg, and E. G. Hoffmann

Justus Liebigs Ann. Chem. p. 508 (1973). 221. V. N. Vasil'eva, T. M. Pankratova, and V. A. Vashkevich, / . Org. Chem. USSR 42,

1735 (1972). 222. V. A. Vasil'ev, V. I. Klepikova, G. P. Kondratenkov, V. A. Kormer, and M. I.

Lobach, Proc. Acad. Sei. USSR 206, 719 (1972). 223. A. N. Nesmeyanov, L. S. Isaeva, L. N. Lorens, A. M. Vainberg, and Y. S. Nekrasov,

Proc. Acad. Sei. USSR 205, 678 (1972). 224. T. Arakawa and K. Saeki, Kogyo Kagaku Zasshi 71, 1028 (1928). 225. V. P. Nechiporenko, A. D. Treboganov, A. I. Kadantseva, A. A. Glazkov, G. I.

Myagkova, and N. A. Preobrazhenskii, / . Org. Chem. USSR 6, 2633 (1970). 226. D. R. Lloyd and N. Lynaugh in "Electron Spectroscopy, Proceedings of the Inter-

national Conference, 1971" (D. E. Shirley, ed.). North-Holland, Amsterdam (1972).

227. F. Brogli, P. A. Clark, E. Heillbronner, and M. Neuenschwader, Angew. Chem. 85, 414 (1973).

Reviews

Important review articles on transition metal 7r-allyl complexes are listed below. L. A. Federov, NMR spectroscopy of allyl organometallic compounds. Russ. Chem. Rev.

39, 655 (1970). E. O. Fischer and H. Werner, Übergangsmetall Komplexe mit π-Allyl and π-Enyl

Liganden. Z. Chem. 2, 174 (1962). M. L. H. Green and P. L. I. Nagy, Allyl metal complexes. Advan. Organometal. Chem.

2, 325 (1964). M. Hancock, M. N. Levy, and M. Tsutsui, σ-π Rearrangements of organotransition

metals. Organometal. React. 4, 1 (1972). P. Heimbach, P. W. Jolly, and G. Wilke, 7r-Allyl nickel intermediates in organic syn-

thesis. Advan. Organometal. Chem. 8, 29 (1970). P. Heimbach and R. Traunmüller, Chemie der Metall-Olefin-Komplexe. Verlag Chemie,

Weinheim, 1970. I. I. Kritskaya, New organic ligands in complexes of transition metals. Russ. Chem.

Rev. 41, 1027 (1972). M. I. Lobach, B. D. Babitskii, and V. A. Kormer, 7r-Allyl Complexes of transition metals.

Russ. Chem. Rev. 36, 476 (1967).

Page 73: The Organic Chemistry of Nickel || π-Allyl Nickel Complexes

Reviews 401

J. Powell, Organometallic compounds containing three-electron ligands. MPT Int. Rev. Sei., Inorg. Chem. Ser. 1 6 (Pt2), 273 (1972).

K. Vrieze and P. W. N. M. van Leeuwen, Studies of dynamic organometallic compounds of the transition metals by means of nuclear magnetic resonance. Progr. Inorg. Chem. 14, 1 (1971).

K. Vrieze, H. C. Volger, and P. W. N. M. van Leeuwen, A survey of NMR studies of iridium, palladium, and platinum. Inorg. Chim. Acta. Rev. 3, 109 (1969).

G. Wilke et al, Allyl-Übergangsmetall Systeme. Angew. Chem. 78, 157 (1966).